Pursuing Graduate Studies
(in Bioinformatics)

Chau-Wen Tseng

Department of Computer Science
University of Maryland, College Park
What You Learn

🔹 Bachelor (B.A.)
 - Basic principles & problem-solving techniques
 - Apply techniques to solve classroom problems

🔹 Master (M.S.)
 - State-of-the-art principles & techniques
 - Apply techniques to solve semi-real problems

🔹 Doctorate (Ph.D.)
 - Independently discover new principles & techniques
 - Apply techniques to solve cutting-edge problems
What Type of Job

- Bachelor (B.A.)
 - Greatest variety / number of jobs
 - May become boring over time
 - Less control over responsibilities / goals

- Master (M.S.)
 - Large variety / number of jobs
 - Greater potential for management

- Doctorate (Ph.D.)
 - Limited variety / number of jobs
 - Research & teaching positions
 - More ability to set your own responsibilities & goals
Graduate Studies Tradeoffs

- **Advantages**
 - More interesting job opportunities
 - More flexibility & control over job / career
 - Possibly higher income
 - Prestige

- **Disadvantages**
 - Many additional years of school (5-8+ for Ph.D.)
 - May not recover lost income
 - Limited career options (especially with Ph.D.)
 - Stressful on family & relationships
 - Not suitable for everyone
 - Only ~50% graduate students complete Ph.D.
What To Study?

- **Bioinformatics**
 - The creation and development of advanced information and computational techniques for solving problems in biology

- **Motivation**
 - Techniques for inexpensively measuring large amounts of biological data
Graduate Studies in Bioinformatics

- **Exciting area**
 - Biologists & doctors taking advantage of new technology & computing power
 - Area with lots of potential

- **Requires wide range of skills**
 - Molecular biology
 - Statistics
 - Algorithms
 - Artificial intelligence (machine learning)
 - Databases
Some Warnings

- **Bioinformatics jobs**
 - Highly specialized position
 - Area has been (over) hyped by media
 - Not many actual positions available in industry

<table>
<thead>
<tr>
<th>Job Listing Keyword</th>
<th>Listings in US</th>
<th>Listings in MD (Montgomery County)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Security</td>
<td>5000+</td>
<td>199</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>5000+</td>
<td>196</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>119</td>
<td>9 (4 biostatistics)</td>
</tr>
</tbody>
</table>
Bioinformatics Topics

- Sequence alignments
 - Find similarity between DNA / protein (amino acid) sequences
- Genome assembly
 - Combining genomic fragments to form whole genome
- Gene identification & annotation
 - Identify and classify genes on the genome
- Microarrays & gene expression analysis
 - Use DNA microarray (gene chip) to measure mRNA
- Protein folding
 - Compute 3D protein structure ↔ protein sequence
- Phylogenetic analysis
 - Find genetic relationships between sequences / species
Sequence Alignment

- **Pairwise sequence alignment**
 - Mutual arrangement of sequences

 \[
 \begin{align*}
 \text{C A T C A} \\
 \text{G A T} \\
 \text{G G T}
 \end{align*}
 \]
 - Similar sequence \rightarrow similar function?

 \[
 \begin{align*}
 \text{C – T C A} \\
 \text{G G T}
 \end{align*}
 \]

- **Look for**

![Color Key for Alignment Scores]

Sequences producing significant alignments:

<table>
<thead>
<tr>
<th>Score</th>
<th>E Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>8e-31</td>
</tr>
<tr>
<td>133</td>
<td>8e-31</td>
</tr>
<tr>
<td>131</td>
<td>3e-30</td>
</tr>
<tr>
<td>122</td>
<td>2e-27</td>
</tr>
</tbody>
</table>
Sequence Assembly

- Combining short mRNA / DNA sequences (reads)
- Produce full transcript / genome
Gene Prediction

- Predicting expressed DNA (genes)
Measuring Gene Expression & Regulation

- Detecting DNA (genes) expressed as mRNA

Affymetrix DNA microarray

500,000 oligomers in 1.28 cm²
Protein Structure Prediction

- Predict protein 3D structure from (amino acid) sequence
- Predict interactions between proteins and ligands

5' atgcccaagctgaat ... 3'

atg ccc aag ctg aat ...

M P K L N ...

![Diagram of protein structure and DNA sequence]
Phylogenetic Analysis

- Study of evolutionary relationships
- Infer evolutionary relationship from shared features