
Automatic Selection of
Loop Scheduling Algorithms

Using Reinforcement Learning

Sumithra Dhandayuthapani[1,2], Ioana Banicescu[1,2],
Ricolindo L. Cariño[2], Eric Hansen[1],

Jaderick P. Pabico[1,2], Mahbubur Rashid[1,2]

[1]Department of Computer Science, and
[2]Engineering Research Center

Mississippi State University

Partial support from the NSF Grants: 9984465, 0085969, 0081303,
0132618, and 0082979.

Scheduling and Load Balancing @ MSU

Motto: Dynamic scheduling and load balancing algorithm
development for performance optimization in scientific
computing

Activities
Derive novel loop scheduling techniques

Adaptive weighted factoring (2000, ’01, ’02)
Adaptive factoring (2000)

Develop load balancing tools and libraries
For applications using: Threads; MPI; DMCS/MOL
Addn’l functionality of systems: Loci; Hector

Improve the performance of applications
N-body simulations; CFD simulations; Quantum physics;

Astrophysics; Computational mathematics, statistics

Motivation: Time-stepping applications
with parallel loops
Sequential form
Initializations
do t = 1, nsteps

…
do i = 1, N

(loop body)
end do
…

end do
Finalizations

Parallel form
Initializations
do t = 1, nsteps

…
call LoopSchedule (

1, N, loop_body_routine,
myRank, foreman, method,

…)
…

end do
Finalizations

Property: The loop iterate execution times
(1) are non-uniform, and
(2) evolve with t .

Problem: How to select the scheduling method?
Proposed solution: Machine Learning!

Machine Learning (ML)

• Supervised Learning (SL)
– Teacher
– Learner
– Input-output pairs
– Training (offline learning)

• Reinforcement Learning (RL)
– Agent
– Environment
– Action, state, reward
– Learning concurrent with problem solving
– Survey: http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/

volume4/kaelbling96a-html/rl-survey.html

Environment

Agent

Reinforcement learning system

I

R

B

T

s a

I – set of inputs (i)

R – set of rewards (r)

B – policy

a – action

T – transition

s - state

i

r

Reinforcement Learning (RL)

• Model-based approach
– Model M, utility function UM from M
– Examples: Dyna, prioritized sweeping, Queue-

Dyna, Real-Time Dynamic Programming

• Model-free approach
– Action-value function Q
– Example: Temporal Difference (Monte Carlo +

Dynamic Programming)
• SARSA algorithm
• Q Learning algorithm

Environment
(Application)

Agent

RL system for automatic selection of
loop scheduling methods

I

R

B

Loop scheduler

s a

i

r

Library of loop
scheduling algorithms

I – set of inputs (methods,
time step, loop ids)

R – set of rewards (loop
time)

B – policy (SARSA, Q)

a – action (use method)

s – state (application is
using method)

Embedding a RL system in a time-
stepping application

Serial form
Initializations
do t =1,nsteps

…
do i = 1, N

(loop body)
end do
…

end do
Finalizations

Parallel form
Initializations
do t =1, nsteps

…
call LoopSchedule(

1, N, loop_body_rtn,

myRank, foreman,

method, …)
…

end do
Finalizations

With RL system
Initializations
call RL_Init()
do t = 1, nsteps

…
time_start = time()
call RL_Action (method)
call LoopSchedule (

1, N, loop_body_rtn,
myRank, foreman,
method, …)

reward = time()-time_start
call RL_Reward (t,

method, reward)
…

end do
Finalizations

Test application: Simulation of wave
packet dynamics using the QTM

• Bohm, D. 1952. “A Suggested Interpretation of the Quantum
Theory in Terms of Hidden Variable,” Phys Rev 85, No. 2,
166-193.

• Lopreore, C.L., R.W. Wyatt. 1999. “Quantum Wavepacket
Dynamics with Trajectories,” Phys Rev Letters 82, No. 26,
5190-5193.

• Brook, R.G, P.E. Oppenheimer, C.A. Weatherford, I.
Banicescu, J. Zhu. 2001. “Solving the Hydrodynamic
Formulation of Quantum Mechanics: A Parallel MLS
Method,” Int. J. of Quantum Chemistry 85, Nos. 4-5, 263-271.

• Carino, R.L., I. Banicescu, R.K. Vadapalli, C.A. Weatherford,
J. Zhu. 2004. “Message-Passing Parallel Adaptive Quantum
Trajectory Method,” High performance Scientific and
Engineering Computing: Hardware/Software Support, L. T.
Yang and Y. Pan (Editors). Kluwer Academic Publishers,
127-139.

Application summary

• The time dependent Schrödinger's equation (TDSE)
i ħ ∂/∂t Ψ = H Ψ, H ≡ -(ħ/2m)∇2 + V

– quantum-mechanical dynamics of a particle of mass m moving
in a potential V

– Ψ(r,t) is the complex wave function
• The quantum trajectory method (QTM)

– Ψ(r,t) = R(r,t) exp(i S(r,t)/ħ) (polar form; real-valued amplitude
R(r,t), phase S(r,t) functions)

– Plug Ψ(r,t) into the TDSE, separate real and imaginary parts
-(∂/∂t)ρ(r,t) = ∇ . [ρ(r,t)(1/m)∇S(r,t)]

-(∂/∂t)S(r,t) = (1/2m)[∇S(r,t)]2 + V(r,t) + Q(ρ; r,t)
– Probability density: ρ(r,t) = R2(r,t)
– Velocity: v(r,t) = (1/m)∇S(r,t)
– Flux: j(r,t) = ρ(r,t) v(r,t)
– Quantum potential: Q(ρ; r,t) = -(1/2m)(∇2log ρ1/2 +|∇log ρ1/2| 2)

QTM algorithm

Initialize wave packet x(1:N), v(1:N), ρ(1:N)
do t = 1, nsteps

do i = 1..N
call MWLS (i, x(1:N), ρ(1:N), p, b,…); compute Q(i)

do i = 1..N
call MWLS (i, x(1:N), Q(1:N), p, b,…); compute fq(i)

do i = 1..N
call MWLS (i, x(1:N), v(1:N), p, b,…); compute dv(i)

do i = 1..N
Compute V(i), fc(i)

do i = 1..N
Update ρ(i), x(i), v(i)

Output wave packet

Embedding a RL system in a time-
stepping application

Serial form
Initializations
do t =1,nsteps

…
do i = 1, N

(loop body)
end do
…

end do
Finalizations

Parallel form
Initializations
do t =1, nsteps

…
call LoopSchedule(

1, N, loop_body_rtn,

myRank, foreman,

method, …)
…

end do
Finalizations

With RL system
Initializations
call RL_Init()
do t = 1, nsteps

…
time_start = time()
call RL_Action (method)
call LoopSchedule (

1, N, loop_body_rtn,
myRank, foreman,
method, …)

reward = time()-time_start
call RL_Reward (t,

method, reward)
…

end do
Finalizations

Computational platform

• EMPIRE cluster
– 1038 Pentium III

(1.0 or 1.266 GHz)
– Linux RedHat; PBS
– 126th of Top 500 in

2002

• QTM in Fortran90,
MPICH

• RL agent in C

Experimental Setup

• Simulations
– Free particle; harmonic oscillator
– 501, 1001, 1501 pseudo-particles
– 10,000 time steps

• No. of processors: 2, 4, 8, 12, 16, 20, 24
• Loop scheduling methods

– Equal size chunks (STATIC, SELF, FSC)
– Decreasing size chunks (GSS, FAC)
– Adaptive size chunks (AWF, AF)
– Experimental methods (MODF, EXPT)
– RL agent (SARSA, Q)

Experimental Setup (cont)

• Hypothesis
– The simulation performs better with RL than

with a fixed scheduling method

• Design
– Two-factor factorial experiment (factors:

methods, no. of processors)
– Five (5) replicates
– Average parallel execution time TP

– Comparison via t statistic at 0.05 significance
level, using Least Squares Means

Mean TP of free particle simulation ,
10000 time steps, 501 pseudo particles

Means with the same annotation are
not different at 0.05 significance level

via t statistics using LSMEANS

Concluding remarks

• RL agent & loop scheduling library: suitable for
time stepping applications with parallel loops

• RL agent consistently outperforms fixed methods
in wave packet simulations

• Ongoing studies
– No. of times a method was chosen by the RL agent?
– Parametric study of SARSA, Q Learning
– Other learning policies?

• RL in other time-stepping applications that
require algorithm selection?

Contact:
Ioana Banicescu (ioana@cse.msstate.edu)

