
Making Change for Making Change for MelmanMelman: Solution: Solution

Problem: You are given a currency system with n different values:
C = [c0, c1, …,cn-1]

and a desired total value total.  How many ways are there to 
make total using these coins?

Example: C = [2, 10, 11], total = 22, then there are 4 combinations:
1. (2+2+2+…+2) (repeated 11 times)
2. 10+(2+2+…+2) (repeated 6 times)
3. 10+10+2
4. 11+11



Solution StructureSolution Structure

Table: Let n be the number of coins. Create a 2-dimensional array
nCombs[n+1][total+1],

where nCombs[i][t] is the number of ways to obtain t using first i coins.
Final result: nCombs[n][total].
Computing nCombs[i][t]: for i = 0, 1, …, n and t = 0, 1, …, total.

For i = 0: There are no coins. The only sum is 0 and one way to do it.  Thus 
nCombs[0][0] = 1 and      nCombs[0][t] = 0 for t > 0.

For i > 0: Let j be the number of times we use coin c. Clearly 0 ≤ j ≤ t/c. This 
this leaves t - j⋅c remaining to be made up by the previous i-1 coins. We have 
already computed this as nCombs[i-1][t - j⋅c].   Thus:

nCombs[i][t] = nCombs[i-1][t] 
+ nCombs[i-1][t - c] 
+ nCombs[i-1][t - 2⋅c] + ... 
+ nCombs[i-1][t - m⋅c], where m =  t/c.

We just need to set up loops to compute this table.



PseudoPseudo--codecode

nCombs ← new int[n+1][total+1]
nCombs[0][0] ← 1 // basis case (no coins)
for (t ← 1 up to total) nCombs[0][t] ← 0
for (i ← 1 up to n) { // consider the ith coin

c ← coins[i-1] // current coin value
for (t ← 0 up to total) { // compute count for all totals

sum ← 0
for (j ← 0 up to t/c) { // sum up prior combinations

sum ← sum + nCombs[i-1][t-j⋅c]
}
nCombs[i][t] ← sum // store final sum

}
}
return nCombs[n][total] // return final total


