What Grad School is About

David Jacobs
Research
What Research is All About

- You spend a lot of time learning.
 - Reading papers, re-implementing algorithms, talking with other students, taking relevant classes.
- But your learning tends to be directed towards a more narrow goal.
- Doing something new
 - Try to solve difficult problems.
 - Often, the most important part is trying to figure out what problem to try to solve.
- Work as a community.
 - Learn from others, work with others, try to contribute something that others will be able to use.
Research

- Pro: You work on a problem no one has ever solved before. Fascinating and rewarding
- Con: You work on a problem no one has ever solved before. Frustrating
- Pro: Extremely flexible schedule. Freedom
- Con: Extremely flexible schedule. Must be disciplined.
- Pro: You get paid for this.
- Con: Pay is low.
- Pro: You are always learning. Work is very interesting.
- Con: You are always learning. Never an expert.
Vision is inferential: Light

(http://www-bcs.mit.edu/people/adelson/checkershadow_illusion.html)
Vision is inferential: Light

(http://www-bcs.mit.edu/people/adelson/checkershadow_illusion.html)
What is it like to do computer vision?

• A very diverse field
 – Important work comes from people belonging to many different fields: Computer Science; Electrical Engineering; pure math; applied math; physics; neuroscience; psychology.

Common language is math
 – Diversity of goals: building useful systems; understanding biological vision; fundamentals of vision; testbed for learning or optimization.
 – Diversity of tools: math; optimization; system building (including real time systems); AI; learning…
Modes of Operation: Possible steps in doing a vision thesis

• Starting points
 – A practical problem: activity recognition; leaf recognition; real-time tracking.
 – An unresolved issue in a fundamental problem: role of occlusions in stereo; effect of motion on pose and shading.
 – A technique: fast multipole methods; Kalman filtering; belief propagation.
• First steps:
 – Implement benchmark algorithms.
 – Find a simple, toy domain to solve mathematically.
 – Look for flaws in current algorithms and try to improve them.

• Influential work:
 – Solve a fundamental math problem, especially one that gives rise to new algorithm.
 – Show importance of technique from other field.
 – Create a new problem.
 – Build impressive system that demonstrates new ideas or potential effectiveness of existing ones.
What makes a good vision researcher?

• Core competency in many areas: programming, math, knowledge of other fields.

• But can excel in many ways:
 – System building
 – Math/Algorithms
 – Vision and ...(graphics, hci, psychology, learning).