
Using Probabilistic Models for Data Management in
Acquisitional Environments

Amol Deshpande∗ Carlos Guestrin∗ Samuel R. Madden
University of Maryland CMU MIT

amol@cs.umd.edu guestrin@cs.cmu.edu madden@csail.mit.edu

There exists a black kingdom which the eyes of man avoid
because its landscape fails signally to flatter them. This dark-
ness, which he imagines he can dispense with in describing the
light, is error with its unknown characteristics... Error is cer-
tainty’s constant companion. Error is the corollary of evidence.
And anything said about truth may equally well be said about
error: the delusion will be no greater.

(Preface
to a Modern Mythology, Louis Aragon, French Poet, 1926.)

Abstract

Traditional database systems, particularly those fo-
cused on capturing and managing data from the real
world, are poorly equipped to deal with the noise,
loss, and uncertainty in data. We discuss a suite
of techniques based on probabilistic models that
are designed to allow database to tolerate noise and
loss. These techniques are based on exploiting cor-
relations to predict missing values and identify out-
liers. Interestingly, correlations also provide a way
to give approximate answers to users at a signifi-
cantly lower cost and enable a range of new types
of queries over the correlation structure itself. We
illustrate a host of applications for our new tech-
niques and queries, ranging from sensor networks
to network monitoring to data stream management.
We also present a unified architecture for integrat-
ing such models into database systems, focusing in
particular onacquisitional systemswhere the cost
of capturing data (e.g., from sensors) is itself a sig-
nificant part of the query processing cost.

1 Introduction
The vision of ubiquitous computing promises to spread in-
formation technology throughout our lives. Though this vi-
sion can be compelling, it also threatens to overwhelm us
with a flood of information, much of which is spurious,
irrelevant, or misleading. Thus, the challenge of realiz-
ing this vision is separating the relevant, timely, and use-

∗Work done while the authors were visiting Intel Research Berkeley.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

ful information out of this flood of data. The data man-
agement community has made significant progress towards
achieving this goal – by providing tools that load and clean
the data, languages and systems that can query the data
(e.g.,[52, 36, 10, 38]), and algorithms that mine the data for
patterns and relationships that are of interest [33].

These efforts have largely been focused on mitigating
data complexity once it has been captured and stored inside
of a traditional computing infrastructure. In contrast, we are
focusing on techniques designed to take an active role in
managing this wealth of data by managing when, where, and
with what frequency data is acquired from distributed infor-
mation systems. There are many modern systems where the
capability of local nodes to generate data far outstrips the
resources available to transmit or store that data. Nodes in a
sensor network, for example, typically have processors that
run at several megahertz, with data collection hardware ca-
pable of collecting many kilosamples per second, but radios
that only transmit kilobytes per second aggregate across all
of the nodes in the network. Worse yet, these nodes are bat-
tery powered, and, when sampling at maximum rates, only
have sufficient energy to last for a few days [46]. Similarly,
routers on the Internet can produce huge amounts of net-
work monitoring traffic, so much so that the links which that
traffic is transmitted across can be easily saturated. Admin-
istrators of large networks typically apply simple techniques
(like random sampling) to choose which statistics to col-
lect [40]. Streaming database systems have much the same
problem, where the need to shed load [10] and drop or ag-
gregate historical data [52] has been noted.

In addition to the challenges presented by limited re-
sources, data from real world environments is often noisy,
lossy, and hard to interpret. This noise and uncertainty
can be misleading, particularly when the user is summariz-
ing and aggregating data using a high-level language like
SQL. For example, the California Department of Transporta-
tion maintains a database of current road speeds from about
10,000 traffic sensors on California highways [9]. On a re-
cent visit to their website, 60% of sensors were missing data.
Such loss could cause users’ queries to pick congested routes
if sensors on those routes happen to be offline. If the query
system could insteadinfer that missing speeds along cer-
tain routes are likely to be slow based on past behavior or
speeds from online sensors, query results would be much
more likely to reflect reality.

Besides failures, real-world networks often produce data

that is simply wrong. For example, in a sensor net-
work deployment on Great Duck Island (off the coast of
Maine) [63, 48], researchers noted that about 40% of the
sensors produced erratic temperature and humidity readings
at some point; though such readings sometimes precipitated
node failure, in other cases nodes otherwise continued to
function normally. If the data acquisition system could de-
tect and filter such outliers, it could inform a user of the
failure and conserve bandwidth being used to transmit bad
readings.

We address all of these problems by building amodelof
the world as data is collected from it. This model allows
us to capture the correlations and statistical relationships be-
tween attributes collected by devices. We focus onproba-
bilistic models, where the value of each attribute (e.g., tem-
perature, light) is a probability distribution that reflects the
most likely value of that attribute, possibly depending on the
values of other attributes (theirdependents), such as the time
of day or behavior of another node in the network. Such de-
pendencies, orcorrelations, can be exploited to efficiently
answer queries and enable new query types that explore the
relationships between attributes. Models are built by peri-
odically observingvalues of one or more attributes (e.g., by
acquiring a reading from a sensor) and using those observa-
tions to adjust the probability distributions of the observed
attributes and their dependees. Models offer three distinct
benefits:

1. They make queryingmore efficient. By exploiting cor-
relations between attributes, it is often possible to use
observations of a small number of attributes to provide
approximations of the values of a large number of at-
tributes. For example, if several temperature sensors
in a building read approximately the same temperature
day after day, a good (though perhaps not 100% accu-
rate) guess after observing one sensor would be that all
of the other sensors have about the same value.

2. They allow the database system to provideprobabilis-
tic guarantees on the correctness of answers.Unlike
existing database systems, which provide the illusion of
precise answers, even when data is missing or nodes are
faulty, probabilistic models provide probabilistic guar-
antees on answers, telling the user the probability that
a particular attribute value differs by more than someε
from the reported value based on past observations or
known values of other, correlated attributes.

3. They allow the database system to answernew types of
queries. For example, a model can detect certain very
unlikely values (again, by observing past correlations
with other sensors) and flag them as potentialoutliers.
Similarly, a model can reveal relationships between de-
vices that indicate, for example, that a particular sensor
is redundant or that a pair of network links are in no
way independent of each other. Finally, a model can
oftenpredict the value of a particular attribute as some
point of time in the past or future.

In this paper, we briefly summarize one model, called
BBQ [22] which we have studied in detail to provide effi-

cient query answers in sensor networks. We then show how
our ideas can be generalized to provide the other advantages
described above (e.g., various kinds of probabilistic guaran-
tees and support for new types of queries) in a variety of
domains and applications beyond sensor networks. We ar-
gue that any resource limited environment can benefit from
our techniques.

We also show how to adapt a range of techniques, based
on ideas from the machine learning and data mining com-
munities, that allow us to improve the predictive power of
models, represent correlations more compactly, and select
and train models that are most appropriate for the data being
modeled. Though such techniques sometimes are directly
transferable from these other domains, they often require
significant re-tooling to deal with limited resources, data ac-
quisition issues, and to enable integration into a SQL-based
database system.

2 Background
In this section, we summarize the basics of probabilistic
models and show how they can be used to answer queries.
We also summarize our previous work on the BBQ system,
which is an example of a probabilistic model tuned to effi-
ciently collect data from a sensor network.

2.1 Probabilistic models

We denote a model as aprobability density function(pdf),
p(X1, X2, . . . , Xn), assigning a probability for each possi-
ble assignment to the attributesX1, . . . , Xn, where eachXi

is an attribute at a particular sensor (e.g., temperature on sen-
sor number 5, bandwidth on link A-B). This model can also
incorporatehidden variables(i.e., variables that are not di-
rectly observable) that indicate, for example, whether a sen-
sor is giving faulty values or a node is subject to a denial of
service attack. Such models can be learned from historical
data using standard algorithms (e.g., [50]).

Answering queries probabilistically based on a pdf is
conceptually straightforward. Suppose, for example, that
a query asks for an approximation to the value of a set of
attributes to within±ε of the true value of each attribute,
with confidence (i.e., probability of being correct) at least
1−δ. Using standard probability theory, we can use this pdf
to compute the expected value,µi, of each attribute in the
query. These will be our reported values. We can then use
the pdf again to compute the probability thatXi is within ε
from the mean,P (Xi ∈ [µi−ε, µi +ε]). If all of these prob-
abilities meet or exceed user specified confidence threshold,
then the requested readings can be directly reported as the
meansµi. If the model’s confidence is too low, then we re-
quire additional readings before answering the query.

Choosing which readings to observe at this point is an
optimization problem: the goal is to pick the best set of at-
tributes to observe, minimizing the cost of observation re-
quired to bring the model’s confidence up to the user speci-
fied threshold for all of the query predicates.

We can use the same technique to compute the expected
sum or average of several attributes (e.g., temperature on
k different sensors) by exploiting linearity of expectation,

which saysE(A1 + . . . + Ak) = E(A1) + . . . + E(Ak)
and using the standard expression for the variance(σ) of a
sum to compute ourε, δ bound,i.e., σ(A1 + . . . + Ak) =∑k

i=1 σ(Ai) +
∑k

i=1

∑k
j=1 cov(Ai, Aj). We can also com-

pute a confidence that a particular boolean predicate (e.g.,
temp> 25) is true by integrating over area of the pdf repre-
senting the region where the predicate is satisfied.

2.2 Example: Gaussians

In this section, we describe the time-varying multivariate
Gaussians as a type of model. This is the basic model used
in BBQ [21], and we summarize it here to provide a con-
crete example of one kind of model. A multivariate Gaus-
sian (hereafter, just Gaussian) is the natural extension of
the familiar unidimensional normal probability density func-
tion (pdf), known as the “bell curve”. Just as with its 1-
dimensional counterpart, a Gaussian pdf overd attributes,
X1, . . . , Xd can be expressed as a function of two parame-
ters: a length-d vector of means,µ, and ad × d matrix of
covariances,Σ. Figure 1(A) shows a three-dimensional ren-
dering of a Gaussian over two attributes,X1 andX2; the z
axis represents thejoint densitythatX2 = x andX1 = y.
Figure 1(B) shows a contour plot representation of the same
Gaussian, where each circle represents a probability density
contour (corresponding to the height of the plot in (A)).

Intuitively, µ is the point at the center of this probability
distribution, andΣ represents the spread of the distribution.
The ith element along the diagonal ofΣ is simply the vari-
ance ofXi. Each off-diagonal elementΣ[i, j], i 6= j rep-
resents the covariance between attributesXi andXj . Co-
variance is a measure of correlation between a pair of at-
tributes. A high absolute covariance means that the attributes
are strongly correlated: knowledge of one closely constrains
the value of the other. The Gaussians shown in Figure 1(A)
and (B) have a high covariance betweenX1 andX2. Notice
that the contours are elliptical such that knowledge of one
variable constrains the value of the other to a narrow proba-
bility band.

We can use historical data to construct the initial rep-
resentation of this pdfp. This historical data is typi-
cally collected as a part of a short observation phase using
data extraction tools (in the case of our sensornet deploy-
ments, we have typically used a simple selection query in
TinyDB [47]). Once our initialp is constructed, we can
answer queries using the model, updating it as new ob-
servations are obtained from the sensor network, and as
time passes. We explain the details of how updates are
done in Section 2.2.2, but illustrate it graphically with our
2-dimensional Gaussian in Figures 1(B) - 1(D). Suppose
that we have an initial Gaussian shown in Figure 1(B) and
we choose to observe the variableX1; given the result-
ing single value ofX1 = x, the points along the line
{(x,X2) | ∀X2 ∈ [−∞,∞]} conveniently form an (unnor-
malized) one-dimensional Gaussian. After re-normalizing
these points (to make the area under the curve equal 1.0), we
can derive a new pdf representingp(X2 | X1 = x), which
is shown in 1(C). Note that the mean ofX2 given the value
of X1 is not the same as the prior mean ofX2 in 1(B). Then,

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

X2

X 1

Gaussian PDF over X1,X2 where Σ(X1,X2) is Highly Positive

µ=20,20

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Gaussian PDF over X1, X2 after Some Time

X2

X 1

µ=25,25

5 10 15 20 25 30 350

0.02

0.04

0.06

0.08

0.1

0.12

0.14
PDF over X2 After Conditioning on X1

Pr
ob

ab
ilit

y(
X 2 =

 x
)

X2

µ=19

0
10

20
30

40

0
10

20
30

40
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14

X1

2D Gaussian PDF With High Covariance (!)

X2

0.02

0.04

0.06

0.08

0.1

0.12

(C)

(A)

(B)

(D)

Figure 1: Example of Gaussians: (a) 3D plot of a 2D Gaussian
with high covariance; (b) the same Gaussian viewed as a contour
plot; (c) the resulting Gaussian overX2 after a particular value of
X1 has been observed; finally, (d) shows how, as uncertainty about
X1 increases from the time we last observed it, we again have a 2D
Gaussian with a lower variance and shifted mean.

after some time has passed, our belief aboutX1’s value will
be “spread out”, and we will again have a Gaussian over two
attributes, although the mean and variance may have shifted
from their initial values, as in Figure 1(D).

Of course, this is but one example of many different types
of models that could be used. Our basic approach can be
generalized to various different models that may be more
suitable in different environments and for different classes
of queries. We will revisit this issue in Section 5. In the
next two sections we look briefly at some of the technical
details involved in creating and maintaining the Gaussian
model used in BBQ.

2.2.1 Learning the model

Typically, probabilistic models are learned from some set of
training data. In BBQ, this training data consisted of read-
ings from all of the monitored attributes over some period of
time. For example, with a Gaussian model, initial means and
covariances can be computed from training data using stan-
dard statistical algorithms. Thus, for the specific model used
in BBQ, we need to capture training data for some period
of time before we can begin predicting values or exploit-
ing correlations to avoid unneeded acquisitions. We are ex-
ploring techniques for interleaving model construction and
query processing when possible, as described in Section 6
below.

2.2.2 Updating the model

Thus far, the model we have described representsspatial
correlation in a network deployment. However, many real-
world systems include attributes that evolve over time. For
example, in a sensor network deployment in our lab, we
noted that the temperatures have both temporal and spa-
tial correlations [19]. Thus, the temperature values ob-
served earlier in time should help us estimate the temper-

ature later in time. Adynamic probabilistic modelcan rep-
resent such temporal correlations by describing the evolu-
tion of this system over time, telling us how to compute
p(Xt+1

1 , . . . , Xt+1
n | o1...t) from p(Xt

1, . . . , X
t
n | o1...t),

whereo1...t is the set of observations made over the network
up to timet.

One common dynamic model is aMarkovian model,
where given the value ofall attributes at timet, the value
of the attributes at timet + 1 are independent of those for
any time earlier thant. This assumption leads to a sim-
ple model for a dynamic system where the dynamics are
summarized by a conditional density called thetransition
model, p(Xt+1

1 , . . . , Xt+1
n | Xt

1, . . . , X
t
n). Using a transi-

tion model, we can computep(Xt+1
1 , . . . , Xt+1

n | o1...t) us-
ing the standard probabilistic technique ofmarginalization
by integrating the transition model over the attribute values
at timet.

This approach assumes the transition model is the same
for all timest. Often, this is not the case – for example, in
an outdoor environment, in the mornings temperatures tend
to increase, while at night they tend to decrease. This sug-
gests that the transition model should be different at differ-
ent times of the day. One way to address this problem is by
learning a different transition modelpi(Xt+1 | Xt) for each
hour i of the day. At a particular timet, we simply use the
transition modelmod(t, 24). This idea can, of course, be
generalized to other cyclic variations.

Once we have obtainedp(Xt+1
1 , . . . , Xt+1

n | o1...t),
the prior pdf for timet + 1, we can again incorporate
the measurementsot+1 made at timet + 1 obtaining
p(Xt+1

1 , . . . , Xt+1
n | o1...t+1), the posterior distribution at

time t + 1 given all measurements made up to timet + 1.
This process is then repeated for timet + 2, and so on. The
pdf for the initial timet = 0, p(X0

1 , . . . , X0
n), is initialized

with the prior distribution for attributesX1, . . . , Xn.

2.3 Architecture

Given this basic structure for models, we show how they fit
into a probabilistic query answering architecture. Parts of
this architecture were laid out in our work on BBQ [22],
though we have extended the architecture here to support
several new kinds of queries as described in Section 4 be-
low. One of our specific goals is for our architecture to be
model-agnostic,i.e., as long as a new model conforms to a
basic interface, it requires no changes to the query proces-
sor and can reuse the code that interfaces with and acquires
particular tuples.

Figure 2 illustrates our basic architecture through an ex-
ample of a probabilistic model running over a sensor net-
work. For other environments that involve data acquisition
(as we note in Section 3 below), this basic architecture ap-
plies unchanged, with the main difference being the data
acquisition mechanism. In non-acquisitional environments,
models can still play an important role, as we note in Section
3.

Users submit queries to the database as in a traditional
database, though we allow some unusual types of queries
(see Section 4). One such class of queries is standard SQL

Probabilistic Model and Planner

Observation Plan

Probabilistic Queries Query Results

Query Processor

"SELECT nodeId,
temp ± .1°C, conf(.95)
WHERE nodeID in {1..8}"

"1, 22.3 97%
 2, 25.6 99%
 3, 24.4 95%
 4, 22.1 100%
 ..."

"{[voltage,1],
 [voltage,2],
 [temp,4]}"

Data
"1, voltage = 2.73
 2, voltage = 2.65
 4, temp = 22.1"

1

2

3

4

5 6

7

8

Sensor Network

20
22
24
26
28
30

1 2 3 4

Sensor ID

C
el

si
us

User

Predicate
Checker

Local Model
Data Mgmt
Acquistion

Figure 2:Our architecture for model-based querying, shown as an
example running on top of a sensor network.

queries augmented with error tolerances and target confi-
dence bounds that specify how much uncertainty the user
is willing to tolerate; such bounds will be intuitive to many
scientific and technical users, as they are the same as the con-
fidence bounds used for reporting results in most scientific
fields (c.f., the graph shown in the upper right of Figure 2),
though we are also exploring techniques, such as visualiza-
tion, to allow the layperson to interpret query results.

In this example, the user is interested in estimates of the
value of sensor readings for nodes numbered 1 through 8,
within .1 degrees C of the actual temperature reading with
95% confidence. After consulting the model, the system re-
alizes that the model is not sufficiently accurate to answer
the query with the specified confidence, and it decides that
the most efficient way to achieve that confidence level is to
read battery voltage from sensors 1 and 2 and temperature
from sensor 4. Based on knowledge of the sensor network
topology, it generates anobservation planthat specifies how
to acquire those samples (e.g., which route to use to visit
the relevant sensors), and sends the plan into the network,
where the appropriate readings are collected. These read-
ings are used to update the model, which can then be used to
generate query answers with specified confidence intervals.

Notice that the model in this example chooses to observe
the voltage at some nodes despite the fact that the user’s
query was over temperature. This happens for two reasons:

1. Correlations in value: Battery voltage and temper-
ature often vary together, since batteries are some-
what higher voltage at warmer temperatures. For many
types of batteries (such at the lithium-ion cells used
in many mote deployments), this effect is quite pro-
nounced (e.g., we observe about 1% variation per de-
gree on motes). Local variations in voltage are much
more likely to be due to temperature fluctuations than
decreased capacity, since if battery voltage drops at all
as a battery’s storage dwindles, it will vary over a much
longer time scale.

2. Cost differential: Depending on the specific type of
temperature sensor used, it may be much cheaper to

sample the voltage than to read the temperature. For
example, on sensor boards from Crossbow Corpora-
tion for Berkeley Motes [15], the temperature sensor
requires orders of magnitude more energy to sample
than simply reading battery voltage. A primary goal of
our work is to use models to help decide which sensors
are significant and worth acquiring, given differential
data acquisitional costs and the user’s data demands (as
specified in queries).

Thus, one of the key properties of many probabilistic mod-
els is that they can capture correlations between different
attributes.

In general, the software that runs on each of the nodes
in the network (shown in the small box on the bottom-left
of Figure 2) includes some code to facilitate model-based
query execution. Thepredicate checkeris in charge of ap-
plying probabilistic predicates to determine if a particular
query answer is worth transmitting – this is needed to help
execute continuous queries that are looking for outliers or
other exceptional conditions. It executes against a local im-
age of the model which captures the state and behavior of
the local node and its relationship to other nodes. Thedata
management layeris in charge of managing typed tuples of
data, which it builds up by calling down into theacquisition
layer. Note that, in the example described here, the predi-
cate checker and local model are not needed, because (in this
case) the model is stored centrally. In general, centralized
models make query planning easier since they have access
to state in a single location, but are more expensive (in terms
of communication or energy), because they must collect that
state to a single location rather storing it locally at the nodes.

There are thus four major steps to query processing in our
architecture:

1. Using the model, the query optimizer generates an ob-
servation plan which will allow it to answer the query
to within the specified bounds at a minimal cost.

2. The plan is executed by the network, collecting data
from relevant nodes (and possibly filtering out some re-
sults by consulting an in-network version of the model).

3. The model is updated with results collected from the
network.

4. Using basic probability computations (Section 2.1), the
query answer and confidence bounds are computed.

We note that he user in Figure 2 could have requested
100% confidence and no error tolerance, in which case the
model would have required us to interrogate every sensor.
Conversely, the user could have requested very wide confi-
dence bounds, in which case the model may have been able
to answer the query without acquiring any additional data
from the network.

Given this basic introduction to our architecture, we now
turn our attention to some of the ways in which our tech-
niques can be applied.

3 Applications
Systems that exploit statistical modeling techniques and op-
timize the utilization of a network of resource constrained

devices, such as BBQ, could have significant impact in a
number of areas, as outlined by some case studies described
in this section. Although our architecture is targeted pri-
marily at acquisitional environments, some of the systems
we discuss do not fall into this category (e.g., database cost
estimation) and can still benefit from our core probabilistic
modeling technology.

3.1 Sensor applications

We begin with several sensor-network applications:
Building control: Sensor networks have a number of appli-
cations in control and automation in buildings. For example,
rather than monitoring temperatures at just a few points in a
building, as is done in most HVAC systems today, the sen-
sor network can monitor temperatures throughout the build-
ing, and regulate more effectively the power generation and
output of heating and air conditioning systems [44]. Bat-
tery powered sensors are desirable because they can be de-
ployed much more cheaply in existing building infrastruc-
tures. However, for batteries to be cost effective, they must
last a fairly long time. Our modeling techniques make it
possible to capture information that could be used in such a
building control environment (with bounds on the error and
probability of exceeding that error) while visiting a small
number of nodes, thus, significantly extending the lifetime
of the network.
Sensor failure detection:In long-term environmental sens-
ing deployments, sensors are known to be failure prone [63];
in many cases these failures are “Byzantine” – that is, nodes
do not stop, but rather simply produce erroneous output.
Such failures may show up as outlier values, or, more gen-
erally, generate sensor readings that follow unexpected pat-
terns. Thus our outlier detection queries should be able to
detect them. Here, probabilistic models and statistical tech-
niques provide the basis for detecting such unexpected pat-
terns. Using fault injection techniques, and by studying fail-
ures from previous deployments, we can build alerting tools
that can detect failed and misbehaving sensors.
Highway traffic monitoring and optimization: As we
noted in the introduction, traffic sensor data (as currently
made available by the California Department of Transporta-
tion [9]), consists of data from hundreds or thousands of sen-
sors (typically, these are metal loops embedded in the free-
way that use inductance to record as cars pass over them).
Based on our studies over several days of the data from these
web sites, it appears as though such sensors are often of-
fline – Figure 3 shows a screenshot from a CalTrans Java
applet (http://www.dot.ca.gov/traffic/) look-
ing at the San Francisco area during rush hour on 8/4/04. In
this case, the larger circles to the left and right of the road-
ways represent the speeds on the two sides of the freeway;
green and yellow circles (the lightest in color, when viewed
in grayscale) represent speeds above 15 MPH, whereas red
(dark) circles represent slower speeds. Gray (intermediate
darkness) circles with black dots in the middle represent of-
fline sensors. Notice that a few sensors at the west edge of
the Bay Bridge indicate traffic there is slow, but that many
sensors around it are offline. It is not clear if travellers

Sa
n

Fr
an

ci
sc

o
Ba

y

East Bay

San
Fran

Marin

Figure 3: Screenshot from the California Department of Trans-
portation road sensor website in the Bay Area. Green dots rep-
resent roads where the traffic is travelling faster than 45 MPH;
yellow represents traffic moving 15-45 MPH, and red represents
traffic moving at speeds less than 15 MPH. Gray circles with black
dots (added for clarity) represent offline sensors.

should avoid the Bridge, or if this is a localized anomaly
that will not cause long delays. Feeding such data to a route
planning algorithm is likely to cause it to do very strange
things if it tries to apply linear interpolation or other simple
techniques to guess traffic speeds. In contrast, a probabilis-
tic model can use data from times when the sensors were
online, combined with the data from a few of the nodes, to
infer the missing speeds.
Structural and factory health monitoring: A popular
application for sensor networks ispreventative mainte-
nance[37], where structures and industrial equipment are
monitored for early signs of failure. A widely used tech-
nique for failure detection involves measuring changes in
the phase between vibration signals from groups of sensors
– the intuition being that if two parts of a piece of equip-
ment are solidly connected, they will vibrate in-phase, but
if they suddenly become out-of-phase with each other, that
is a sign that something is wrong. Probabilistic models pro-
vide a convenient way to determine the components that are
expected to vibrate in-phase with each other, and outlier de-
tection techniques like those used for sensor failure detection
can identify low-probability changes in the phase structure,
indicating the possibility of impending failure.
Intrusion detection and tampering: As a part of an in-
volvement in MIT’s new Center for Information Security
and Privacy (CISP) [49], we are investigating techniques for
intrusion detection in wireless and sensor networks. In sen-
sor networks, there are a range of physical attacks that in-
volve tampering with devices or sensors. Examples include
intruders seeking to hide information about their presence
or trying to cause a control or regulatory system to misbe-
have (e.g., people often ’hack’ computers in their cars to in-
crease performance, possibly decreasing safety and increas-

ing emissions). Outlier and influence queries have potential
application in detecting this sort of tampering.

3.2 Non-sensor applications

There are also a wide range of non-sensor applications that
can benefit from our probabilistic model-based approach.
Network monitoring: Network monitoring, even in wired
networks, has the potential to consume a significant propor-
tion of available bandwidth. For example, on a typical edge
gateway in a large university, per-flow statistics are collected
to identify users and applications that are potential security
concerns or who are over-utilizing the network. Such statis-
tics constitutes tens of MB/sec of data, and, even on a well-
provisioned inter-university network, collecting a complete
set of such statistics exhausts the CPU and bandwidth capa-
bilities of edge routers [40]. Current practice is to randomly
sample a subset of flows and store just the sample. Sim-
ilarly, in wireless networks, the collection of time-varying
link quality and congestion information can impose a signif-
icant overhead, especially in dynamic networks where such
information may change rapidly, requiring frequent link-
sampling. We can use probabilistic modeling techniques to
estimate and track loss rates, congestion information and se-
curity concerns (e.g., types of flows that are likely to use
unusual amounts of bandwidth or are otherwise outliers),
exploiting correlations to avoid acquiring data that can be
inferred from a well-chosen subset of available readings.
Database summaries:Capturing the joint data distribution
of multi-dimensional data sets through compact and accu-
ratesynopsesis a fundamental problem arising in a variety of
practical scenarios, includingquery optimization, query pro-
filing, andapproximate query answering. Cost-based query
optimizers employ such synopses to obtain accurate esti-
mates of intermediate result sizes that are, in turn, needed to
evaluate the quality of different execution plans. Similarly,
query profilers and approximate query processors require
compact data synopses in order to provide users with fast,
useful feedback on their original query [11, 59]. Such query
feedback (typically, in the form of anapproximate answer)
allows OLAP and data-mining users to identify the truly in-
teresting regions of a data set and, thus, focus their explo-
rations quickly and effectively, without consuming inordi-
nate amounts of valuable system resources. Further, users
can make informed decisions on whether they would like
to invest more time and resources to fully executing their
queries.

The idea of using probabilistic modeling techniques to
build synopses has already been explored [18, 27]. As this
previous work shows, using probabilistic models to capture
and exploit the correlations in the data can lead to signifi-
cantly more compact summaries. The techniques we have
developed can be directly applied in this context as well;
in particular we are interested in answering more complex
queries as well as in providing probabilistic guarantees to
the user.
Load shedding in streams:Load-shedding is cited as a re-
quirement in many stream-based query processors [52, 10].
The Aurora [10] project proposessemantic load shedding,

where input tuples that correspond to particular output val-
ues are considered more important than other tuples (and
are thus not shed). The authors of Aurora propose a scheme
where the query plan is “reversed” to determine such input-
output mappings, but for general query plans, such an ap-
proach is infeasible, since operations like joins and aggre-
gates are not readily invertible. As a more tractable alter-
native, we can use probabilistic models to determine the re-
lationship between inputs and outputs, keeping input tuples
that have a high probability of mapping to valued outputs.
These probabilistic relationships may include correlations
between different fields in the input tuples, so that, for ex-
ample, the model may determine that intermediate join tu-
ples have a low probability of producing a high-value out-
put, even though the base tuples of the join both had a high
value prior to the join.
Monitoring distributed streams: Recently there has also
been an increasing interest in distributed data streams,i.e.,
data streams that originate and are processed in a distributed
fashion [23, 13]. Though similar to sensor networks in
many aspects, the optimization goal in such systems is net-
work latency, not the battery life of the sensors. The IrisNet
project [23] proposes use of caching to reduce the latencies
incurred in query answering. We believe a model-based ap-
proach can lead to both better answer quality, and a reduc-
tion in latencies, especially in applications such as the moti-
vatingparking space finderapplication of IrisNet.

4 New queries
These applications require a range of new queries that non-
probabilistic database systems are ill-equipped to answer. In
this section, we summarize the range of new queries that we
are working to support.
Probabilistic, approximate queries: The most basic class
of queries that we anticipate users to ask are probabilistic
and approximate variations of traditional SQL queries. Ex-
amples of such queries include queries asking fortemper-
ature at a certain location in a building, oraverage speed
along a segment of a highway. We can support such queries
by using additional predicates in SQL expressions that spec-
ify the confidence that the user wants in the answer, or the
error she is willing to tolerate. This class of queries covers
traditionalexactqueries which can be asked by setting the
confidence required to 100%.

Our initial effort in BBQ provided support for this type
of query; Figure 4 shows one advantage of approximate
queries: improved performance. In this case, we ran three
range queries over temperature readings from a 11 node
sensor deployment in the Berkeley Botanical Garden. We
trained our model for 20 days and ran test queries over a 10
day period. We used pre-collected data so we could verify
the accuracy of our approximate query answers during this
test period. If we had asked an exact query, we would have
been required to observe the value of every sensor at each
point in time; using our Gaussian-based probabilistic model
with queries specifying 95% confidence, we were required
to observe the values of only a small fraction of the sensors.
The truth values of the predicates on the unobserved sensors

could be accurately predicted by exploiting cross-sensor cor-
relations (in all cases, we had less than the 5% allowed er-
rors when we compared the predicted predicate values to the
actual values from the test data). Notice that different pred-
icates require observation of different numbers of sensors at
different times of day – this is because of the natural tem-
perature distributions in the garden that our model is able to
exploit. For example, during the day, the temperatures are
typically significantly higher than the top end of the range
specified in first predicate (16-17 degrees). Because of this,
during the day, very few observations need to be made to as-
certain that the predicate is false with sufficient confidence.

0

20

40

60

80

100

6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

Time of Day

P
er

ce
nt

ag
e

of
 O

bs
er

ve
d

N
od

es

Range [16-17]
Range [19-20]
Range [21-22]

Figure 4:Percentage of observed sensors versus time of day for a
36 hour period over 11 sensors deployed in the Berkeley Botanical
Garden for three different range predicate queries. In this case, we
setδ = 5% (95% confidence).

Outlier queries: Outliers are essentially events of low prob-
ability, and use of probabilistic models provides an excel-
lent mechanism to detect outliers. To detect outliers, the
user could ask the system to report whenever any attribute
value occurs that has a low user-specified probability of oc-
currence, or that differs from its expected value by more
than some threshold. As an example, a user might register
a continuous query that reports any time the bandwidth on
their wireless network is more than three times the expected
value for the current time of day. Note that, outlier detection
will typically require continuous observation of the underly-
ing attributes at the motes, and the main advantage of using
models in this case would be to save communication cost
(though knowledge of how often, and under what circum-
stances outliers are expected to occur may be used to reduce
the observation costs as well).
Prediction queries: These queries estimate the value of an
attribute or predicate either (1) at a location where there are
currently no available devices, or (2) at some time in near
future, with the best precision (and report that precision and
confidence in the estimate). For example, a user might ask:
“What will the temperature in Room 938 be in 10 minutes?”
Similarly, users might post “what-if” queries, to discover
how a change in one attribute might affect other attributes
– for example, in a system monitoring application, a user
might ask how increasing bandwidth on a given link would
increase CPU utilization on a given processor.
Queries over hidden variables: In many scenarios, there

may be interesting variables that cannot be directly ob-
served, but that can be reasoned about. For example, in
a sensor network that has sensors for monitoringtempera-
ture, pressureandlight, but not for monitoringrain, we can
never “observe” rain directly, but it may be possible to infer
whether it is raining or not based on the values of the observ-
able variables. There has been much work on hypothesizing
about hidden variables (in the above example, we knew be-
forehand about existence of an unobservable variable; there
may be cases where we have first infer that a hidden variable
exists), and learning structures containing them [25]. We ex-
pect to be able to leverage these existing techniques in our
work.
Influence queries: Use of probabilistic models also opens
up avenues for asking sophisticated analysis queries. One
such class of queries areinfluence queries, where the user
might want to know which attributes are most closely cor-
related with the value of a particular attribute. Such queries
can be used to help infer causality or determine when sen-
sors in an area are redundant. For example, a user might
ask the question: “What percentage of the traffic on linki is
predicted by the traffic on linksj andk over all time?”

5 Challenges
Given these applications and queries, we now discuss some
of the challenges they present, followed by a set of tech-
niques we are exploring to address these challenges.
Model selection: Choosing the best model for the given
query workload and environment is a key issue. The choice
of model affects many aspects of our approach:

• Accuracy of the answers:Recall that we provide prob-
abilistic answers to the user, and the confidence in the
answers provided relies on the assumption that the un-
derlying data follows the model with sufficient accu-
racy. If this is not the case, the answers provided by
our models could be erroneous.

• Ability to answer certain types of queries:Some mod-
els are more naturally suited to answer certain types
of queries. For example, outlier detection requires the
system to continuously sample sensors and check them
against the model to see if they have a low probability
of occurring. To do this efficiently, we may require a
model that is distributed across the nodes in a system.

• Algorithmic aspects of querying:The techniques to
query the model efficiently are highly dependent on the
choice of the model. The space and time requirements
of different models can vary by orders of magnitude.

Selecting a suitable model for the data is one of the critical
challenges in the deployment of model-based systems.
Transparency in model selection and usage:Although
different models may be better suited for different environ-
ments and for different classes of queries, developing a com-
pletely new system for each different model may be a waste
of time and development effort. Ideally, using a new model
should involve little to no effort on the part of user. Given a
large variety of models that may be applicable in various dif-
ferent scenarios, this may turn out to be a tremendous chal-

lenge.
Data acquisition: Irrespective of the model selected, when
and how to acquire data is one of the key issues that needs
to be addressed. In most of the scenarios that we envision
a model-based system being deployed, the cost of acquiring
and/or transferring data is the dominant cost. For example,
in sensor networks, both the cost of sampling data, and the
cost of communicating it to the basestation are high – for ex-
ample, in a recent analytical study, we estimated that 98% of
energy in a typical sensor network data collection scenario
was consumed sampling sensors or communicating. In dis-
tributed system where the data is being generated all over
the world, minimizing thelatency in answering the query
could be the optimization goal. There are two aspects to this
problem:

• When to acquire data: This is partly dependent on
the model and the user query. To maintain the re-
quired confidence in the answers it provides, the model
could ask for more samples of the underlying data. In
many cases, we expect that the same confidence may
be achieved in many different ways,i.e., by sampling
different sets of attributes of the data. Because of this,
the question ofwhento acquire data will typically be
tightly integrated with the question ofhow it is ac-
quired.

• How to acquire data: Most of the environments we
have discussed so far exhibit highly non-uniform cost
structures. For example, in sensor networks, the costs
of sampling different attributes can be wildly different.
Also, the multi-hop nature of communication in sen-
sor networks means that sampling sensors closer to the
base station is cheaper than sampling far away sensors.

Issues surrounding when and how data is collected are
amongst of the most interesting algorithmic challenges in
the development and deployment of model-based systems.
Training and retraining: In general, a probabilistic model
is only as good at prediction as the data used to train it. For
models to perform accurate predictions they must be trained
in the kind of environment where they will be used. That
does not mean, however, that well-trained models cannot
deal with changing relationships over time; for example, the
model we used in BBQ[21] uses different correlation data
depending on time of day. Extending it to handle seasonal
variations, for example, is a straightforward extension of the
techniques we use for handling variations across hours of the
day. Typically in probabilistic modeling, we pick a class of
models, and use learning techniques to pick the best model
in the class. The problem of selecting the right model class
has been widely studied (e.g., [50]), but can be difficult in
some applications.

In Section 6, we outline a more general Bayesian ap-
proach that integrates querying of the data with learning.
Data model and query language:Our initial efforts have
focused on building simple Gaussian models and demon-
strating that they can answer certain classes of queries [21].
However, we do not have an integrated acquisition-oriented
database system that includes notions of uncertainty or mod-

eling, and it is not clear how such models can be integrated
in a general way into the existing relational data model and
query languages. One possible data representation is to at-
tach a probability distribution to each data point – several
proposals for probabilistic data models of this type have
been made in the literature [42, 3, 24, 27], and we may be
able to adapt this existing work. None of these approaches,
however, focus on the data acquisition or model-learning is-
sues. Instead, they concentrate representing user-specified
uncertainty in the database; the approaches do not help us
address our principal challenge of acquiring appropriate data
to answer user queries at the desired confidences.

As an initial step towards supporting uncertainty in our
query language, we currently representε, δ bounds as addi-
tional query predicates in SQL expressions, as in the query
shown in Figure 2 above, but there are a number of outstand-
ing questions about how a system deals with readings with
differing levels of uncertainty. For example, how can read-
ings with different uncertainties from different sub-queries
be composed into a final query result? What should we do
if our models cannot answer queries to a given confidence
level? Are there other representations besides confidence
that we should consider (e.g., absolute or relative deltas)?

Exposing uncertainty to the user: One issue with expos-
ing uncertainty to the user is that it requires him or her to
understand the basics of probability. Although this may be
acceptable for scientific users who are used to statistical tests
of significance and other confidence metrics, for the lay-
person, such notions will be quite confusing. One possi-
bility is to convert probabilistic answers to definite answers
when result confidence is above a give threshold, suppress-
ing the uncertainty report. Though at first this appears to be
no better than what traditional uncertainty-unaware database
do, it is in fact substantially better as the user is never ex-
posed to answers that do not have a high probability of be-
ing true. For example, in the case of the California Freeway
sensors given in the introduction, users wouldn’t receive av-
erage speeds for segments where the uncertainty was low,
preventing them from inadvertently using congested routes.

The other possibility we are exploring is to avoid these
concerns through the use of visualization tools. Figure 5
shows a visualization mockup of uncertainty in readings
from a single sensor. It shows a stream of temperature read-
ings from a single sensor; the small circles represent points
of time when readings are actually captured. The contours
represent different levels of uncertainty in readings. The
darkest, narrowest band corresponds to a band of confidence
about the most probable value of the sensor – in this case,
there is a 90% chance the true value of the sensor is in
this band. The lighter, outermost band captures the range
of readings where the true value lies with 99% probability.
This visualization could be built using a probabilistic model
such as our Gaussian model and provides an intuitive repre-
sentation of uncertainty.

Figure 6 shows a second visualization of uncertainty in-
formation for a query that collects readings from a set of
geographically distributed sensors (in this case, sensors are

Time12:05:30 2:05:30

Te
m
pe
ra
tu
re

99%

90%
95%

Figure 5: Mockup visualization of a display used to visualize un-
certainty in a stream of readings coming from a sensor.

X

Y

15°C

25°C

Figure 6: Mockup visualization of uncertainty display of a set of
temperature sensors (circles outlined in black) on Nantucket Is-
land. Confidence in readings is represented by colored-dot density.

shown on a portion of Nantucket Island). In this case, colors
represent temperature estimates; large solid circles represent
the locations of sensors. White circles are inactive sensors
that were not involved in data collection. Densely colored
regions represent areas where there is high certainty on the
reading, with sparsely colored regions having low certainty.
These certainties can be derived, for example, from a proba-
bilistic model that represents correlations between the active
sensors and the inactive sensors. Such a visualization al-
lows users to quickly determine where more sensors may be
needed, and to understand how well sensors are monitoring
an area of interest.

We are planning to build support for both types of uncer-
tainty visualization into our system.

Continuous vs. snapshot queries:We plan to support
both snapshot queries,i.e., one-time queries about the cur-
rent state of the system, and continuous queries,i.e., queries
which the user wants to know the answers of on a peri-
odic basis. Depending on the optimization goals, these two
classes of queries pose different optimization challenges.
The challenge with snapshot queries is to balance “push”
vs “pull”. Pushing too much data towards the user can lead
to wasted communication; on the other hand, having the sys-
tem pull data for every snapshot query could lead to unrea-
sonable latencies. For a continuous query, we must figure
out which nodes should stay active, when to do sampling
and how to communicate the data from those nodes to the
base station. Though it is possible to optimize the data ac-
quisition process heavily, dynamic sensornet topologies can

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE
50

51

52 53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425
26283032

31

2729

23

18

9

8

7

4

34

1

2

35
40

Figure 7:Structure of graphical model learned for the temperature
variables for a deployment in the Intel Berkeley Lab [56].

complicate matters.

6 New techniques
In order to address the wide range of applications and new
queries described in Sections 3 and 4, and to surmount the
challenges in Section 5, it is insufficient to simply adapt
existing methods in data bases, machine learning and dis-
tributed systems; we need new integrated approaches. This
section outlines techniques that can address some of these
issues as well as research directions that we are currently
pursuing.

6.1 Representations for probability distributions

Probabilistic models are the centerpiece of our approach. In
Section 2.1, we described very general probability distribu-
tions,p(X1, X2, . . . , Xn). Choosing the appropriate repre-
sentation for such distribution, allowing us to represent com-
plex correlations compactly, to learn the parameters effec-
tively, and to answer queries efficiently is one of the biggest
challenges in this research. Probabilistic graphical models
are a very appropriate choice to address these issues [57].

In a (probabilistic) graphical model, each node is associ-
ated with a random variable. Edges in the graph represent
“direct correlation”, or, more formally, conditional indepen-
dencies in the probability distribution. Consider, for exam-
ple, the sensor deployment shown in Figure 7, where the
attributes are the temperatures in various locations in the In-
tel Berkeley Lab. The graphical model in Figure 7 assumes,
for instance, that temperatures in the right side of the lab are
independent of those in the left side, given temperatures in
the center (e.g., T20 andT47 are independent givenT10, T32,
andT33).

The sparsity in graphical models is the key to effi-
cient representation and probabilistic querying [14]. In
discrete settings, for example, a naive representation of
p(X1, X2, . . . , Xn) is exponential in the number of at-
tributesn, while a graphical model is linear inn and, in the
worst case, exponential in the degree of each node. In addi-
tion to reducing space complexity, reducing the number of
parameters can prevent overfitting when the model is learned
from small data sets. Similarly, answering a query naively is
exponential inn, while in a graphical model the complexity
is linear inn and exponential in the tree-width of the graph.

In our setting, in addition to allowing us to answer queries
efficiently, graphical models are associated with a wide
range of learning algorithms [34]. These algorithms can be

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Beta(1,1)

parameter value

Be
ta

 p
df

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Beta(2,2)

parameter value

Be
ta

 p
df

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Beta(3,2)

parameter value

Be
ta

 p
df

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
Beta(30,20)

parameter value

Be
ta

 p
df

(c) (d)
Figure 8:Bayesian approach for learning the parameter of a coin:
(a) prior distribution, Beta(1,1); posterior distributions over the
coin parameter after observing: (b) 1 head, 1 tail; (b) 2 heads, 1
tail; (b) 29 heads, 19 tails.

used both for learning a model from data, and to evaluate
the current model, addressing many of the model selection
issues discussed above.

Additionally, graphical models allow us to efficiently ad-
dress hidden variables, both in terms of answering queries
and of learning about hidden variables [25]. In the example
in Figure 7, each node could be associated with a faulty sen-
sor hidden variable [43]. When a node is faulty, the sensed
value is, for example, independent of the true temperature.
By exploiting correlations in the temperatures measured by
the nodes and sparsity in the graphical model, we can effi-
ciently answer outlier queries.

Finally, there is vast graphical models literature for ad-
dressing other types of queries and models. For example,
these models can be extended to allow for efficient repre-
sentation and inference in dynamical systems [8, 17], and to
answer causal queries [58].

6.2 Integrating learning and querying

Thus far, we have focused on a two-phase approach: in the
first phase, we learn the probabilistic model, and in the sec-
ond, we use the model to answer queries. This is an artificial
distinction, raising many questions, such as when should we
stop learning and start answering queries. We can address
this issue by applying aBayesian learningapproach [6].

In a Bayesian approach, we start with aprior distribution
p(Θ) over the model parametersΘ. After observing some
value for the attributesx, we use Bayes rule to obtain apos-
terior distributionover the model parametersp(Θ | x):

p(Θ | x) ∝ p(x | Θ)p(Θ). (1)

This process is repeated as new data is observed, updating
the distribution over model parameters.

Consider, for example, the task of learning the parame-
ter of a biased coin; that is, the coin flips are independently
distributed according to the usual binomial distribution with
unknown parameter. Typically, for efficiency reasons, we

choose a prior distribution that yields a closed form repre-
sentation of the posterior in Equation (1); when such closed-
form solutions are possible, the priorp(Θ) and the likeli-
hood functionp(x | Θ) are said to beconjugate. In our
example, Beta distributions are conjugate to the binomial
distribution of the coin. Figure 8 illustrates the process of
Bayesian learning for our coin example: We start with the
Beta(1,1) in Figure 8(a); here, the distribution over possible
coin parameters is almost uniform. Figures 8(b)-(d) illus-
trate the posterior distribution over the coin parameters after
successive observations. As more coin flips are observed,
the distribution becomes more peaked. Thus, when answer-
ing a query about the coin after a few flips, our answer will
be uncertain, but after making a larger number of observa-
tions, the answer will have significantly lower variance.

These ideas can be integrated with our approach to avoid
the need for a separate learning phase. Consider the Gaus-
sian distributions used in the BBQ system. Initially, we may
be very uncertain about the mean and covariance matrix of
this distribution, which can be represented by a highly un-
certain prior (the conjugate prior for the covariance matrix
is the Wishart distribution). Thus, when faced with a query,
we will need to observe the value of many sensors. How-
ever, using Bayesian updating, after we observe these sensor
values, in addition to answering the query at hand, we be-
come more certain about the mean and covariance matrix of
the model. Eventually, we will be certain about the model
parameters, and the number of sensors that we will need
to observe will automatically decrease. This integrated ap-
proach achieves two goals: first, the learning phase is com-
pletely eliminated; second, using simple extensions, we can
add dynamics to the parameter values, allowing the model
to change over time.

6.3 Long-term query plans

Modeling the correlations between different attributes in the
system and also, the correlations across time, enables the
query planner to consider a much richer class of execution
plans than previously possible.

One such interesting class of execution plans that we have
explored in our previous work [20] areconditional plans.
These plans exploit the correlations present in the data by
introducing low-cost predicates in the query execution plan
that are used to change the ordering of the more expensive
predicates in the query plan.

As an example, consider a query containing two predi-
catestemp > 20o C, and light < 100 Lux over a
sensor network. Let theapriori selectivities of these two
predicates be1

2 and 1
2 respectively, and let the costs of

acquiring the attributes be equal to 1 unit each. In that
case, either of the two plans a traditional query processor
might choose has expected cost equal to 1.5 units (Figure
9). However, we might observe that the selectivities of these
two predicates vary considerably depending on whether the
query is being evaluated during the day or at night. For in-
stance, in Berkeley, during Summer, the predicate ontemp
is very likely to be false during the night, whereas the pred-
icate onlight is very likely to be false during the day.

Light <
100 Lux

Temp >
20° C

Temp >
20°C

Light <
100 Lux

Traditional Plans

Light <
100 Lux

Temp >
20° C

Temp >
20°C

Light <
100 Lux

Time in
[6am, 6pm]

T

F

A Conditional Plan

SELECT * FROM sensors
WHERE light < 100 Lux AND temp > 20° C

Figure 9:A conditional query plan that uses different ordering of
query predicates depending on the time of day.

This observation can be utilized to construct aconditional
plan as shown in the figure that checks the time of the day
first, and evaluates the two query predicates in different or-
der depending on the time. Assuming that the selectivity of
the temp predicate is1

10 at night, and the selectivity of the
light predicate is1

10 during day, the expected cost of this
plan will be 1.1 units, a savings of almost 40%.

More generally, in continuous queries, additional cost
savings can be obtained by exploiting similarities between
queries. For example, if we know that the next query will
require an attribute at a particular nodei, and the current
query plan observes values at nearby nodes, then it is proba-
bly better to visit nodei as well in the current time step.

The optimal solution to such long-term planning prob-
lems can be formulated as aMarkov decision process
(MDP) [5, 60]. In an MDP, at each time step, we observe
the current state of the system (in our setting, the current
distribution and query), and choose an action (our observa-
tion plan); the next state is then chosen stochastically given
the current state (our next query and distribution). Unfor-
tunately, traditional approaches for solving MDPs are expo-
nential in the number of attributes. Recently, new approx-
imate approaches have been developed to solve very large
MDPs by exploiting structure in problems represented by
graphical models [7, 32]. Such approaches could be ex-
tended to address the long-term planning problem that arises
in our setting.

6.4 In-network processing

Thus far, we have focused on algorithms where the proba-
bilistic querying task occurs in a centralized fashion, and we
seek to find efficient network traversal and data gathering
techniques. However, in typical distributed systems, nodes
also have computing capabilities. In such settings, we can
obtain significant performance gains by pushing some of the
processing into the network.

In some settings, we can reduce communication by ag-
gregating information retrieved from the network [45, 35].
We could integrate these techniques with our models by con-
ditioning on the value of the aggregate attributes rather than
the sensor values. Such methods will, of course, increase our
planning space: in addition to finding a path in the network
for collecting the required sensor values, we must decide
whether to aggregate values along the way.

More recently, a suite of efficient algorithms has been de-
veloped for robustly solving inference tasks in a distributed
fashion [31, 56]. In these approaches, each node in the
network obtains a local view of a global quantity. For ex-

ample, each node computes the posterior probability over a
subset of the attributes given the sensor measurements at all
nodes [56]; or each node obtains a functional representation
(e.g., a curve fit) of the sensor (e.g., temperature) field [31].
Given such distributed algorithms, we can push some of
the probabilistic query processing into the network, allow-
ing nodes to locally decide when to make observations and
when to communicate. When integrated with a system like
BBQ, these methods allow the user to connect to any node
in the network, which can collaborate with the rest of the
network to answer queries or detect faulty nodes.

7 Related work
There have been other model-based approaches for query
answering that rely on a model-like abstraction [64, 55, 54,
39]. In most cases, the related work assumes a client-server
relationship, where the model runs on the server and moni-
tors the value of a number of attributes at the clients. These
approaches maintain a bound or trajectory over each of the
attribute values at the server, using that bound to predict the
value. When the clients notice that their value no longer
fits the model, or when the server has sufficient bandwidth
or energy, it will directly observe the attribute values and
update the model. Our approach differs from previous re-
search in that it uses multidimensional probabilistic models
that track the relationship between attributes in addition to
the values of attributes themselves. These relationships, or
correlations, allow the model to update its value estimates of
many attributes when a single attribute is observed; models
can be built across attributes that are directly observed (e.g.,
light readings from sensors), as well as global attributes
(e.g., time of day), and derived attributes (e.g., network loss
rate).

There has been substantial work on approximate query
processing in the database community, often using model-
like synopsesfor query answering much as we rely on proba-
bilistic models. For example, the AQUA project [30, 28, 29]
proposes a number of sampling-based synopses that can pro-
vide approximate answers to a variety of queries using a
fraction of the total data in a database. As in our approach,
such answers typically include tight bounds on the correct-
ness of answers. AQUA does not exploit correlations. A few
recent papers [18, 27] propose exploiting data correlations
through use of graphical model techniques for approximate
query processing, but neither provide any guarantees on the
answers returned. Recently, Considineet al. [41] and Gib-
bonset al. [53] have shown that sketch based approximation
techniques can be applied in sensor networks to compute ag-
gregates. Others have proposed approximation techniques
for stream-query processing,e.g., Daset al. [16] and Mot-
waniet al. [51].

Approximate and best effort caches [55, 54], as well as
systems for online-aggregation [61] and stream query pro-
cessing [52, 10, 12] include some notion of answer quality
and include the ability to discard some tuples. Most related
work focuses on quality with respect to summaries, aggre-
gates, or staleness of individual objects already stored in the
system, as opposed to readings being actively acquired by

the query processor.
Several proposals for probabilistic data models have been

made in the literature. For example, ProbView[42] provides
a data model based on discrete pdfs, and shows how to an-
swer a number of queries in such a domain. Getoor [26] ex-
plores a number of probabilistic extensions to the relational
model, and shows how statistical models can be learned
from relations. Barbaraet al. [3] present some initial re-
sults on probabilistic data models. Faradjianet al. [24]
present a data model based on continuous pdfs. None of
these approaches focus on the data acquisition issues, but
rather on representing uncertainty in the database, and on
types of query processing that can be applied to probabilis-
tic attributes.

The probabilistic modeling techniques we describe are
based on standard results in machine learning and statistics
(e.g., [62, 50, 14]). There are also a number of proposed
techniques for outlier detection [4, 1, 2]. We believe, how-
ever, that our approach is one of the first architectures that
combines model-based approximate query answering with
query processing and optimization and an uncertainty-aware
data model and query language.

8 Conclusions
The integration of database systems with probabilistic mod-
eling will enable database systems to tolerate loss, detect
faulty or erroneous inputs, and identify correlations that can
be used to improve query performance while enabling a
range of new types of queries. Such models are particu-
larly useful in acquisitional settings such as sensornets and
Internet monitoring where the data acquisition costs are typ-
ically very high; even for non-acquisitional applications, be-
ing able to deal with noisy and lossy data in a seamless
manner, and the ability to model and reason about data cor-
relations can prove to be tremendously useful. There are
a number of architectural and algorithmic challenges asso-
ciated with fully integrating these techniques into database
systems and, although we believe we have taken some ini-
tial steps towards this end, we look forward to many years
of fruitful cross-disciplinary research. We envision this re-
search leading to significant improvements in the utility and
efficiency of database systems at managing real-world data.

References
[1] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional

data. InProceedings of SIGMOD, pages 37–46, 2001.
[2] A. Arning, R. Agrawal, and P. Raghavan. A linear method for devia-

tion detection in large databases. InProceedings of KDD, 1995.
[3] D. Barbara, H. Garcia-Molina, and D. Porter. The management of

probabilistic data.IEEE TKDE, 4(5):487–502, 1992.
[4] V. Barnett and T. Lewis.Outliers in Statistical Data. John Wiley and

Sons, New York, 1994.
[5] R. E. Bellman.Dynamic Programming. Princeton, 1957.
[6] J. Bernardo and A. Smith.BAYESIAN THEORY. Wiley, 1994.
[7] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in

policy construction. InProc. IJCAI, pages 1104–1111, 1995.
[8] X. Boyen and D. Koller. Tractable inference for complex stochastic

processes. InProc. UAI, 1998.
[9] California Department of Transportation. Caltrans realtime freeway

speed map. Web Site.http://www.dot.ca.gov/traffic/ .
[10] D. Carney, U. Centiemel, M. Cherniak, C. Convey, S. Lee, G. Seid-

man, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams
- a new class of data management applications. InVLDB, 2002.

[11] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approx-
imate query processing using wavelets. InVLDB 2000, Proceedings
of 26th International Conference on Very Large Data Bases, Septem-
ber 10-14, 2000, Cairo, Egypt, pages 111–122, 2000.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman,
F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow pro-
cessing for an uncertain world. InCIDR, 2003.

[13] O. Cooper, A. Edakkunni, M. Franklin, W. Hong, S. Jeffery, S. Krish-
namurthy, F. Reiss, S. Rizvi, and E. Wu. Hifi: A unified architecture
for high fan-in systems. InVLDB, 2004.

[14] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter.Probabilistic
Networks and Expert Systems. Spinger, New York, 1999.

[15] I. Crossbow. Wireless sensor networks (mica motes).
http://www.xbow.com/Products/Wireless_Sensor_
Networks.htm .

[16] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. InProceedings of SIGMOD, 2003.

[17] T. Dean and K. Kanazawa. A model for reasoning about persistence
and causation.Computational Intelligence, 5(3):142–150, 1989.

[18] A. Deshpande, M. Garofalakis, and R. Rastogi. Indepen-
dence is Good: Dependency-Based Histogram Synopses for High-
Dimensional Data. InProceedings of SIGMOD, May 2001.

[19] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Intel lab
data. Web Page.http://berkeley.intel-research.net/
labdata .

[20] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting
correlated attributes in acquisitional query processing. InICDE, 2005.

[21] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. InVLDB, 2004.

[22] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In
VLDB, 2004.

[23] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan. Cache-and-query
for wide area sensor databases. InProceedings of SIGMOD, 2003.

[24] A. Faradjian, J. Gehrke, and P. Bonnet. GADT: A Probability Space
ADT For Representing and Querying the Physical World. InICDE,
2002.

[25] N. Friedman. Learning belief networks in the presence of missing
values and hidden variables. InProc. 14th International Conference
on Machine Learning, pages 125–133, 1997.

[26] L. Getoor. Learning Statistical Models from Relational Data. PhD
thesis, Stanford University, 2001.

[27] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using prob-
abilistic models. InProceedings of SIGMOD, May 2001.

[28] P. B. Gibbons. Distinct sampling for highly-accurate answers to dis-
tinct values queries and event reports. InProc. of VLDB, Sept 2001.

[29] P. B. Gibbons and M. Garofalakis. Approximate query processing:
Taming the terabytes (tutorial), September 2001.

[30] P. B. Gibbons and Y. Matias. New sampling-based summary statistics
for improving approximate query answers. InSIGMOD, 1998.

[31] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Dis-
tributed regression: an efficient framework for modeling sensor net-
work data. InProceedings of IPSN, 2004.

[32] C. E. Guestrin, D. Koller, and R. Parr. Multiagent planning with fac-
tored MDPs. In14th Neural Information Processing Systems (NIPS-
14), pages 1523–1530, Vancouver, Canada, December 2001.

[33] D. Hand, H. Mannila, and P. Smyth.Principles of Data Mining. MIT
Press, 2001.

[34] D. Heckerman. A tutorial on learning with bayesian networks, 1995.
[35] J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond aver-

age: Towards sophisticated sensing with queries. InProceedings of
the First Workshop on Information Processing in Sensor Networks
(IPSN), March 2003.

[36] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hildrum, S. Madden, V. Raman, and M. Shah. Adaptive query pro-
cessing: Technology in evolution.IEEE Data Engineering Bulletin,
23(2):7–18, 2000.

[37] Intel Research. Exploratory research - deep networking. Web
Site. http://www.intel.com/research/exploratory/
heterogeneous.htm#preventativ%emaintenance .

[38] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An

adaptive query execution system for data integration. InProceedings
of SIGMOD, 1999.

[39] A. Jain, E. Change, and Y.-F. Wang. Adaptive stream resource man-
agement using kalman filters. InProceedings of SIGMOD, 2004.

[40] Jim Madden, Director UCSD Network Operations. Personal commu-
nication, July 2004.

[41] G. Kollios, J. Considine, F. Li, and J. Byers. Approximate aggregation
techniques for sensor databases. InICDE, 2004.

[42] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian.
Probview: a flexible probabilistic database system.ACM TODS,
22(3):419–469, 1997.

[43] U. Lerner, B. Moses, M. Scott, S. McIlraith, and D. Koller. Monitor-
ing a complex physical system using a hybrid dynamic bayes net. In
UAI, 2002.

[44] C. Lin, C. Federspiel, and D. Auslander. Multi-Sensor Single Actu-
ator Control of HVAC Systems. InInternation Conference for En-
hanced Building Operations, 2002.

[45] S. Madden.The Design and Evaluation of a Query Processing Archi-
tecture for Sensor Networks. PhD thesis, UC Berkeley, 2003.

[46] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks. In
Proceedings of SIGMOD, 2003. To Appear.

[47] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB web
page.http://telegraph.cs.berkeley.edu/tinydb .

[48] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless
sensor networks for habitat monitoring. InACM Workshop on Sensor
Networks and Applications, 2002.

[49] MIT CSAIL Center for Information Security and Privacy. Home page.
http://csg.lcs.mit.edu/CISP/ .

[50] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[51] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,

G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query process-
ing, resource management, and approximation in a data stream man-
agement system. InProceedings of CIDR, 2003.

[52] R. Motwani, J. Window, A. Arasu, B. Babcock, S.Babu, M. Data,
C. Olston, J. Rosenstein, and R. Varma. Query processing, approxi-
mation and resource management in a data stream management sys-
tem. In First Annual Conference on Innovative Database Research
(CIDR), 2003.

[53] S. Nath and P. B. Gibbons. Synopsis diffusion for robust aggregation
in sensor networks. InProceedings of VLDB, 2004.

[54] C. Olston and J.Widom. Best effort cache sychronization with source
cooperation. InProceedings of SIGMOD, 2002.

[55] C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for
cached approximate values. InProceedings of SIGMOD, May 2001.

[56] M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in
distributed systems. InUAI, 2004. In the20th International Confer-
ence on Uncertainty in Artificial Intelligence.

[57] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, 1988.

[58] J. Pearl.Causality : Models, Reasoning, and Inference. Cambridge
University Press, 2000.

[59] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. “Improved
Histograms for Selectivity Estimation of Range Predicates”. InSIG-
MOD, 1996.

[60] M. L. Puterman.Markov decision processes: Discrete stochastic dy-
namic programming. Wiley, 1994.

[61] V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic reorder-
ing. The VLDB Journal, 9(3), 2002.

[62] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall, 1994.

[63] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analysis
of a large scale habitat monitoring application. InProceedings of
SenSys, 2004.

[64] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain.
DOMINO: Databases fOr MovINg Objects tracking. InProceedings
of SIGMOD, Philadelphia, PA, June 1999.

