
Simultaneous scheduling of data replication and
computation in Grids

Frédéric Desprez, Antoine Vernois

Laboratoire de l’Informatique du Parallélisme
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Motivations Bioinformatic applications

Context : bioinformatic application

reference databanks
I ”flat” text files
I few MB to several GB
I update : daily to monthly
I number and size of data increase very quickly

requests
I one algorithm applied to one or two databanks
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Motivations Bioinformatic applications

Logs analysis

From log files of an existing bioinformatic portal :

some requests are more frequent than other
I blast over sp.fas : 77% of requests

the usage of databanks and kind of requests is constant.

We can start from the study of previous usage schemes.
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Motivations Bioinformatic applications

Some figures

extract from logs of NPS@, bioinformatic web portal :

Number of databanks 23

Number of algorithms 8

Number of couple algorithm-databanks 80

Size of the smallest databank 1 MB

Size of the largest databank 12 GB
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Motivations Replication

Replicate databanks

Goal :

improve computation time,

and/or platform throughput.

Data sets are initially stored on public server :

insert them into the grid

keep them up to date

prevent bottleneck

Question : Where and when create replicas ? ?
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Motivations Replication

A simple idea

Store all databanks on each server.

not always possible : too many data

too much space occupied by useless databanks
I databanks are not all used at all the time. (embl.fas = 12 Gb, < 1%

of requests)

updating databanks become costly
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Motivations Replication

Usually

scheduling and replication are two independant processes,

replication has to be done by users,

schedulers don’t take care of locality of data.

An idea :

Join scheduling of computation and replication of data
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Model Parameters

Things we know

platform
I n computation servers Pi

F storage space : mi

F computation power : wi

bioinformatic
I m databanks dj of size : sizej
I p algorithms ak :

F linear with size of databanks : αk ∗ size + ck

I requests R(k, j)
F usage frequency : f(k, j)
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Model Parameters

Things we have to determine

TP : throughput

δj
i : placement of databanks

ni(k, j) : requests done by each server
I number of jobs R(k, j) done by Pi : ni(k, j)

antoine.vernois@ens-lyon.fr Simultaneous scheduling of data and computation



Model Constraints

Constraint

each data at least on one server

a server cannot store more than availaible space

a server cannot compute more than availiable computation power

a request can be executed only if data is on the server

job distribution follow usage frequency

Goal : Maximize throughput of the platform (makespan)
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Model Constraints

Linear program

linear program formulation
Maximize TP,
with constraints

(1)
n∑

j=1

δj
i > 1 1 6 i 6 m

(2)
n∑

j=1

δj
i .sizej 6 mi 1 6 i 6 m

(3)
p∑

k=1

n∑
j=1

ni(k, j)(αk ∗ sizej + ck) 6 wi 1 6 i 6 m

(4) ni(k, j) 6 vk,j .δ
j
i .

wi

αk.sizej + ck
1 6 i 6 m, 1 6 j 6 n, 1 6 k 6 p

(5)
m∑

i=1

ni(k, j) = fk,j .TP 1 6 i 6 m, 1 6 j 6 n
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Model Solutions

A word on solution

Integer and rational number problem

use of integer approximation for δj
i

With realistic information, we can notice :

the most used data are more replicated

storage space is not full
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Simulations et results Experimental environment

Simulation

use of OptorSim
I simulator for grid data management
I developped for European DataGrid project

largely modified to match our needs
I heterogeneous compute system
I batch scheduler
I heterogeneous computation time
I ...
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Simulations et results Experimental environment

Tests

test platform :
I generated by Tiers
I 10 platforms

Requests :
I based on real requests
I 40000 requests
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Simulations et results Results

Execution time : fonction of network bandwidth
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Simulations et results Results

Execution time : function of storage space availiable
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Simulations et results Results

Execution time : function of storage space (zoom)
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Conclusions What have been done...

Conclusions

Steady state model

Simulation

Good optimisations for
I low speed network
I small storage space

Placement is efficient
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Conclusions What is to be done...

Work in progress

Dynamic solution

Real execution with DIET environment
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