Pirates' Gold: Solution

Problem: You have stolen a number of gold pieces of various values

$$
S=\left\{S_{0}, S_{1}, \ldots, S_{n-1}\right\}
$$

and a claim c on the amount you stole. You want to determine the minimum sum of a subset of values of S whose value is at least as large as c.

Example:
$S=\{7,10,13,4,10,24\}$,
$c=25$,
Answer: 27 (= $7+10+10$ or alternately $10+13+4)$.

Ideas that Don't Work

Best-Fit: Add in the value that brings you closest to the claim.
Counter-example: $S=\{7,10,13,4,10,24\}, c=25$ $24+4=28$ (too big!)
First-Fit Increasing: Start with the smallest amount and start adding values until we reach a value as large as the claim.
Counter-example: $S=\{7,10,13,4,10,24\}, c=25$ $4+7+10+10=31$ (too big!)
Add and Prune: First-fit, but prune unneeded items.
Example: $S=\{7,10,13,4,10,24\}, c=25$
$4+7+10+10=31$; remove $4 ; 7+10+10=27$ (maybe this works?)
Counter-example: $S=\{7,10,13,4,10,24\}, c=23$
$4+7+10+10=31$; remove $7 ; 4+10+10=24$.
But $10+10+13=23$, and this is better. (No this doesn't work)
Bottom line: We need something that is provably correct.

Ideas that Do Work

Brute Force: Enumerate all subsets of coins, compute each sum, and return the smallest value exceeding the claim.

This should be too slow, if we had generated a large enough test case.

Foolishly, we didn't.

Our Solution Structure

Approach: We will construct all the possible sums that can be generated from the first i coins, where $i=0,1,2, \ldots, n$. Then we will select the smallest sum that is at least as large as the claim.
Example: $S=\{7,10,13,4,10,24\}$

```
    Sum[0] ={0} No coins yet.
    Sum[1]={0,7} We may either use 7 or not.
    Sum[2]={0,7,10,17} ={0,7}\cup({0,7} + 10)
    Sum[3] ={0,7,10,17,13,20,23,30}={0,7,10,17}\cup({0,7,10,17}+13)
```

General Rule:
Sum[i] $=\operatorname{Sum}[i-1] \cup(\operatorname{Sum}[i-1]+s[i])$
Implementation: We will represent Sum as a 2-dimensional array boolean array, where sum $[i][j]=$ true if j is an element of Sum[i].
Final result: Return the smallest $j \geq$ claim, such that sum $[n][j]=$ true.
Computing sum[i][j]:
For $i=0$: sum[0][j] \leftarrow true if and only if $j=0$.
For $i \geq 1: \operatorname{sum}[i][j] \leftarrow \operatorname{sum}[i-1][j]$ || sum $[i-1][j-s[i]]$

Pseudo-code

```
M\leftarrowsome large enough value (e.g. claim + largest stolen value).
sum[0][0] \leftarrow true; // initialize row 0
for (j \leftarrow1 to M) sum[0][j] }\leftarrow\mathrm{ false;
for (i\leftarrow1 to n){
    // construct rest of table
        for (j}\leftarrow0\mathrm{ to M) {
            sum[i][j]}\leftarrow\operatorname{sum[i-1][j] || sum[i-1][j - s[i]];
            // Note: not quite correct - may generate negative subscript
            }
        }
}
for (j}\leftarrow\mathrm{ claim to M){ // determine return value
    if (sum[n][j]) return j; // return smallest after claim
}
return -1; // no feasible solution
```

