Penguins on Ice: Solution

Problem: You are given an integer grid [0..size]x[0..size], and a collection of circles, each given by its center (cx, cy) and radius r. Find the shortest path from $(0,0)$ to (size, size) that avoids all the circles and makes at most one turn (at a vertex).

Solution Strategy:

- Try all possible turning points (x, y), where $0 \leq x, y \leq$ size (using two nested for loops), and for each check that the path is valid, that is, neither of the line segments:

$$
(0,0) \text { to }(x, y) \text { and } \quad(x, y) \text { to }(\text { size, size })
$$

hits any circle.

- If valid, then compute its length as:

$$
\operatorname{sqrt}\left(x^{2}+y^{2}\right)+\operatorname{sqrt}\left((\text { size }-x)^{2}+(\text { size }-y)^{2}\right)
$$

- If no path is valid, return $(-1,-1)$. Otherwise, return the turning point that gives the minimum length.

Hitting an Ice Berg?

Key Utility:

- Given a line segment from $p=\left(p_{x}, p_{y}\right)$ to $q=\left(q_{x}, q_{y}\right)$, does it hit circle with center $c=\left(c_{x}, c_{y}\right)$ and radius r ?
Quick-and-dirty (and wrong) Solution:
- Break the line segment up into many small points. For each point, test whether it lies within the circle. If any do, then declare the segment to be invalid.
- Problem: Did you pick enough points?
- Let m be the number of pieces, say $m=100$.
- For $i=0$ to m, let $\alpha=i / m$ and let $s=(1-\alpha) \cdot p+\alpha q$:

$$
s_{x}=(1-\alpha) \cdot p_{x}+\alpha q_{x} \text { and } s_{y}=(1-\alpha) \cdot p_{y}+\alpha q_{y}
$$

- Test whether $\operatorname{dist}(s, c) \leq r$, where

$$
\operatorname{dist}(s, c)=\operatorname{sqrt}\left((s x-c x)^{2}+(s y-c y)^{2}\right)
$$

Hitting an Ice Berg?

Key Utility:

- Given a line segment from $p=\left(p_{x}, p_{y}\right)$ to $q=\left(q_{x}, q_{y}\right)$, does it hit circle with center $c=\left(c_{x}, c_{y}\right)$ and radius r ?
Correct Solution: There are three cases.
- Does plie within the circle? $\operatorname{dist}(p, c) \leq r$?
- Does q lie within the circle? $\operatorname{dist}(q, c) \leq r$?
- Let L be the (infinite) line passing through p and q. Let s be the closest point on this line to c. Does s lie between p and q and is $\operatorname{dist}(s, c) \leq r ?$

Hitting an Ice Berg?

Computing the closest point to L : There are many solutions. This one is based on vectors.

- Let $u=c-p$ be the vector from p to the circle center.
- Let $v=q-p$ be the vector from p to q.
- Let

$$
a=\frac{u_{x} v_{x}-u_{y} v_{y}}{v_{x}^{2}-v_{y}^{2}}
$$

- If $\alpha<0$, then p is closest to center. If $\alpha>1$, then q is closest to center, otherwise, let $s=(1-\alpha) \cdot p+\alpha q$.

