
Managing Large Dynamic Graphs Efficiently

Jayanta Mondal
University of Maryland, College Park

jayanta@cs.umd.edu

Amol Deshpande
University of Maryland, College Park

amol@cs.umd.edu

ABSTRACT
There is an increasing need to ingest, manage, and query large vol-
umes of graph-structured data arising in applications likesocial
networks, communication networks, biological networks, and so
on. Graph databases that can explicitly reason about the graphi-
cal nature of the data, that can support flexible schemas and node-
centric or edge-centric analysis and querying, are ideal for stor-
ing such data. However, although there is much work on single-
site graph databases and on efficiently executing differenttypes of
queries over large graphs, to date there is little work on understand-
ing the challenges in distributed graph databases, needed to handle
the large scale of such data. In this paper, we propose the design of
an in-memory, distributed graph data management system aimed
at managing a large-scale dynamically changing graph, and sup-
porting low-latency query processing over it. The key challenge in
a distributed graph database is that, partitioning a graph across a
set of machines inherently results in a large number of distributed
traversals across partitions to answer even simple queries. We pro-
pose aggressive replication of the nodes in the graph for support-
ing low-latency querying, and investigate three novel techniques to
minimize the communication bandwidth and the storage require-
ments. First, we develop a hybrid replication policy that monitors
node read-write frequencies to dynamically decide what data to
replicate, and whether to doeageror lazy replication. Second, we
propose a clustering-based approach to amortize the costs of mak-
ing these replication decisions. Finally, we propose usinga fairness
criterion to dictate how replication decisions should be made. We
provide both theoretical analysis and efficient algorithmsfor the
optimization problems that arise. We have implemented our frame-
work as a middleware on top of the open-source CouchDB key-
value store. We evaluate our system on a social graph, and show
that our system is able to handle very large graphs efficiently, and
that it reduces the network bandwidth consumption significantly.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Parallel Databases;
H.2.4 [Database Management]: Systems—Query Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ‘12,May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

General Terms
Algorithm, Design, Performance, Experimentation

Keywords
Graph databases, Social networks, Replication, Feed delivery

1. INTRODUCTION
In today’s world, networks are everywhere. There are socialnet-

works, communication networks, financial transaction networks,
citation networks, gene regulatory networks, disease transmission
networks, ecological food networks, sensor networks, and more.
Network data arises even in mundane applications like phonecall
data, IP traffic data, or parcel shipment data. There is a growing
need for data management systems that can support real-timein-
gest, storage, and querying over such network data. Networkdata
is most naturally represented as a graph, with nodes represent-
ing the entities and edges denoting the interactions between them.
However, there is a lack of established data management systems
that can manage such graph-structured data, and support complex
querying or analysis over them. Further, the sizes of these net-
works, and the number of operations that need to be supported,
are growing at an unprecedented pace, necessitating use of parallel
and distributed solutions. However, graph operations are not eas-
ily parallelizable, and even simple queries over a distributed graph
may result in a large number of traversals across the network. The
MapReduce framework has emerged as a framework for paralleliz-
ing many large-scale analysis tasks. However, MapReduce frame-
work is aimed toward batch processing of largely static data, and
cannot support either real-time data ingest or real-time querying.

There is much work on single-site graph database systems [1,16,
17, 42, 19], and on executing specific types of queries efficiently
over them through strategic traversal of the underlying graph, e.g.,
reachability [25, 48], keyword search queries [14, 44, 5, 26], sub-
graph pattern matching [19, 11], etc. However, distributedman-
agement of dynamic graph data is not as well-studied. There is
some work on executing specific types of queries or performing
specific types of analysis, e.g., subgraph pattern matching[7, 23],
data mining [28] etc. But those works either have limited focus or,
in the case of Pegasus [28], are meant for batch processing.

Our goal in this work is to build a system that can support scal-
able and distributed management of very large, dynamicallychang-
ing graphs. Keeping with the hardware trends and to support low-
latency operations, our system is intended to be fullyin-memory,
and uses disks only as a backing store for historical, archival data.
The key challenge with building such a system is that effectively
partitioning graphs is notoriously challenging, especially in a dy-
namic environment. Standard hash-based partitioning schemes do
not work well because they end upcutting too many edges, i.e.,

placing the endpoints in different partitions. This is a problem be-
cause most graph queries or analysis tasks require traversing the
edges to fetch the neighbors’ information. This not only increases
query latencies but also increases the total network communication,
thus limiting the scalability of the system.

This has led many researchers to consider more sophisticated
partitioning schemes. Although the problem of optimally parti-
tioning a graph into equal-sized partitions while minimizing the
edges cut is NP-Hard, there is much work on practical solutions
to this problem, and several software packages are available that
can generate very good graph partitionings [29, 9, 20]. These tech-
niques however cannot handle highly dynamic graphs where the
node access patterns and the graph structure itself may change very
rapidly [33]. More importantly, in most practical applications, the
highly interconnected nature of graph data means that cleandisjoint
partitions that minimize the edge-cut do not typically exist [18,
40]. Social networks in particular are very hard to partition be-
cause of overlapping community structure, and existence ofhighly-
connected dense components (cores) [34, 38, 39, 6] .

We instead investigate an aggressive replication-based approach
in this work to scalably manage a large, dynamic graph, wherethe
key idea is to replicate the nodes in the graph to minimize thenum-
ber of distributed traversals. This approach has been extensively
studied in distributed systems and distributed databases (see, e.g.,
[47, 27]), however, to our knowledge, there is little work onunder-
standing how to use it for distributed graph data management. In a
recent work, Pujol et al. [40, 41] considered one extreme version of
it for scaling online social networks: they aim to replicatethe graph
sufficiently so that, for every node in the graph, all of its neighbors
are present locally (calledlocal semantics). They also useactive
replication (i.e., apush-on-changemodel) where all the replicated
data is kept up-to-date. Such an approach however suffers from
very high, unnecessary communication to keep the replicas up-to-
date; Facebook reportedly usespull-on-demandmodel instead [21].
Further, the replication overhead to guarantee local semantics, i.e.,
the number of average copies of each graph node, may be too high
in most cases (for a sample Facebook dataset, they needed approx-
imately 2 copies of each node with just 8 partitions [41]).

In this paper, we propose a hybrid, adaptive replication policy
that uses a novelfairness requirementto guide the replication de-
cisions, and utilizes predictive models about node-level read/write
access patterns to choose whether to maintain the replicas actively
or passively. The fairness requirement is characterized bya thresh-
old τ ≤ 1, and can be stated simply: for each graph node, we
require that at least aτ fraction of its neighbors be present lo-
cally at the same site. The local semantics [41] becomes a special
case of this withτ = 1. A key concern with a policy that makes
fine-grained push-pull decisions is that, the overhead of maintain-
ing these decisions (i.e., for a node, deciding which of the neigh-
bor replicas are up-to-date) is very high. We design and evaluate
novel clustering-based schemes for this purpose, where we group
together nodes with similar access patterns to reduce the overhead
without compromising quality. We analyze the problems of de-
ciding what to replicate, and choosing when to push vs pull, and
provide both theoretical analysis and efficient practical algorithms
(optimal for the latter problem). Our algorithms aredecentralized
by nature, and enable us to make the decisions locally at eachnode.
This also naturally enables us to change the decisions during peri-
ods of low load, and/or stagger the times when they are made to
avoid significant slowdowns.

We have implemented our distributed graph data management
system on top of the Apache CouchDB open-source key-value store.
CouchDB supports a sophisticated replication mechanism, and we

leverage it by building on top of that. We present a comprehensive
experimental evaluation which shows that our algorithms are prac-
tical, support low-latency operations, and decrease the total amount
of communication by a significant fraction over other policies.

Outline: We begin with a brief overview of our proposed system
and discuss various design decisions that we have made (Section
2). We then discuss the key component of our system, therepli-
cation manager(Section 3), and present algorithms for making the
replication decisions (Section 4). We then present a comprehensive
experimental evaluation (Section 5), and discuss some of the most
related work (Section 6).

2. SYSTEM OVERVIEW
We start with the brief description of the underlying data model

and the high-level system architecture, and then briefly discuss some
of the key trade-offs in such a system and define a fairness criterion.

2.1 Data and Query Model
The data is represented as a graphG(V,E) whereV is the set

of all nodes andE represents the set of all edges. To avoid con-
fusion, we refer to the vertices of the graph as nodes, whereas we
refer to the sites (machines) across which the graph is partitioned
as either sites orpartitions. The graph is distributed across multiple
partitions, and each node has information about its cross-partition
neighbors. The basic operations one could perform on the nodes
areread andwrite. A write on a node is simply updating or ap-
pending node information, whereas aread on a node is reading the
information stored in that node. In a traversal we are performing
reads on all the nodes that are part of the traversal.

A typical query in a social network context could be:For a per-
sonx, find all of his friends who have attended Stanford Business
School and who have a friend from South Africa. For a query like
this, we have to start from nodex, visit all its neighbors to check
which of them had attended Stanford business school, and then for
all those friends, visit their neighbors till we find a neighbor match-
ing the predicate.

Another type of query we may want to support is a subgraph pat-
tern matching query. An example of such a query could be:Given
a citation network, find all the papers that discuss graph pattern
matching, and are a result of collaboration between researchers
from Stanford and MIT. To execute such a complex query, we would
typically need to build an index on the relevant attributes (e.g., pa-
per abstracts) to quickly find the candidate nodes that may beof in-
terest and then traverse the neighborhoods of those candidate nodes
to find the matches.

Although our system is aimed at supporting different types of
queries flexibly, for ease of illustration, we primarily focus on a
special type of query prevalent in the social network domain, namely,
the “fetch updates from all my neighbors”query. Given a specific
nodex, this query requires us to traverse the neighborhood ofx and
find the latest writes that have been made in that neighborhood.
In today’s social networks with a large fraction of nodes having
a non-trivial number of neighbors, these queries are very hard to
scale [21]. This problem is also called the “feed delivery” problem,
and also arises commonly in publish-subscribe networks [43]. We
revisit the issue of generality below when we describe the system
architecture and formulate the optimization problems.

2.2 Architecture
Figure 1 shows the high-level architecture of our system com-

prising of replication manager and other supporting modules.
The key components of the system are as follows:

Hash Logic
Router

couchDB-1

CouchDB Lib

Replication

Manager

Server - 1

couchDB-k

CouchDB Lib

Server - K

Replication

Read/Write Requests

Replication

Manager

Figure 1: System Architecture

2.2.1 Router
The router is responsible for routing the incoming read and write

requests to the appropriate sites. We assume that for all there-
quests, we are given astart nodeid, i.e., the identifier of the node
from which the traversal should begin. For complex queries (e.g.,
subgraph pattern match queries), we assume that an externalquery
processor is responsible for generating the set of start node can-
didates, perhaps through use of an index. We do not discuss that
component further in the paper.

The router uses ahash partitioning-basedscheme to partition the
nodes across the sites. As we discussed earlier, this may result in
very large edge-cuts, but is still the preferred method of partitioning
in practice for several reasons: (1) hash-based partitioning typically
results in balanced workload across the sites and is much more ro-
bust toflash traffic, (2) the routing process is not only highly effi-
cient, but it can be infinitely parallelized by adding more routers,
(3) there is no complicated logic involved in assigning new nodes to
partitions, and (4) for a given node, we only need to list its neigh-
bors’ ids and not their locations. A scheme that tries to optimize
the edge-cuts or other metrics requires large routing tables to be
maintained, which increase the routing cost and are hard to keep
consistent if the router is replicated. Further, in dynamicnetworks
like social networks, the partitioning may become suboptimal very
quickly.

However, we note that the algorithms and the techniques thatwe
develop in the rest of the paper are completely independent of the
choice of the partitioning logic. In future work, we plan to inves-
tigate building an incremental and flexible partitioning scheme to
further reduce the number of distributed traversals.

2.2.2 Storage and Replication
We use the Apache CouchDB key-value store as our backend

storage to store all the information related to a node. CouchDB is
a schema-free document-oriented data management system, which
storesdocumentsthat can contain any number of fields and attach-
ments. The schema-free nature of CouchDB makes it ideal for stor-
ing heterogeneous graph data, where different nodes may have dif-
ferent attributes, and the amount of information stored about a node
may have a very wide range (we typically would wish to store his-
torical information as well). There are several reasons we chose
CouchDB over other key-value stores. Many of the other key-value
stores (e.g., HBase) do not give us sufficient control over where the

data is placed, whereas CouchDB is intended primarily as a single-
server product.

More importantly, CouchDB has excellent replication support,
optimized for minimizing network bandwidth, for selectively repli-
cating data across multiple sites. The documents or databases to be
replicated can be specified between any pair of CouchDB servers,
and CouchDB will keep the replicas up-to-date by sending only the
changes that have occurred. Further, for each database thatis repli-
cated, we can specify whether the replication should be “continu-
ous” (i.e., push-based) or not (i.e., pull-based), and these decisions
can be changed easily.

As above, the techniques we develop in the rest of the paper are
largely independent of this choice, and we can replace CouchDB
with another key-value store. However, in that case, depending on
the features supported by the key-value store, we may have towrite
a layer on top of the key-value store to support adaptive pull-based
or push-based replication.

2.2.3 Replication Manager
The replication manager is the most important component of our

system, and is in charge of making the replication decisionsto min-
imize the network bandwidth and query latencies, and enforce the
fairness requirement (discussed below). The replication manager
monitors the node read-write frequencies, which are themselves
stored along with the nodes in the CouchDB server. It periodically
reconsiders the selective replication decisions (i.e., what is repli-
cated, and whether it is active or passive) in a decentralized fashion
– each replication manager can make the decisions for the graph
node in its partition autonomously. It implements those decisions
by appropriately instructing the CouchDB servers. We discuss the
specifics of the replication manager in more detail in the next sec-
tion.

2.3 Trade-offs and Requirements
We briefly discuss some of the key trade-offs and desired prop-

erties of a dynamic graph data management system. We also define
the fairness criterion and discuss its implications.

Network Bandwidth: It is desirable from a distributed system that
the communication overhead be minimized. As discussed earlier,
there are two factors at play here: query latencies and replica main-
tenance. In most of the real-time applications today, read/write op-
erations are latency-critical and failing to keep those under accept-
able limits may lead to demise of such applications [22]. To ensure
low-latency query execution, we need to minimize the numberof
cross-partition traversals, and if there is no natural partitioning of
the data, then we must use active replication for that purpose. How-
ever, in a dynamically evolving graph, the cost of keeping the repli-
cas up-to-date may exceed the benefits of replication. Furthermore,
both the write and read access patterns may change dynamically,
and different policies may be best at different times. Hence, we
must not only choose replicas carefully to ensure low-latency oper-
ations, but we should also try to adapt the replication decisions in
response to changing access patterns.
Balanced Load: Balanced load across the sites is another very
important metric. Balanced load ensures that no resource isun-
der or over-utilized, thereby bringing down the overall system cost
and increasing the efficiency of the system. Apart from minimiz-
ing network bandwidth, it is expected that the network load will
also be balanced for maximum utilization of the system bandwidth.
Since our data graph is hash partitioned across sites, it is fair to as-
sume that the network load will be evenly balanced. But, eventhen
we have to make sure that the replication algorithm doesn’t inter-
fere with the balance. Secondly, balancing system load, i.e., the

x y

(i) (ii) (iii)

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness withτ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.

Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicasare kept
up-to-date (they called thislocal semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can bevery
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelmthe
system. This may be okay in a highly over-provisioned system(we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.

Instead, we advocate a more conservative approach here where
we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when weare us-
ing read/write frequencies to make replication decisions,because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using whatwe call
a fairness criterion. Given aτ ≤ 1, we require that for all nodes in
the graph, at least aτ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely,and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.

Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining localseman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, letΠ = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e.,∀i : Pi ⊂ V
and∩iPi = φ. Each of the partitionsPi itself is divided into a
number ofclusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this doesnot how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

clusterCij and partitionPk

Cij jth cluster ofPi

〈Cij , Pk〉 a cluster-partition pair,i 6= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency ofni at time intervalt
ω(Cij , t) Cumulative write frequency ofCij

ρ(ni, t) Read frequencies forni

ρ(Pk, Cij) Cumulative read frequency forPk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions:As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (calleddatabasein CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table,Rijk, and
ask it to be replicated to the CouchDB server corresponding toPk.
We then copy the relevant contents fromCij to be replicated to that
tableRijk. Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).

If the decision for the cluster-partition pair〈Cij , Pk〉 is a “push”
decision, then we ask the CouchDB server to keep this tablecon-
tinuouslyreplicated (by setting an appropriate flag). Otherwise, the
table has to be manuallysync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries fromRijk to keep
its size manageable.

We also need to maintain metadata in partitionPk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist inRijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is activelyrepli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions:We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-

sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, fora
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However,more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair〈Cij , Pj〉, we analyze the aggre-
gate read/write histograms ofCij andPk to choose theswitch
points, i.e., the times at which we should change the decision
for replicatingCij toPk. As we discuss in the next section, this
is actually not optimal since it overestimates the number ofpull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair〈Cij , Pk〉
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes inPk is not violated. We could attempt
to do a joint optimization of all the decisions involvingPk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behindmoni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing queryla-
tencies. Here we present an approach to exploitperiodic patterns
in the read/write accesses, often seen in applications likesocial net-
works [4, 13], to further reduce the communication costs. Weillus-
trate this through a simple example shown in Figure 3. Here for two
nodesw andv that are connected to each other but are in different

W V

Total writes(24 hrs) : 24 Total reads(24 hrs) : 23

Writes at 6-hr granularity:

{10,10,2,2}

Reads at 6-hr granularity:

 {2,2,9,10}

P1 P2

Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total c ost
of 8 instead of 23.

partitions, we have that over the course of the day,w is predicted to
be updated 24 times, and whereasv is predicted to be read (causing
a read onw) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containingv or not to be largely immaterial.
However, when we look at fine granularity access patterns, wecan
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by havingv pull the updates fromw during the first half of the
day, and havingw push the updates tov in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.

To fully exploit such patterns, we collect fine granularity infor-
mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Bothof these
histograms are maintained along with the node information in the
CouchDB server. We will assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.

For a nodeni, we denote byω(ni, t) the predicted update fre-
quency for that node during the time interval starting att (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequencyfor all
nodes in a clusterCij for that time interval byω(Cij , t). We sim-
ilarly defineρ(ni, t) to denote the read frequency forni. Finally,
we denote byρ(Pk, Cij , t) the cumulative read frequency forPk

with respect to the clusterCij (i.e., the number of reads inPk that
require access to a node inCij).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partitioninto

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given noden, if it does not
have a neighbor in a partitionPj , then it will never be replicated
at that partition. Clustering is a critical component of ouroverall
framework for several reasons.

First, since we would like to be able to switch the replication
decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoidoverfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence

w1

w2

w3

w4

r1

r2

r3

r4

ω(w1) = 2 ρ(r1) = 3

ω(w2) = 8

ω(w3) = 6

ω(w4) = 2

ρ(r2) = 2

ρ(r3) = 2

ρ(r4) = 3

(i)

w1

w2

w3

w4

r1

r2

r3

r4

(ii) Cost = 4H + 7L

w1

w2

w3

w4

r1

r2

r3

r4

(iii) Cost = 2H + 7L

push

pull

pull

push

push

pull

pull

pull

w1

w4 w3

w2

r1

r4 r3

r2

(iv)

Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partiti on pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.

To ensure that clustering does not reduce the benefits of fine-
grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standardk-meansalgorithm to the clustering. We discuss the
impact of different choices ofk in our experimental evaluation.

We note that clustering is done offline, and we could use sam-
pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient informationhas been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions areal-
ready made (using thek-meansalgorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of theprob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before letG(V, E) denote the data graph,P1, · · · , Pl de-

note the hash partitioning of the graph, and letCij denote the
clusters. We assume that fine-grained read/write frequencyhis-
tograms are provided as input. For the bucket that starts att, we
let ω(ni, t), ω(Cij , t) denote write frequencies forni and Cij ;
ρ(ni, t) denote the read frequency forni; and ,ρ(Pk, Cij , t) de-
note the cumulative read frequency forPk with respect to the clus-
terCij .

Next we elaborate on our cost model. We note that the total
amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if theseassump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. LetH denote the cost of one push
message sent because of a node update, and letL denote the cost
of a single pull message sent from one partition to the other.We
allow H andL to be different from each other.

Given this, our optimization problem is to make the replication
decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.

It is easy to capture the read/write frequencies at very fine granu-
larities (e.g., at 5-minute granularity), however it wouldnot be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters fromP1 to P2, and use the write
frequencies for the nodes inP1, and the read frequencies for the
nodes inP2. We call a node inP1 a writer node, and a node inP2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes fromP2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to pushw1 since the total read
frequency ofr1 and r2 exceeds its write frequency (here we as-
sume thatH = L).

These decisions are however suboptimal. This is because it is
useless to replicatew4 in the above instance without replicating
w2 andw3, because of the noder4. Since neither ofw2 andw3

is replicated, when doing a query at noder4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

As it turns out, it is possible to make these decisions optimally
in polynomial time (note that we ignore the fairness criteria here).
Figure 4(iv) shows another way to model this problem, where we
turn the problem instance into a weighted hypergraph. The nodes of
the hypergraph are the nodes inP1, with the write frequencies used
as weights. For each reader node, we add a hyperedge to this graph
over the nodes that it is connected, and weight of the hyperedge
is the read frequency of the node. Now, say a subsetS1 of the
nodes inP1 are replicated. LetS2 denote the hyperedges that are
completely covered byS1, i.e., hyperedges that only contain nodes
from S1. Then, the total cost for these two partitions is:

∑

v∈S1

ω(v) +
∑

u/∈S2

ρ(u) = C +
∑

v∈S1

ω(v)−
∑

u∈S2

ρ(u)

whereC =
∑

ρ(u) is a constant. In other words, we pay the cost
of one push message per node inS1 and one pull message per node
not in S2. This problem is similar to the well-studied problem of
finding the sub-hypergraph of a hypergraph with the maximum den-
sity (the standard density metric is

∑
u∈S2

ρ(u)/
∑

v∈S1
ω(v)).

We can use similar max-flow based techniques to solve our problem
(in fact the above optimization goal is simpler), however weomit
the details because we do not use such an algorithm in our system
for several reasons. First, even though the problem can be solved
in polynomial time [30, 12], the complexity of the algorithmis still
quite high. This coupled with the fact that the size of the input is
large (the number of hyperedges is equal to the number of nodes in
P2), that approach would be infeasible. We instead use a heuristic
that we discuss below that greedily makes a local decision for each
cluster-partition pair, significantly reducing both the input size and
hence the overall complexity.

So far we have ignored the fairness criterion. For the two par-
titionsP1 andP2 as above, the fairness criterion requires that, for
every reader node inP2, at least aτ fraction of its neighbors be
replicated. The problem of finding the optimal replication deci-
sions given a fairness requirement is unfortunately NP-Hard. Note
that, whenτ = 1, this problem does not reduce to the problem con-
sidered by Pujol et al. [41] (who prove their partitioning problem
to be NP-Hard). This is because they are trying solve the graph
partitioning problem itself, to come up with a good partitioning of
the graph. In our case, the solution forτ = 1 is trivial – we must
replicate every node into every partition that it is connected to (we
call this theall-pushsolution in our experimental evaluation).

Theorem 1 The problem of optimally replicating nodes to guaran-
tee fairness is NP-Hard.

PROOF. We show a reduction from theset coverproblem. In
a set cover instance, we are given a collection of setsS1, · · · , Sn

over a universeU = {e1, · · · , em} (i.e.,Si ⊆ U , and∪Si = U),
and the goal is to find the smallest collection of sets such that every
element inU is contained in at least one of those sets. Given a
set cover instance, we create an instance of our problem withtwo
partitions as follows.

Following the above terminology, letP1 be the partition that con-
tains the writer nodes, and letP2 be the partition that contains the
reader nodes. For each setSi, we add a writer nodewi in P1. For
each element in the universeej , we create a reader noderj in P2.
We connectwi to rj if ej ∈ Si. Letτ be the fairness threshold. We
connect each ofrj to sufficient nodes inP2 such that we are ex-
actly one neighbor short of achieving fairness forrj . For instance,
if τ = 0.5 and if rj is connected to 5 nodes inP1, then we con-
nectrj to 4 nodes inP2 (adding dummy nodes if needed). In other
words, for every noderj , we need to replicate exactly one of its
neighbors fromP1 to guarantee fairness.

Finally, we set the read frequencies for the nodes inP2 to be very
low, and write frequencies for the nodes inP1 to be sufficiently high
so that by default none of the nodes inP1 will be replicated toP2.

Given this setup, it is easy to see that choosing the minimum
number of nodes fromP1 to push to guarantee fairness for all nodes
in P2 is identical to the set cover problem.

4.3 Proposed Algorithm
In this section, we present our overall algorithm for makingand

changing replication decisions. The algorithm is decentralized by
nature, and does not require global coordination (however,replica-
tion managers do need to communicate statistics and the replica-
tion decisions to other replication managers). The algorithm oper-
ates in two phases. In the first phase, at each partitionPi and for
each clusterCij in it, we decide whether to replicate the cluster
Cij at each of the other partitions, based purely on the read/write
frequency histograms, and ignoring the fairness criterion. For ef-
ficiency, we do not make global decisions even within a site, and
instead we make independent decisions for each cluster-partition
pair 〈Cij , Pk〉, i 6= k. Given the cumulative read/write frequency
histograms for the cluster and the partition, we present a linear-
time optimal algorithm to decide the switch points, i.e., the points
at which the replication decisions should be switched.

In the second phase, run at each partition independently, ween-
force fairness criterion for all the nodes at that partitionby switch-
ing some replication decisions for clusters at other partitions from
push to pull. As discussed above, this problem is NP-Hard in gen-
eral, and we use a greedy heuristic based on the standard greedy
heuristic for solving the set cover problem.

4.3.1 Optimal Decisions for a Cluster-Partition Pair
Next we present an optimal linear-time algorithm for makingde-

cisions of when to switch replication decisions for a given cluster-
partition pair〈Cij , Pk〉, i 6= k. Letω(Cij , t) denote the write fre-
quencies forCij andρ(Pk, Cij , t) denote the read frequencies for
Pk w.r.t. Cij . We assume that we are given a constraint on the
maximum number of times we are allowed to switch the replica-
tion decision,C (without any such constraint, we would make a
different replication decision for each time interval). Wecan in-
stead assign a cost to making a replication decision, and optimize
for the lower total cost – the algorithm below can be easily adapted
to that effect.

Let there ben buckets in the frequency histogram. For each
bucket (i.e., each time interval), we compute the benefit of repli-
catingCij over doing a pull fromPk. For time intervalt, this is
computed as:

bt = ρ(Pk, Cij , t)× L− ω(Cij , t)×H

Thus we haven numbers, denotedb1, · · · , bn, that represent the
benefit of a push over a pull for the corresponding intervals.Note
that some of these numbers may be negative – if all of the numbers
are positive, then we would always pushCij toPk.

We first compress this sequence of numbers by coalescing the
entries with the same sign together. In other words, if we have a
contiguous sequence of positive numbers, we will replace itwith
a single number that is the sum of those numbers. Similarly, we
would coalesce any sequences of negative numbers. The rationale
behind this is that, we would never want to switch replication deci-
sions in the middle of such a sequence.

Let s1, · · · , sm denote the resulting sequence of alternating pos-
itive and negative numbers. Letopt(C′, push, i) denote the opti-
mal cost for the subproblemsi, · · · , sm using at mostC′ switches
and assuming that the decision for the time period corresponding

to si is a PUSH. We similarly defineopt(C′, pull, i). Then we can
see that:

opt(C′, push, i) = si +max{ opt(C′, push, i+ 1),
opt(C′ − 1, pull, i+ 1)}

In essence, we check both possibilities forsi+1, PUSH or PULL,
and choose the best of the two. Similarly,

opt(C′, pull, i) = −si +max{ opt(C′, pull, i+ 1),
opt(C′ − 1, push, i+ 1)}

Here we have to use−si sincesi is benefit of doing push and
we are doing a pull in the time period corresponding tosi. The
base case of the recursion is whenC = 0 at which point we sim-
ply return the sum of the remaining items, possibly negated.The
computational complexity of the algorithm can be seen toO(nC).

4.3.2 Guaranteeing Fairness
Finally, we discuss how we ensure that the fairness requirement

is satisfied for all nodes. The replication manager at each parti-
tion runs this algorithm independently of the other partitions, and
may change some of the replication decisions for clusters atother
partitions with respect to that partition.

Since the problem is NP-Hard, we develop a heuristic based on
the standard greedy heuristic for set cover. For a partitionPk, let
Γk denote the nodes for which fairness guarantee is not satisfied.
Let Cij be a cluster at another partitionPi which isnot replicated
atPk, i.e., the decision for〈Cij , Pk〉 is a pull. Then letbenefitijk
denote the total benefit of changing the decision for that cluster-
partition pair. This is computed as:

benefitijk =
∑

v∈Γk

|nei(v) ∩ Cij | − remaining(v)

wherenei(v) denote the set of neighbors ofv, andremaining(v)
denote the number of neighbors after replicating which the fair-
ness criterion would be satisfied forv. Further, letcostijk be the
cost of switching the decision forCij from a pull to a push. We
greedily choose the cluster to be replicated that has the highest
benefitijk/costijk ratio, and continue until the fairness criterion
is met for all nodes.

5. EVALUATION
In this section, we present a comprehensive experimental evalu-

ation using our prototype system. Lacking real datasets with suffi-
cient detail, we constructed a social network graph based ona com-
monly used social network model, and also constructed a trace of
user activity on a social network by gathering user activitydata on
Twitter and extrapolating. We focus on the “fetch updates from all
my neighbors” queries which are the most common class of queries
in such networks. As discussed in Section 2, our system is built on
top of CouchDB, and we used Amazon EC2 to run our experiments.
Our key findings can be summarized as follows:

• Our hybrid replication approach results in significant savings
in the network communication cost over the baseline approaches.

• The granularity at which we make push/pull decisions plays
an important role in determining how much savings we can
obtain.

• The hash-based partitioning scheme results in balanced net-
work and CPU load in our system.

• Our fairness guarantee reduces the average number of pulls
required to answer read queries.

We begin with describing the dataset, and the experimental setup.

5.1 Dataset
We constructed our data set to match the workload of a social

network. We have used apreferential attachmentmodel to gener-
ate the data graph which has been shown to model a social network
very well [8, 3, 2, 32]. The network is generated by adding one
node at a time, and the new nodes are preferentially connected to
the existing nodes with higher degrees (i.e., the probability of con-
necting to an existing node depends on the degree of that node).
Most of our experiments were run on a social network containing
1.8 million nodes, and approximately 18 million edges (generated
with the preferential attachment factor of 10).

The second key component of our simulated dataset is the user
activity patterns. We chose 100 Twitter users with sufficient num-
ber of tweets and downloaded their tweets to get their accesstrace.
This trace only gives us the write frequencies of the nodes. In our
experiment, we have assumed that the read frequency of a node
is linearly related to its write frequency. In reality this linear fac-
tor might be different for different users; however, we assume a
constant read to write ratio for all nodes. From the access traces,
we created write frequency histograms and linearly scaled those to
get the read frequency histograms. Once we had the pool of his-
tograms, we assigned them to the nodes in the network. Motivated
by recent work on modeling user activity on Twitter [15], we used
the following assignment process. We assigned histograms to the
graph nodes one at a time. When considering which histogram to
assign to a node, we check the histograms already assigned tothe
other nodes in the same partition, and find the histogram thathas
been assigned to the largest number of nodes in that partition. We
assign the same histogram to the node under consideration with
50% probability, otherwise we choose any one of the remaining
histograms with equal probability.

However, we do not use these assigned histograms directly. For
each user, we instead randomized the assigned histogram by gener-
ating a trace by treating the histogram as a probability distribution,
and then building a histogram on the generated trace. This ensures
sufficient diversity in the user histograms across the network.

5.2 Experimental Setup
We ran our experiments on Amazon EC2 infrastructure using

7 EC2 instances (1 instance is equivalent to a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor, 1 core, and 1.7G of memory).
We used 1 instance to play back the write and read traces (i.e., to
send updates and queries to the system), and rest of the instances
to host the graph. Each server had a CouchDB server and a copy
of replication manager running. As we noted earlier, our network
has 1.8 million nodes, which translated into about 300,000 nodes
per partition. We used a trace containing a total of approximately
25 million events (reads and writes), corresponding to a single day.
The default write to read ratio in the query workload was set to
0.2 (i.e., there are 5 read queries for every update). For each of the
experiments, we ran the trace against the system (after selecting the
appropriate replication approach), and computed the totalnetwork
messages. For most of our plots, we plot theaverage number of
network messages per site.

We compared three approaches: (1)all-pull, where we do not do
any replication, (2)all-push, where the nodes are replicated suffi-
cient to guarantee no pulls would be needed (i.e., local semantics),
and (3)hybrid, our hybrid approach. Unless otherwise specified,
the number of clusters at each partition was set to 6.

5.3 Evaluation Metric
Our main evaluation metric is the amount of network communi-

cation in terms of messages [46] exchanged across all the servers

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1/2 hr 1 hr 2 hr 4 hr 6 hr 8 hr 12 hr

A
v

er
ag

e
N

u
m

b
er

 o
f

n
et

w
o

rk
 m

es
sa

g
es

 (
p

er
 s

it
e) Network activity across partitions

All Pull Hybrid All Push

Figure 5: Making fine-grained decisions can result in almost
33% savings over coarse-grained decisions

as logged by our replication middleware. As we discussed earlier,
once a data item is replicated to a partition, it is cached andwill not
be transferred again. Because of this, the amount of data transfer
across the servers is independent of the replication decisions that
are made (we can easily modify the cost functions in our algorithms
to account for this if desired). Hence for most of the results, we re-
port the total number of push and pull messages (i.e., we assume
H = L = 1).

For apushdecision, we use continuous replication of CouchDB
and there is a message involved every time the correspondinggraph
node is updated. However, the way we count the number ofpull
messages is slightly different, and reflects the constraints imposed
by CouchDB and our setup. In fact, this results in a significant
underestimation in the number of pull messages as some of our
experiments also illustrate.

The way apull works in our system is that, the replication man-
ager asks CouchDB tosyncthe appropriate replication table (see
Section 3.1). However since the replication tables correspond to
clusters, all updates to that cluster are pulled from the cluster’s
home partition. To amortize the cost of this, we enforce a minimum
gap between two pulls corresponding to the same cluster by using
a timeout. In other words, if a cluster has been recently pulled, we
do not pull it again until the timeout expires. In our experimental
evaluation, the timeout is set to 800ms, so the data can be at most
800ms stale (which is reasonable in a social network application).
We further discuss the rationale in Section 5.4.7.

5.4 Results

5.4.1 Impact of Histogram Granularity
We start with a set of experiments to verify our hypothesis that

by making decisions in a fine-grained manner can result in signifi-
cant savings. Figure 5 shows the results for this experiment. Here
we varied the histogram granularity from 1/2 hour to 12 hours, and
counted the total number of messages that were needed. Theall-
pull andall-pushapproaches are unaffected by this, however, we
can see that by making decisions at the finest granularity, i.e., every
1/2 hour, resulted in almost 33% savings over coarse-grained de-
cisions. This validates our hypothesis that we can exploit the user
activity patterns to reduce the network communication costs.

We also note that overall our default workload is read-heavy, and
hence all-push solution is usually better than all-pull solution (al-
though it results in higher memory consumption). As we move
toward coarse-grained histograms, we observed that most ofthe
replication decisions became push. But our algorithm is able to ex-

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Server1 Server2 Server3 Server4 Server5 Server6

A
v

er
ag

e
N

u
m

b
er

 o
f

n
et

w
o

rk
 m

es
sa

g
es

 (
p

er
 s

it
e) Network activity and load across partitions

All Pull Hybrid All Push

Figure 6: Hash partitioning results in almost uniform load
across the partitions

ploit the diversity in the access patterns when making decisions at
finer granularities to achieve significant savings.

5.4.2 Bandwidth Consumption and Network Load
Figure 6 shows the total network communication across the servers.

For each server, we aggregated the network communication result-
ing from writes happening to the corresponding partition, and the
reads directed to the partition. As we can see, all the approaches
resulted in fairly balanced load across the partitions, with hybrid
achieving almost 20% savings overall-pushin all cases. This can
be attributed to the hash partitioning scheme that we use, which
guarantees that the overall read and write distributions across the
partitions are largely uniform.

5.4.3 Varying the Number of Clusters
Next we study the effect ofk, the number of clusters in each

partition. We varied the number of clusters from 4 to 9, and we
show the results in Figure 7. Along with the network communica-
tion costs (plotted on theleft y-axis), we also plot the size of the
cluster mapping table, the metadata that is needed to decidewhich
of a node’s neighbors are replicated (on theright y-axis). As we
can see, as the number of clusters increases the size of the cluster
mapping table increases as expected. What is somewhat counter-
intuitive is that the total communication cost also increases beyond
6. We expect that with large numbers of clusters, we can make
more fine-grained decisions which should aid in reducing thetotal
network communication cost.

The reason for this is somewhat subtle, and has to do with the
way pulls are handled in our system. Recall that a single pull ac-
tually syncs an entire cluster, i.e., it propagates all updates for a
single cluster from the home partition to the partition making the
pull. Thus increasing the cluster sizes results in an decrease in the
number of pulls that are required. We expect that if we were count-
ing the number of pulls explicitly, that would result in the behavior
as expected (however, in a read-heavy workload, that would imply
that the all-push solution would always be better by a margin).

5.4.4 Varying Write-Read Ratio
We examine how the replication techniques perform for work-

loads that have different mixes of reads and writes. We simply
varied the read/write ratio of the workload and calculated the av-
erage cost in terms of total number of communications, incurred
by the three approaches. For hybrid, we also plot the costs when
the fairness thresholdτ is set to 0.5. Figure 9 shows the results of

 0

 200000

 400000

 600000

 800000

 1e+06

4 5 6 7 8 9
 0

 5

 10

 15

 20

 25

 30

 35
A

v
er

ag
e

u
m

b
er

 o
f

n
et

w
o

rk

m
es

sa
g

es
 (

p
er

 s
it

e)

S
iz

e
o

f
th

e
C

al
u

st
er

 M
ap

p
in

g
/p

er
 s

it
e

(i
n

 M
B

)

Network activity across partitions

Avg All Pull
Avg Hybrid

Avg All Push
Hybrid

Figure 7: Varying the number of clusters

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 620000

 640000

 660000

 0 0.2 0.4 0.6 0.8 1A
v

er
ag

e
n

u
m

b
er

 o
f

n
et

w
o

rk
 m

es
sa

g
es

 (
p

er
 s

it
e)

Fairness ratio

Impact of fairness-factor on the average
 number of messages

All Push
Hybrid

Hybrid Fair

Figure 8: Impact of fairness factor on network communication

this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since thenumber
of reads were almost constant, the performance of theall-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with basehybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent toall-push, but as the
write frequency increases, pull decisions are favored, andhybrid
starts performing much better thanall-push. With fairness thresh-
old set to0.5, thehybridapproach does worse than the basichybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent toall-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot theaverage
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost ofall-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for theall-push
solution, with an absolute value of about2ms. The cost for theall-
pull approach is relatively quite high, almost22ms. The hybrid ap-

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.05 0.1 0.15 0.2 0.25A
v

er
ag

e
n

u
m

b
er

 o
f

n
et

w
o

rk
 m

es
sa

g
es

 (
p

er
 s

it
e)

Write:Read ratio

Impact of write/read ratio on network activity

All Pull
Hybrid

All Push
Hybrid 0.5 fairness

Figure 9: Increasing the write:read ratio results in favoring
pulls over pushes

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

A
v

er
ag

e
R

ea
d

 L
at

en
cy

 (
m

s)

Fairness factor

Impact of fairness-factor on latency

All Push
Hybrid
All Pull

Hybrid Fair

Figure 10: Impact of the fairness factor on read query latencies

proach is somewhere in-between, with somewhat higher latencies
than theall-pushapproach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching2mswith τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better thanall-pull andall-pushapproaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for theall-
pushapproach. We note that the cost of theall-pull approach in-
creases as expected with the increase in the graph density.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

PA 5 PA 10 PA 15 PA 20

A
v

er
ag

e
N

u
m

b
er

 o
f

n
et

w
o

rk
 m

es
sa

g
es

(p
er

 s
it

e) Network activity vs Preferential attachment factor

All Pull Hybrid All Push

Figure 11: Increasing the density of the graph increases the
number of reads, and decreases the opportunities to exploitthe
read/write skew

 100000

 1e+06

 1e+07

 1e+08

 0.1 1 10A
v

er
ag

e
n

u
m

b
er

 o
f

n
et

w
o

rk
 m

es
sa

g
es

 (
lo

g
 s

ca
le

)

Write:Read ratio (log scale)

Impact of write/read ratio on network activity

All Pull
All Push

Hybrid
Hybrid 0.5 fairness

Figure 12: Comparing the techniques without push/pull time-
out (note that both axes are in log-scale)

5.4.7 Effect of the Pull Timeout
Finally we discuss thetimeout used forpull in our system. We

note that we don’t have such a timeout forpush. It might seem
to be an unfair comparison, but given the read-heavy workload it
is a natural system design decision. Intuitively thetimeout cap-
tures the difference in cost between apush and apull (we could
have also captured this by using appropriate values forH andL).
However we also performed a set of experiments with notimeout
for pull to further evaluate the uneven use oftimeout for push
andpull. Figure 12 shows how different schemes perform with no
timeout parameter for eitherpush or pull and with the read:write
ratio varying from 20:1 to 1:10. We can see thatpush is favored
when the workload is read-heavy, and as the number of writes in-
creases,pull is preferred. Our proposed hybrid approach performs
better than the best of those two, with the maximum benefit ob-
served when the workload is balanced in terms of reads and writes
– the maximum benefit we see is almost 25% (note that both the
axes are in log-scale).

6. PREVIOUS WORK
There is an increasing interest in large-scale, distributed graph

data management, with several new commercial and open-source
systems being developed for that purpose. Some of the key sys-
tems include Neo4j [37], HyperGraphDB [31], InfiniteGraph [24],

FlockDB [45], GraphBase [10], Trinity [36], Pegasus [28], and
Pregel [35]. Neo4j is disk-based transactional graph database which
can handle very large graphs, but does not do horizontal partition-
ing. HypergraphDB, Trinity, InfiniteGraph all support horizontal
partitioning and parallel query processing, with the former two sup-
porting richer hypergraph data model. Our techniques can beap-
plied for minimizing the network communication and for reducing
query latencies in these systems. On the other hand, Pegasusand
Pregel are both batch-processing systems based on the MapReduce
framework, and are not aimed at online query processing or dy-
namic graphs.

There is much work on monitoring read/write frequencies and
making replication decisions based on them. For instance, Wolfson
et al. propose theadaptive data replicationapproach [46], where
they adapt the replica placement based on the read/write patterns.
Their algorithm is primarily designed for a tree communication
network, but can also handle general graph topologies. There is
much subsequent work on this topic (see Kadambi et al. [27] for
a recent work on using a similar approach for geographicallydis-
tributed data management system). However, the problems that
we encounter in dynamic graph data management are significantly
different and require us to develop new approaches. The primary
reason for this is that the data items are not read individually, but
are always accessed together in some structured manner, andex-
ploiting that structure is essential in achieving good performance.

Similar decisions about pushing vs pulling also arise in content
distribution networks (CDNs), or publish-subscribe systems. Each
node in the graph can be seen as both a producer of information
and a consumer of information, and we can use techniques likethe
one proposed by Silberstein et al. [43] for deciding whetherto push
or pull. However, that work has primarily considered a situation
where the producers and consumers are distinct from each other,
and usually far apart in the communication network. The recip-
rocal relationships observed in graph data change the optimization
problems quite significantly. Secondly, that work has typically fo-
cused purely on the information delivery problem, and the tech-
niques cannot be directly used for executing other types of queries.

7. CONCLUSIONS
In this paper, we presented the design of a distributed system

to manage and query large graphs efficiently. Despite the increas-
ing need for graph data management in a variety of applications,
there has been a surprising lack of research on general purpose, on-
line graph data management systems. To alleviate the performance
concerns stemming from the partitioning of a graph across a large
number of machines, we proposed a hybrid replication mechanism
that monitors the node read/write frequencies to make fine-grained
decisions about when to use active replication vs passive replica-
tion. We proposed a clustering technique to reduce the overhead of
maintaining the replication decisions, and introduced thenovel no-
tion of a fairness guarantee that enables us to trade increased com-
munication for lower latencies. Our prototype system can not only
handle large graphs efficiently, but can answer queries withvery
low latencies. Our experimental results validate the effectiveness
of our approach. We are continuing to extend our work in many
different directions. In this paper, we focused on a simple type
of graph query that requires accessing all the neighbors of anode,
and we are working on generalizing this to support other types of
queries efficiently by maintaining statistics about which nodes are
accessed together. We are also working on designing graph parti-
tioning algorithms that can efficiently handle the highly dynamic
and evolving nature of many real-world networks, especially rapid
changes to the graph structure itself.

Acknowledgments: This work was supported by Air Force Re-
search Lab (AFRL) under contract FA8750-10-C-0191, by NSF
under grant IIS-0916736, and an Amazon AWS in Education Re-
search grant.

8. REFERENCES
[1] B. Amann and M. Scholl. Gram: a graph data model and

query languages. InACM Hypertext, 1992.
[2] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E.

Stanley. Classes of small-world networks.Proceedings of
The National Academy of Sciences, 2000.

[3] A. Barabasi and R. Albert. Emergence of scaling in random
networks.Science, 1999.

[4] F. Benevenuto, T. Rodrigues, M. Cha, and V. A. F. Almeida.
Characterizing user behavior in online social networks. In
Internet Measurement Conference, 2009.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using banks. InICDE, 2002.

[6] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks.Journal of Statistical Mechanics-theory and
Experiment, 2008.

[7] M. Brocheler, A. Pugliese, and V. S. Subrahmanian. COSI:
Cloud oriented subgraph identification in massive social
networks. InASONAM, 2010.

[8] A. Capocci, V. D. P. Servedio, F. Colaiori, L. S. Buriol,
D. Donato, S. Leonardi, and G. Caldarelli. Preferential
attachment in the growth of social networks: The internet
encyclopedia wikipedia.Phys. Rev. E, 2006.

[9] U. V. Catalyurek and C. Aykanat. Patoh: Partitioning tool for
hypergraphs.Bilkent University, Tech. Rep, 1999.

[10] FactNexus Pty Ltd. Graphbase.http://www.graphbase.

net/, 2011.
[11] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph

pattern matching: from intractable to polynomial time. In
VLDB, 2010.

[12] G. F. Georgakopoulos and K. Politopoulos. Max-density
revisited: a generalization and a more efficient algorithm.
The Computer Journal, 2007.

[13] S. A. Golder, D. M. Wilkinson, and B. A. Huberman.
Rhythms of social interaction: messaging within a massive
online network.CoRR, abs/cs/0611137, 2006.

[14] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword
proximity search in complex data graphs. InSIGMOD, 2008.

[15] R. Gonzalez, R. C. Rumin, A. Cuevas, and C. Guerrero.
Where are my followers? understanding the locality effect in
twitter. CoRR, abs/1105.3682, 2011.

[16] R. Guting. GraphDB: Modeling and querying graphs in
databases. InVLDB, 1994.

[17] M. Gyssens, J. Paredaens, and D. van Gucht. A
graph-oriented object database model. InPODS, 1990.

[18] J. Hamilton. Scaling linkedin.http://perspectives.
mvdirona.com/2008/06/08/ScalingLinkedIn.aspx,
2008.

[19] H. He and A. K. Singh. Graphs-at-a-time: query language
and access methods for graph databases. InSIGMOD, 2008.

[20] B. Hendrickson and R. Leland. An improved spectral graph
partitioning algorithm for mapping parallel computations.
SIAM Journal on Scientific Computing, 1995.

[21] High Scalability Blog. Why are facebook, digg, and twitter
so hard to scale?http://highscalability.com/blog/
2009/10/13/why-are-facebook-digg-and-twitter-
so-hard-to-scale.html, 2009.

[22] High Scalibility Blog. Friendster lost lead because ofa
failure to scale.http://highscalability.com/blog/
2007/11/13/friendster-lost-lead-because-of-a-
failure-to-scale.html, 2007.

[23] J. Huang, D. Abadi, and K. Ren. Scalable SPARQL querying
of large RDF graphs. InVLDB, 2011.

[24] InfiniteGraph.http://www.infinitegraph.com/, 2011.
[25] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently

answering reachability queries on very large directed graphs.
In SIGMOD, 2008.

[26] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. InVLDB, 2005.

[27] S. Kadambi, J. Chen, B. Cooper, D. Lomax,
R. Ramakrishnan, A. Silberstein, E. Tam, and H. G. Molina.
Where in the world is my data? InVLDB, 2011.

[28] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system. InICDM, 2009.

[29] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. InSIAM, 1999.

[30] S. Khuller and B. Saha. On finding dense subgraphs. In
ICALP, 2009.

[31] Kobrix Software. A general purpose distributed data store,
2011.http://www.kobrix.com/hgdb.jsp.

[32] R. Kumar, J. Novak, and A. Tomkins. Structure and
evolution of online social networks. InKDD, 2006.

[33] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social
and information networks. InWWW, 2008.

[34] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters.Journal of
Internet Mathematics, 2009.

[35] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. InPODC, 2009.

[36] Microsoft Research. Trinity.http://research.
microsoft.com/en-us/projects/trinity/, 2011.

[37] Neo4j. Neo4j open source nosql graph database.http://
neo4j.org/, 2011.

[38] M. Newman. Why social networks are different from other
types of networks.Physical Review E, 2003.

[39] M. Newman. Modularity and community structure in
networks. InProc. of The Natl. Academy of Sciences, 2006.

[40] J. M. Pujol, V. Erramilli, and P. Rodriguez. Divide and
conquer: Partitioning online social networks.CoRR,
abs/0905.4918, 2009.

[41] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez. The little engine(s) that could:
scaling online social networks. InSIGCOMM, 2010.

[42] L. Sheng and Z. Ozsoyoglu. A graph query language and its
query processing. InICDE, 1999.

[43] A. Silberstein, J. Terrace, B. F. Cooper, and
R. Ramakrishnan. Feeding Frenzy: Selectively materializing
users’ event feeds. InSIGMOD, 2010.

[44] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k
exploration of query candidates for efficient keyword search
on graph-shaped (RDF) data. InICDE, 2009.

[45] FlockDB.https://github.com/twitter/flockdb.
[46] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data

replication algorithm. InTODS, 1997.
[47] O. Wolfson and A. Milo. The multicast policy and its

relationship to replicated data placement. InTODS, 1991.
[48] H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: Scalable

reachability index for large graphs. InVLDB, 2010.

http://www.graphbase.net/
http://www.graphbase.net/
http://perspectives.mvdirona.com/2008/06/08/ScalingLinkedIn.aspx
http://perspectives.mvdirona.com/2008/06/08/ScalingLinkedIn.aspx
http://highscalability.com/blog/2009/10/13/why-are-facebook-digg-and-twitter-so-hard-to-scale.html
http://highscalability.com/blog/2009/10/13/why-are-facebook-digg-and-twitter-so-hard-to-scale.html
http://highscalability.com/blog/2009/10/13/why-are-facebook-digg-and-twitter-so-hard-to-scale.html
http://highscalability.com/blog/ 2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/ 2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/ 2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://www.infinitegraph.com/
http://www.kobrix.com/hgdb.jsp
http://research.microsoft.com/en-us/projects/trinity/
http://research.microsoft.com/en-us/projects/trinity/
http://neo4j.org/
http://neo4j.org/
https://github.com/twitter/flockdb

	Introduction
	System Overview
	Data and Query Model
	Architecture
	Router
	Storage and Replication
	Replication Manager

	Trade-offs and Requirements

	Replication Manager
	Overview
	Monitoring Access Patterns
	Clustering

	Making Replication Decisions
	Problem Definition
	Analysis
	Proposed Algorithm
	Optimal Decisions for a Cluster-Partition Pair
	Guaranteeing Fairness

	Evaluation
	Dataset
	Experimental Setup
	Evaluation Metric
	Results
	Impact of Histogram Granularity
	Bandwidth Consumption and Network Load
	Varying the Number of Clusters
	Varying Write-Read Ratio
	Varying the Fairness Threshold
	Varying the Graph Density
	Effect of the Pull Timeout

	Previous Work
	Conclusions
	References

