Managing Large Dynamic Graphs Efficiently

Jayanta Mondal
University of Maryland, College Park

jayanta@cs.umd.edu

ABSTRACT

There is an increasing need to ingest, manage, and queepnalg
umes of graph-structured data arising in applications $i&eial
networks, communication networks, biological networksd &o
on. Graph databases that can explicitly reason about thghigra
cal nature of the data, that can support flexible schemas @aiel n
centric or edge-centric analysis and querying, are ideakfor-
ing such data. However, although there is much work on single
site graph databases and on efficiently executing diffaygras of
queries over large graphs, to date there is little work orewstdnd-
ing the challenges in distributed graph databases, needehtlle
the large scale of such data. In this paper, we propose thgndefs
an in-memory, distributed graph data management systeradaim
at managing a large-scale dynamically changing graph, apd s
porting low-latency query processing over it. The key dadle in

a distributed graph database is that, partitioning a grapbsa a
set of machines inherently results in a large number ofidiged
traversals across partitions to answer even simple quéhiegro-
pose aggressive replication of the nodes in the graph fqastp
ing low-latency querying, and investigate three novel téghes to
minimize the communication bandwidth and the storage regui
ments. First, we develop a hybrid replication policy thatnitars
node read-write frequencies to dynamically decide whaa dat
replicate, and whether to deageror lazyreplication. Second, we
propose a clustering-based approach to amortize the dostake
ing these replication decisions. Finally, we propose uaifairness
criterion to dictate how replication decisions should beleawe
provide both theoretical analysis and efficient algorithimisthe
optimization problems that arise. We have implemented i@amé-
work as a middleware on top of the open-source CouchDB key-
value store. We evaluate our system on a social graph, and sho
that our system is able to handle very large graphs effigieartid
that it reduces the network bandwidth consumption sigmiflga

Categories and Subject Descriptors

H.2.4 [Database Managemerjt Systems—Parallel Databases
H.2.4 [Database Managemerjt Systems—Query Processing

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD ‘12,May 20-24, 2012, Scottsdale, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

Amol Deshpande
University of Maryland, College Park

amol@cs.umd.edu

General Terms
Algorithm, Design, Performance, Experimentation

Keywords

Graph databases, Social networks, Replication, Feecdedgliv

1. INTRODUCTION

In today’s world, networks are everywhere. There are soetl
works, communication networks, financial transaction ks,
citation networks, gene regulatory networks, diseasestnigsion
networks, ecological food networks, sensor networks, andem
Network data arises even in mundane applications like ploatie
data, IP traffic data, or parcel shipment data. There is aiggpw
need for data management systems that can support reairtime
gest, storage, and querying over such network data. Netdak
is most naturally represented as a graph, with nodes regrese
ing the entities and edges denoting the interactions betresm.
However, there is a lack of established data managemergnsgst
that can manage such graph-structured data, and suppoptecom
querying or analysis over them. Further, the sizes of these n
works, and the number of operations that need to be supported
are growing at an unprecedented pace, necessitating useaiiep
and distributed solutions. However, graph operations ateas-
ily parallelizable, and even simple queries over a distabwgraph
may result in a large number of traversals across the netvildr&
MapReduce framework has emerged as a framework for pazallel
ing many large-scale analysis tasks. However, MapRedaoesfr
work is aimed toward batch processing of largely static dateal
cannot support either real-time data ingest or real-tineryjog.

There is much work on single-site graph database systéeifg[1,
[17,[42,[19], and on executing specific types of queries effilyie
over them through strategic traversal of the underlyinglyre.g.,
reachability [25[°48], keyword search queries|[14,[44. %, &6b-
graph pattern matchind [19,111], etc. However, distributesh-
agement of dynamic graph data is not as well-studied. Tleere i
some work on executing specific types of queries or perfagmin
specific types of analysis, e.g., subgraph pattern matd@lizg],
data mining[[28] etc. But those works either have limitedufoor,
in the case of Pegaslis [28], are meant for batch processing.

Our goal in this work is to build a system that can support-scal
able and distributed management of very large, dynamichiiyng-
ing graphs. Keeping with the hardware trends and to suppart |
latency operations, our system is intended to be finllynemory
and uses disks only as a backing store for historical, aatdata.
The key challenge with building such a system is that effebyi
partitioning graphs is notoriously challenging, espdgial a dy-
namic environment. Standard hash-based partitioningnseelo
not work well because they end wpttingtoo many edges, i.e.,

placing the endpoints in different partitions. This is alpem be-
cause most graph queries or analysis tasks require tragettse
edges to fetch the neighbors’ information. This not onlyréases
query latencies but also increases the total network coroation,

thus limiting the scalability of the system.

This has led many researchers to consider more sophisticate
partitioning schemes. Although the problem of optimallytpa
tioning a graph into equal-sized partitions while minimizithe
edges cut is NP-Hard, there is much work on practical saistio
to this problem, and several software packages are avaitabt
can generate very good graph partitionirigs [29. 9, 20]. &lbesh-
niques however cannot handle highly dynamic graphs wheze th
node access patterns and the graph structure itself magehany
rapidly [33]. More importantly, in most practical appliaats, the
highly interconnected nature of graph data means that disgint
partitions that minimize the edge-cut do not typically e}fEs,
[40). Social networks in particular are very hard to partitioe-
cause of overlapping community structure, and existenbaoty-
connected dense components (cores)[34, 38,139, 6] .

We instead investigate an aggressive replication-basgehagh
in this work to scalably manage a large, dynamic graph, wtrere
key idea is to replicate the nodes in the graph to minimizentive-
ber of distributed traversals. This approach has been sixtin
studied in distributed systems and distributed databases €.9.,
[47,[274]), however, to our knowledge, there is little workwmder-
standing how to use it for distributed graph data managenheat
recent work, Pujol et al.J40,"41] considered one extremsiwarof
it for scaling online social networks: they aim to replictite graph
sufficiently so that, for every node in the graph, all of itggmdors
are present locally (calleldcal semantice They also usective
replication (i.e., apush-on-changenodel) where all the replicated
data is kept up-to-date. Such an approach however suffens fr
very high, unnecessary communication to keep the replipas-u
date; Facebook reportedly ugagl-on-demananodel instead [21].
Further, the replication overhead to guarantee local seosamne.,
the number of average copies of each graph node, may be tho hig
in most cases (for a sample Facebook dataset, they needec-app
imately 2 copies of each node with just 8 partitions [41]).

In this paper, we propose a hybrid, adaptive replicatioricgol
that uses a novedhirness requiremertb guide the replication de-
cisions, and utilizes predictive models about node-legatfwrite
access patterns to choose whether to maintain the replitaeslg
or passively. The fairness requirement is characterizealthyesh-
old = < 1, and can be stated simply: for each graph node, we
require that at least a fraction of its neighbors be present lo-
cally at the same site. The local semantics [41] becomes@aspe
case of this withr = 1. A key concern with a policy that makes
fine-grained push-pull decisions is that, the overhead dhtaia-
ing these decisions (i.e., for a node, deciding which of thigm
bor replicas are up-to-date) is very high. We design anduetel
novel clustering-based schemes for this purpose, whereraugpg
together nodes with similar access patterns to reduce trhead
without compromising quality. We analyze the problems of de
ciding what to replicate, and choosing when to push vs pall, a
provide both theoretical analysis and efficient practitgbathms
(optimal for the latter problem). Our algorithms atecentralized
by nature, and enable us to make the decisions locally atrezig
This also naturally enables us to change the decisionsglpgn-
ods of low load, and/or stagger the times when they are made to
avoid significant slowdowns.

We have implemented our distributed graph data management

system on top of the Apache CouchDB open-source key-vatue. st
CouchDB supports a sophisticated replication mechanisohyae

leverage it by building on top of that. We present a comprsiven
experimental evaluation which shows that our algorithnespaac-
tical, support low-latency operations, and decrease takdamount
of communication by a significant fraction over other pagi

Outline: We begin with a brief overview of our proposed system
and discuss various design decisions that we have madadiect
2). We then discuss the key component of our systemrepie
cation managefSection 3), and present algorithms for making the
replication decisions (Section 4). We then present a congmsve
experimental evaluation (Section 5), and discuss someeafnibst
related work (Section 6).

2. SYSTEM OVERVIEW

We start with the brief description of the underlying datadelo
and the high-level system architecture, and then brieflyudis some
of the key trade-offs in such a system and define a fairnetssion.

2.1 Data and Query Model

The data is represented as a gra&ptl/, E') whereV is the set
of all nodes andF represents the set of all edges. To avoid con-
fusion, we refer to the vertices of the graph as nodes, whexea
refer to the sites (machines) across which the graph istipakd
as either sites goartitions The graph is distributed across multiple
partitions, and each node has information about its crasstipn
neighbors. The basic operations one could perform on thesnod
areread andwrite. A write on a node is simply updating or ap-
pending node information, whereas@ud on a node is reading the
information stored in that node. In a traversal we are patiog
reads on all the nodes that are part of the traversal.

A typical query in a social network context could bear a per-
sonz, find all of his friends who have attended Stanford Business
School and who have a friend from South Afri€ar a query like
this, we have to start from node visit all its neighbors to check
which of them had attended Stanford business school, anddhe
all those friends, visit their neighbors till we find a neighlmnatch-
ing the predicate.

Another type of query we may want to support is a subgraph pat-
tern matching query. An example of such a query couldGigen
a citation network, find all the papers that discuss graphterat
matching, and are a result of collaboration between resears
from Stanford and MITTo execute such a complex query, we would
typically need to build an index on the relevant attributeg(, pa-
per abstracts) to quickly find the candidate nodes that may ine
terest and then traverse the neighborhoods of those caediddes
to find the matches.

Although our system is aimed at supporting different types o
queries flexibly, for ease of illustration, we primarily fecon a
special type of query prevalent in the social network domramely,
the “fetch updates from all my neighborgjuery. Given a specific
nodez, this query requires us to traverse the neighborhoodaofd
find the latest writes that have been made in that neighbdrhoo
In today’s social networks with a large fraction of nodesihgv
a non-trivial number of neighbors, these queries are verg ta
scale[[21]. This problem is also called the “feed delivergSigem,
and also arises commonly in publish-subscribe netwarkp [A@
revisit the issue of generality below when we describe tlstesy
architecture and formulate the optimization problems.

2.2 Architecture

Figure[d shows the high-level architecture of our system-com
prising of replication manager and other supporting modules.
The key components of the system are as follows:

Read/Write Requests

b1l

Hash Logic

Server - K

Router

/

Server - 1

Replication
Manager

Replication
Manager

CouchDB Lib

couchDB-1

CouchDB Lib

couchDB-k

Replication

Figure 1: System Architecture

2.2.1 Router

The router is responsible for routing the incoming read aritbw
requests to the appropriate sites. We assume that for allethe
quests, we are givenstart nodeid, i.e., the identifier of the node
from which the traversal should begin. For complex quergeg.(
subgraph pattern match queries), we assume that an extgrerg
processor is responsible for generating the set of staré wad-
didates, perhaps through use of an index. We do not discass th
component further in the paper.

The router useslaash partitioning-basedcheme to partition the
nodes across the sites. As we discussed earlier, this maly ires
very large edge-cuts, but is still the preferred method difgening
in practice for several reasons: (1) hash-based partitipypically
results in balanced workload across the sites and is much rer
bust toflash traffig (2) the routing process is not only highly effi-
cient, but it can be infinitely parallelized by adding moreiteys,
(3) there is no complicated logic involved in assigning n@des to
partitions, and (4) for a given node, we only need to list &gh-
bors’ ids and not their locations. A scheme that tries torojzg
the edge-cuts or other metrics requires large routing satalebe
maintained, which increase the routing cost and are hareep k
consistent if the router is replicated. Further, in dynangowvorks
like social networks, the partitioning may become suboativery
quickly.

However, we note that the algorithms and the techniquesitbat
develop in the rest of the paper are completely independethieo
choice of the partitioning logic. In future work, we plan twves-
tigate building an incremental and flexible partitioningieme to
further reduce the number of distributed traversals.

2.2.2 Storage and Replication

data is placed, whereas CouchDB is intended primarily asgesi
server product.

More importantly, CouchDB has excellent replication suppo
optimized for minimizing network bandwidth, for selectiyeepli-
cating data across multiple sites. The documents or dataltade
replicated can be specified between any pair of CouchDB grve
and CouchDB will keep the replicas up-to-date by sending tire
changes that have occurred. Further, for each databade thpti-
cated, we can specify whether the replication should betficon
ous” (i.e., push-based) or not (i.e., pull-based), andetliesisions
can be changed easily.

As above, the techniques we develop in the rest of the paper ar
largely independent of this choice, and we can replace daBch
with another key-value store. However, in that case, depgnzh
the features supported by the key-value store, we may havet®
a layer on top of the key-value store to support adaptive lpagled
or push-based replication.

2.2.3 Replication Manager

The replication manager is the most important componentiof o
system, and is in charge of making the replication decisionsin-
imize the network bandwidth and query latencies, and eaftire
fairness requirement (discussed below). The replicatianager
monitors the node read-write frequencies, which are these
stored along with the nodes in the CouchDB server. It pecaiti
reconsiders the selective replication decisions (i.eatvig repli-
cated, and whether it is active or passive) in a decentdafezghion
— each replication manager can make the decisions for thghgra
node in its partition autonomously. It implements thoseiglens
by appropriately instructing the CouchDB servers. We disdbe
specifics of the replication manager in more detail in thet sex-
tion.

2.3 Trade-offs and Requirements

We briefly discuss some of the key trade-offs and desired-prop
erties of a dynamic graph data management system. We alse defi
the fairness criterion and discuss its implications.

Network Bandwidth: It is desirable from a distributed system that
the communication overhead be minimized. As discusseiegarl
there are two factors at play here: query latencies ancceepiain-
tenance. In most of the real-time applications today, reatt op-
erations are latency-critical and failing to keep thoseanratcept-
able limits may lead to demise of such applications [22]. fisuee
low-latency query execution, we need to minimize the nundfer
cross-partition traversals, and if there is no naturalifpamning of
the data, then we must use active replication for that perpdsw-
ever, in a dynamically evolving graph, the cost of keepiregripli-
cas up-to-date may exceed the benefits of replication. Eurtbre,
both the write and read access patterns may change dyngmical
and different policies may be best at different times. Henee
must not only choose replicas carefully to ensure low-layeper-
ations, but we should also try to adapt the replication d&assin

We use the Apache CouchDB key-value store as our backendresponse to changing access patterns.

storage to store all the information related to a node. Cbécis

a schema-free document-oriented data management syskech, w
storesdocumentshat can contain any number of fields and attach-
ments. The schema-free nature of CouchDB makes it idealdor s
ing heterogeneous graph data, where different nodes maydifav
ferent attributes, and the amount of information storediabmode
may have a very wide range (we typically would wish to stose hi
torical information as well). There are several reasons hase
CouchDB over other key-value stores. Many of the other kaye/
stores (e.g., HBase) do not give us sufficient control ovesrevtthe

Balanced Load: Balanced load across the sites is another very
important metric. Balanced load ensures that no resource-is
der or over-utilized, thereby bringing down the overallteys cost
and increasing the efficiency of the system. Apart from mimim
ing network bandwidth, it is expected that the network loall w
also be balanced for maximum utilization of the system baditw
Since our data graph is hash partitioned across sites airitofas-
sume that the network load will be evenly balanced. But, ¢kien

we have to make sure that the replication algorithm doestetr
fere with the balance. Secondly, balancing system load,the

(i)

Figure 2: (i) An example graph partitioned across two patrtitions; (ii

) Maintaining local semantics [41] requires replicating 80% of

the nodes; (iii) We can guarantee fairness with- = % by replicating just two nodes

load of a site is equally important. Key resources that carhije
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteéal-
anced load, however skewed replication decisions may tekdd
imbalance.

Fairness Criterion: ldeally we would like that all queries are ex-
ecuted with very low latencies, which in our context, trates$ to
minimizing the number of pulls that are needed to gatherrinfo
mation needed to answer a query. For “fetch neighbors’ @stiat
queries, this translates into minimizing the number of hbas
that are not present locally. In a recent work, Pujol et dl] fgre-
sented a solution to this problem where they guarantee thtiea
neighbors of a node are replicated locally, and the rephcaskept
up-to-date (they called thiscal semantics This guarantees that
no pulls are required to execute the query. However, the ruimib
replicas needed to do this in a densely connected graph carype
high. Figurd® shows an instance of this where we need tacegpli
8 out of 10 nodes to guarantee local semantics for all thétipas.
The cost of maintaining such replicas is likely to overwhédhe
system. This may be okay in a highly over-provisioned sygtee
would expect Facebook to be able to do this), but in most céses
cost of additional resources required may be prohibitive.

Instead, we advocate a more conservative approach here wher
we attempt to ensure that all queries can make some progress |
cally, and the query latencies are largely uniform acrossides
of the graph. Such uniformity is especially critical whenave us-
ing read/write frequencies to make replication decisidiesause
the nodes with low read frequencies tend to have their neighb
not replicated, and queries that start at such nodes suffier igh
latencies. We encapsulate this desired property using waagll
afairness criterion Given ar < 1, we require that for all nodes in
the graph, at leastafraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” querihis
allows us to return some answers to the query while waitimg fo
the information from the neighbors that are not presentipdaor
other queries, the fairness requirement helps in makingrpss on
the queries, but the effect is harder to quantify precisahyg we
plan to analyze it further in future work. As we can see in Fégu
[(c), we need to replicate 2 nodes to guarantee a fairnes8 610
the example graph.

Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the systeninwath
small period of time. For example, events like earthquakddco

3. REPLICATION MANAGER

In this section, we describe the design of our replicationager
in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview

We define some notation that we use in the rest of the paper. Let
G(V, E) denote the data graph, [Bt= {P,--- , P,} denote the
disjoint partitions created by hash partitioning, i¥.,: P, C V
andn; P; = ¢. Each of the partitiong’; itself is divided into a
number ofclusters C1, - - -, Cix (We assume the same number of
clusters across the partitions for clarity). All replicatidecisions
are made at the granularity of a cluster, i.e., the repbcatieci-
sions for all nodes within a cluster are identical (this doeshow-
ever mean that the nodes are replicated as a group — if a nede ha
no edges to any node in another partition, we will never cepdi it
to that partition). We discuss both the rationale for thestgting,
and our approach to doing it below.

Notation Description

II={P,---,P} | Setofallpartitions

Rijk Replication table corresponding to the
clusterC;; and partitionPy,

Cij 4 cluster of P;

(Cij, Pr) a cluster-partition pair, # k

H Cost of a push message

L Cost of a pull message

w(ng,t) Write frequency ofq; at time intervalt

w(Cij,t) Cumulative write frequency af’;;;

p(ni, t) Read frequencies fot;

p(Py, Cij) Cumulative read frequency fdt, w.r.t.

Table 1: Notation

Implementing the Replication Decisions:As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can sfeei
table (calleddatabasein CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented gndb
this as follows. For every clustér;; € P;, for every other partition
P, with which it has at least one edge, we create a tablg,, and
ask it to be replicated to the CouchDB server correspondirfe. t
We then copy the relevant contents fraiyy to be replicated to that
tableR;;,. Note that, we usually do not copy the entire information
associated with a graph node, but only the information thatla

cause a deluge of tweets to be posted and consumed on Twittebe of interest in answering the query (e.g., the latest @sdaather

within seconds. In such situation, any system that doeseaggr
sive active replication (e.g., if we were maintaining losaman-
tics) could suffer significantly, as the bandwidth requiestnwill
increase suddenly. We do not optimize for flash traffic diyeict
this work. However, conservative replication and hashetasarti-
tioning helps in alleviating these problems in our system.

than the history of all updates).

If the decision for the cluster-partition pgi€’;;, Pk) is a “push”
decision, then we ask the CouchDB server to keep this tine
tinuouslyreplicated (by setting an appropriate flag). Otherwise, the
table has to be manuallgynced. We discuss the impact of this
design decision on the overall performance of the systeneiaild
in Section 5. We periodically delete old entries frdey;,, to keep
its size manageable.

We also need to maintain metadata in partitiBp recording
which clusters are pushed, and which clusters are not (&orsu
R;;1, alone is not sufficient since partial contents of a node may
exist in R;;, even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globallplieate
the information about which clusters are replicated to Wigarti-
tions. Since the number of clusters is typically small, tize sf this
metadata is not significant. Further, the replication decs are
not changed very frequently, and so keeping this infornmatip-
to-date does not impose a significant cost. Secondly, fdr eade,
we maintain the cluster membership for all its cross-partibeigh-
bors. This coupled with the cluster replication informatenables
us to deduce whether a cross-partition neighbor is actixeghyi-
cated (pushed) or not. Note that, the cluster membershipnive-
tion is largely static, and is not expected to change fretiydhwe
were to instead explicitly maintain the information aboutether
a cross-partition neighbor is replicated with each node ctist of
changing the replication decisions would be prohibitive.

How and When to Make the Replication DecisionsWe present
our algorithms for making the replication decisions in teatrsec-
tion. Here we present a brief overview.

e The key information that we use in making the replicationi-dec
sions are the read/write access patterns for differentsiodée
maintain this information with the nodes at a fine granwaly
maintaining two histograms for each node. As an example for
social network, we would wish to maintain histograms spagni
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram a
predictive model for future node access patterns. Howeverg
sophisticated predictive models could be plugged in imstéée
discuss this further in Secti¢n 8.2.

For every cluster-partition paiC;;, P;), we analyze the aggre-
gate read/write histograms 6f;; and P, to choose thewitch
points i.e., the times at which we should change the decision
for replicatingC}; to Pi,. As we discuss in the next section, this
is actually not optimal since it overestimates the numbeyudif
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), b an
also make the decisions independently for each clustéitipar
pair affording us significant more flexibility.

When the replication decision for a cluster-partition géir;, Py.)

is changed from push to pull, we need to ensure that the &srne
criterion for the nodes i is not violated. We could attempt
to do a joint optimization of all the decisions involving, to
ensure that it does not happen. However, the cost of doirg tha
would be prohibitive, and further the decisions can no lormge
made in a decentralized fashion. Instead we reactivelyesddr
this problem by heuristically adjusting some of the decisitor

Py, to guarantee fairness.

In the rest of section, we elaborate on the motivation behindi-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns

Py Py

—>

W

Total writes(24 hrs) : 24
Writes at 6-hr granularity:
{10,10,2,2}

I
I
|
I
I
I
| Total reads(24 hrs) : 23

: Reads at 6-hr granularity:

| {2,2,9,10%}

Figure 3: lllustrating benefits of fine-grained decision makng:
Making decisions at 6-hr granularity will result in a total c ost
of 8 instead of 23.

partitions, we have that over the course of the daig predicted to
be updated 24 times, and whereds predicted to be read (causing
aread onw) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push theatgxl
to w to the partition containing or not to be largely immaterial.
However, when we look at fine granularity access patterngame
see that the two nodes are active at different times of theatay
we can exploit that to significantly reduce the total commation
cost, by having pull the updates fromy during the first half of the
day, and havinguv push the updates to in the second half of the
day. In the context of human-activity centered networks kcial
networks, we expect such patterns to be ubiquitous in mecti

To fully exploit such patterns, we collect fine granularityar-
mation about the node access patterns. Specifically, fdr eade
we maintain two equi-width histograms, one that capturesuih+
date activity, and one that captures the read activity. Bbthese
histograms are maintained along with the node informatiotihé
CouchDB server. We will assume that the histogram spans @4ho
in our discussion; in general, we can either learn an apjaieppe-
riod, or set it based on the application. We use these hitagjas
a predictive model for the node activity in future.

For a noden;, we denote byv(n;,t) the predicted update fre-
quency for that node during the time interval starting dtecall
that the width of the histogram buckets is fixed and hence wi¢ om
it from the notation). We denote cumulative write frequefayall
nodes in a clustef’;; for that time interval byw(C;;,t). We sim-
ilarly define p(ns,t) to denote the read frequency foy. Finally,
we denote by(Py, Cij;,t) the cumulative read frequency fét,
with respect to the cluster;; (i.e., the number of reads iR, that
require access to a noded;).

3.3 Clustering

As we discussed above, we cluster all the nodes in a partition
multiple clusters, and make replication decisions for foster as a
unit. However, we note that this does not mean that all thesau
the cluster are replicated as a unit. For a given ngdgit does not
have a neighbor in a partitioR;, then it will never be replicated
at that partition. Clustering is a critical component of owerall
framework for several reasons.

First, since we would like to be able to switch the replicatio
decisions frequently to exploit the fine-grained read&viiequen-
cies, the cost of changing these decisions must be sufficiemt.
The major part of this cost is changing the appropriate neetad
information as discussed above. By having a small numbduef ¢
ters, we can reduce the number of required entries that oeleel t

Many approaches have been proposed in the past for makingupdated after a decision is changed. Second, clusteringhalps

replication decisions based on the node read/write frezjasrio
minimize the network communication while decreasing quary
tencies. Here we present an approach to expleitodic patterns

in the read/write accesses, often seen in applicationsdikml net-
works [4[T3], to further reduce the communication costs.il\ws-
trate this through a simple example shown in Fidiire 3. Harenfo
nodesw andv that are connected to each other but are in different

us in reducing the cost of making the replication decisidsslf,
both because the number of decisions to be made is smaltkr, an
also because the inputs to the optimization algorithm arallem
Third, clustering helps us avoaVerfitting Fourth, clustering makes
node addition/deletion easier to handle as we can changesras
sociation to cluster transparently w.r.t. other systenratiens. By
making decisions for clusters of nodes together, we aresares

(if) Cost = 4H + 7L

(iii) Cost = 2H + 7L

(iv)

Figure 4: (i) An example instance where we consider whethewtreplicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partiti on pair independently; (iii) Optimal decisions; (iv) Modeling the problem

instance as a weighted hypergraph.

averaging their frequency histograms, and that can help bstter
handling the day-to-day variations in the read/write fieggies.

To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by groupingttagehe
nodes that have similar write frequency histograms. Moezi$p
ically, we treat the write frequency histogram as a vectod ase
the standardk-meansalgorithm to the clustering. We discuss the
impact of different choices df in our experimental evaluation.

We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is

of messages that are needed. Eeidenote the cost of one push
message sent because of a node update, ariddenote the cost
of a single pull message sent from one partition to the otkiég.
allow H and L to be different from each other.

Given this, our optimization problem is to make the replimat
decisions for each cluster-partition pair for each timerwal, so
that the total communication cost is minimized and the &gecri-
terion is not violated for any node.

Itis easy to capture the read/write frequencies at very fiapg
larities (e.g., at 5-minute granularity), however it woulok be ad-

added to the system, we assign it to a random cluster first, andvisable to reconsider the replication decisions that feady. We

reconsider the decision for it after sufficient informatiuais been
collected for it.

4. MAKING REPLICATION DECISIONS

In this section, we present our algorithms for making replic
tion decisions. We assume that the clustering decisionsalare
ready made (using themeansalgorithm), and design techniques
to make the cluster-level replication decisions. We begitin \&
formal problem definition, and analyze the complexity of pheb-
lem. We then present an optimal linear-time algorithm fokimg
the replication decisions for a given cluster-partitiotir pa isola-
tion ignoring the fairness requirement (as we discuss helog/is
not an overall optimal since the decisions for the clustera sin-
gle partition are coupled and cannot be made independefg)
then present an algorithm for modifying the resulting dolutto
guarantee fairness.

4.1 Problem Definition

As before letG(V, E) denote the data grapt®y,--- , P, de-
note the hash partitioning of the graph, and (&} denote the
clusters. We assume that fine-grained read/write frequérsy
tograms are provided as input. For the bucket that startsvae
let w(ni, t),w(Cij,t) denote write frequencies fot; and Cjj;
p(ni, t) denote the read frequency for; and ,p(Px, Cij, t) de-
note the cumulative read frequency 8 with respect to the clus-
ter CLJ

Next we elaborate on our cost model. We note that the total
amount of information that needs to be transmitted acrassi¢t-
work is independent of the replication decisions made, apedds
only on the partitioning of the graph (which is itself fixed r@qgpi).

can choose when to make the replication decisions in a @sseb
fashion (by somehow quantifying the cost of making the ceion
decisions into the problem formulation). However, the tvasts
are not directly comparable. Hence, for now, we assume tkat w
have already chosen a coarser granularity at which to madseth
decisions (we evaluate the effect of this choice in our erpemtal
evaluation).

4.2 Analysis

Figure[4(i) shows an example data graph partitioned acvess t
partitions that we use to illustrate the challenges witlvisgl this
problem. We assume that the cluster size is set to 1 (i.eh, reae
is a cluster by itself). We omit the intra-partition edgesd also
the time interval annotation for clarity. We consider thesfion of
whether to replicate the clusters froR to P>, and use the write
frequencies for the nodes iR;, and the read frequencies for the
nodes inP. We call a node in?; a writer node, and a node %

a reader node.

Following prior work [43], one option is to make the replicat
decision for each pair of nodes, one writer and one readigpien-
dently. Clearly that would be significantly suboptimal, cg@rnwe
ignore that there may be multiple readers connected to time sa
writer. Instead, we can make the decision for each writeerind
P, independently from the other writer nodes, by considerilhg a
reader nodes fron¥,. In other words, we can make the decisions
for each cluster-partition pair. Figuré 4(ii) shows theutéag de-
cisions. For example, we choose to push since the total read
frequency ofr; andrs exceeds its write frequency (here we as-
sume thatd = L).

These decisions are however suboptimal. This is because it i

This is because: (1) the node updates are assumed to be appendiseless to replicate, in the above instance without replicating

only so waiting to send an update does not eliminate the need t
send it, and (2) we cache all the information that is transaifrom
one partition to the other partition. Further, even if thassump-
tions were not true, for small messages, the size of the pdylo
usually does not impact the overall cost of sending the ngessa
significantly. Hence, our goal reduces to minimizing the bem

ws andws, because of the node.. Since neither ofvs andws

is replicated, when doing a query at nadg we will have to pull
some information frond®; . We can collect the information from,

at the same time (recall that we only count the number of ngessa
in our cost model — the total amount of data transmitted aditoes
network is constant). Figulé 4(iii) shows the optimal diegis.

As it turns out, it is possible to make these decisions optyma
in polynomial time (note that we ignore the fairness cradrere).
Figure[4(iv) shows another way to model this problem, wheee w
turn the problem instance into a weighted hypergraph. Thesof
the hypergraph are the nodesf, with the write frequencies used
as weights. For each reader node, we add a hyperedge todbis gr
over the nodes that it is connected, and weight of the hygered
is the read frequency of the node. Now, say a sulssedf the
nodes inP; are replicated. Lef> denote the hyperedges that are
completely covered by, i.e., hyperedges that only contain nodes
from S;. Then, the total cost for these two partitions is:

S e+ 3 pw =C+ Y ww)— 3 pw)

vEST uégSo vEST u€ Sy

whereC' = > p(u) is a constant. In other words, we pay the cost
of one push message per node&Sinand one pull message per node
not in S.. This problem is similar to the well-studied problem of
finding the sub-hypergraph of a hypergraph with the maximam d
sity (the standard density metric Euesz p(u)/ > es, w(v)).
We can use similar max-flow based techniques to solve outgarob
(in fact the above optimization goal is simpler), however angit
the details because we do not use such an algorithm in owersyst
for several reasons. First, even though the problem canlieedso
in polynomial time[[30_12], the complexity of the algorithimstill
quite high. This coupled with the fact that the size of theuinig
large (the number of hyperedges is equal to the number ofsriiade
P,), that approach would be infeasible. We instead use a hieuris
that we discuss below that greedily makes a local decisipadoh
cluster-partition pair, significantly reducing both theun size and
hence the overall complexity.

So far we have ignored the fairness criterion. For the twe par
titions P, and P> as above, the fairness criterion requires that, for
every reader node i, at least ar fraction of its neighbors be
replicated. The problem of finding the optimal replicatioscd
sions given a fairness requirement is unfortunately NPdHBlote
that, whenr = 1, this problem does not reduce to the problem con-
sidered by Pujol et al[]41] (who prove their partitioningoblem
to be NP-Hard). This is because they are trying solve thehgrap
partitioning problem itself, to come up with a good partitiog of
the graph. In our case, the solution for= 1 is trivial — we must
replicate every node into every partition that it is coneddio (we
call this theall-pushsolution in our experimental evaluation).

Theorem 1 The problem of optimally replicating nodes to guaran-
tee fairness is NP-Hard.

PROOF We show a reduction from thget coverproblem. In
a set cover instance, we are given a collection of Sgts-- , .S,
over a universé/ = {e1,- - ,em} (i.e.,S; C U, andusS; = U),
and the goal is to find the smallest collection of sets suchetfery
element inU is contained in at least one of those sets. Given a
set cover instance, we create an instance of our problemtwith
partitions as follows.

Following the above terminology, &4 be the partition that con-
tains the writer nodes, and |& be the partition that contains the
reader nodes. For each &t we add a writer node; in P,. For
each element in the universe, we create a reader nodgin Ps.
We connectw; tor; if e; € S;. Letr be the fairness threshold. We
connect each of; to sufficient nodes inP, such that we are ex-
actly one neighbor short of achieving fairnessfer For instance,
if 7 = 0.5 and ifr; is connected to 5 nodes iR, then we con-
nectr; to 4 nodes inP, (adding dummy nodes if needed). In other
words, for every node;, we need to replicate exactly one of its
neighbors fromP; to guarantee fairness.

Finally, we set the read frequencies for the nodeBitto be very
low, and write frequencies for the nodesfnto be sufficiently high
so that by default none of the nodesin will be replicated toPs.
Given this setup, it is easy to see that choosing the minimum
number of nodes fron®; to push to guarantee fairness for all nodes
in P, is identical to the set cover problem[]

4.3 Proposed Algorithm

In this section, we present our overall algorithm for malkamgl
changing replication decisions. The algorithm is decdingd by
nature, and does not require global coordination (howegplica-
tion managers do need to communicate statistics and thieaepl
tion decisions to other replication managers). The algorioper-
ates in two phases. In the first phase, at each partifjoand for
each clustelC;; in it, we decide whether to replicate the cluster
C;; at each of the other partitions, based purely on the reata/wri
frequency histograms, and ignoring the fairness criterieor ef-
ficiency, we do not make global decisions even within a sitel, a
instead we make independent decisions for each clustétiquar
pair (Csj, Pr),7 # k. Given the cumulative read/write frequency
histograms for the cluster and the partition, we presenheal-
time optimal algorithm to decide the switch points, i.ee thoints
at which the replication decisions should be switched.

In the second phase, run at each partition independentlgnwe
force fairness criterion for all the nodes at that partitignswitch-
ing some replication decisions for clusters at other partit from
push to pull. As discussed above, this problem is NP-Harem g
eral, and we use a greedy heuristic based on the standardygree
heuristic for solving the set cover problem.

4.3.1 Optimal Decisions for a Cluster-Partition Pair

Next we present an optimal linear-time algorithm for makileg
cisions of when to switch replication decisions for a givarster-
partition pair(Ci;, Pk),i # k. Letw(Cj;, t) denote the write fre-
quencies foiC;; andp(Py, Ci;,t) denote the read frequencies for
P, w.rt. C;;. We assume that we are given a constraint on the
maximum number of times we are allowed to switch the replica-
tion decision,C' (without any such constraint, we would make a
different replication decision for each time interval). \&&n in-
stead assign a cost to making a replication decision, arichizet
for the lower total cost — the algorithm below can be easilypaeld
to that effect.

Let there ben buckets in the frequency histogram. For each
bucket (i.e., each time interval), we compute the benefiepfir
cating C;; over doing a pull fromP,. For time intervalt, this is
computed as:

by = p(Pk,Cij,t) X L —w(Cij,t) x H

Thus we have: numbers, denoteth, - - - , b, that represent the
benefit of a push over a pull for the corresponding interviliste
that some of these numbers may be negative — if all of the ntsnbe
are positive, then we would always pusSky to P.

We first compress this sequence of humbers by coalescing the
entries with the same sign together. In other words, if westeav
contiguous sequence of positive numbers, we will replaedgth
a single number that is the sum of those numbers. Similary, w
would coalesce any sequences of negative numbers. Thaatatio
behind this is that, we would never want to switch replicatieci-
sions in the middle of such a sequence.

Letsy, -, sm denote the resulting sequence of alternating pos-
itive and negative numbers. Lept(C’, push, i) denote the opti-
mal cost for the subproblesy, - - - | s,,, Using at mostC”’ switches
and assuming that the decision for the time period corredipgn

to s; is a PUSH. We similarly definept(C’, pull, 7). Then we can
see that:

opt(C’', push,i) = s; + maz{ opt(C’, push,i+ 1),
opt(C" — 1,pull,i+ 1)}

In essence, we check both possibilitiesdpr;, PUSH or PULL,
and choose the best of the two. Similarly,

opt(C’,pull,i) = —s; + mazx{ opt(C’, pull,i+ 1),
opt(C’ — 1, push,i+ 1)}

Here we have to uses; sinces; is benefit of doing push and
we are doing a pull in the time period correspondingsto The
base case of the recursion is whén= 0 at which point we sim-
ply return the sum of the remaining items, possibly negaféte
computational complexity of the algorithm can be see@taC).

4.3.2 Guaranteeing Fairness

Finally, we discuss how we ensure that the fairness reqeiném
is satisfied for all nodes. The replication manager at eacti pa
tion runs this algorithm independently of the other panti§, and
may change some of the replication decisions for clusteoshatr
partitions with respect to that partition.

Since the problem is NP-Hard, we develop a heuristic based on

the standard greedy heuristic for set cover. For a partifipnlet

T'x denote the nodes for which fairness guarantee is not sditisfie
Let C;; be a cluster at another partitidd) which isnot replicated

at Py, i.e., the decision fo(C;;, Pi) is a pull. Then lebene fit; ;i
denote the total benefit of changing the decision for thastelu
partition pair. This is computed as:

benefitiji = Z [nei(v) N Cij| — remaining(v)
vel'y

wherenei(v) denote the set of neighbors efandremaining(v)
denote the number of neighbors after replicating which #ie f
ness criterion would be satisfied for Further, letcost;;, be the
cost of switching the decision far’;; from a pull to a push. We
greedily choose the cluster to be replicated that has thieebtg
bene fit;;i [cost;;r ratio, and continue until the fairness criterion
is met for all nodes.

5. EVALUATION

In this section, we present a comprehensive experimenaél-ev
ation using our prototype system. Lacking real datasets suiffi-
cient detail, we constructed a social network graph basedomm-
monly used social network model, and also constructed & wac
user activity on a social network by gathering user actidiya on
Twitter and extrapolating. We focus on the “fetch updatesifall
my neighbors” queries which are the most common class ofepier
in such networks. As discussed in Section 2, our system [sdiui

top of CouchDB, and we used Amazon EC2 to run our experiments.

Our key findings can be summarized as follows:

e Our hybrid replication approach results in significant sgei
in the network communication cost over the baseline apjemc

e The granularity at which we make push/pull decisions plays
an important role in determining how much savings we can
obtain.

e The hash-based partitioning scheme results in balanced net

work and CPU load in our system.

5.1 Dataset

We constructed our data set to match the workload of a social
network. We have usedmeferential attachmeninodel to gener-
ate the data graph which has been shown to model a social etwo
very well [8,[3,[232]. The network is generated by adding one
node at a time, and the new nodes are preferentially corthéate
the existing nodes with higher degrees (i.e., the prokigmficon-
necting to an existing node depends on the degree of thaf.node
Most of our experiments were run on a social network corntgini
1.8 million nodes, and approximately 18 million edges (gates
with the preferential attachment factor of 10).

The second key component of our simulated dataset is the user
activity patterns. We chose 100 Twitter users with sufficiem-

This trace only gives us the write frequencies of the nodesulr
experiment, we have assumed that the read frequency of a node
is linearly related to its write frequency. In reality thisdar fac-

tor might be different for different users; however, we assua
constant read to write ratio for all nodes. From the acces=s,

we created write frequency histograms and linearly scéleset to

get the read frequency histograms. Once we had the pool -of his
tograms, we assigned them to the nodes in the network. Metlva
by recent work on modeling user activity on Twitter [15], weed

the following assignment process. We assigned histograrttset
graph nodes one at a time. When considering which histogoam t
assign to a node, we check the histograms already assigrted to
other nodes in the same partition, and find the histogramhiasit
been assigned to the largest number of nodes in that partiie
assign the same histogram to the node under consideratibn wi
50% probability, otherwise we choose any one of the remginin
histograms with equal probability.

However, we do not use these assigned histograms directty. F
each user, we instead randomized the assigned histograamby-g
ating a trace by treating the histogram as a probabilityidistion,
and then building a histogram on the generated trace. Thisres
sufficient diversity in the user histograms across the ne¢wo

5.2 Experimental Setup

We ran our experiments on Amazon EC2 infrastructure using
7 EC2 instances (1 instance is equivalent to a 1.0-1.2 GHZ 200
Opteron or 2007 Xeon processor, 1 core, and 1.7G of memory).
We used 1 instance to play back the write and read tracest(i.e.
send updates and queries to the system), and rest of thadasta
to host the graph. Each server had a CouchDB server and a copy
of replication manager running. As we noted earlier, oumnoet
has 1.8 million nodes, which translated into about 300,00des
per partition. We used a trace containing a total of apprexeéhy
25 million events (reads and writes), corresponding to glsiday.
The default write to read ratio in the query workload was set t
0.2 (i.e., there are 5 read queries for every update). Fdr efathe
experiments, we ran the trace against the system (aftatisgj¢he
appropriate replication approach), and computed the hetatork
messages. For most of our plots, we plot &werage number of
network messages per site

We compared three approaches: glljpull, where we do not do
any replication, (2pll-push where the nodes are replicated suffi-
cient to guarantee no pulls would be needed (i.e., local s80s3,
and (3)hybrid, our hybrid approach. Unless otherwise specified,
the number of clusters at each partition was set to 6.

e Our faimess guarantee reduces the average number of pullsD.3 Evaluation Metric

required to answer read queries.
We begin with describing the dataset, and the experimeetaps

Our main evaluation metric is the amount of network communi-
cation in terms of messagés [46] exchanged across all therser

2 Network activity across partitions
5 300000 T | — T T T T
& N s ‘ SEEEEN
% 700000 <K ; : L _
o ‘o . .
<
2 600000 -
£
2 500000 -
o
2 400000 -
Q
s
5 300000 -
g
S 200000 -
E
=
Z 100000 [.
Q
1) b
E :
g 1/2hr 1Thr 2hr 4hr 6hr 8hr 12hr
<
All Pull (xX7X7% Hybrid s All Push einres

Figure 5: Making fine-grained decisions can result in almost
33% savings over coarse-grained decisions

as logged by our replication middleware. As we discusselicear
once a data item is replicated to a partition, it is cachedwhdot

be transferred again. Because of this, the amount of dataféna
across the servers is independent of the replication desidhat
are made (we can easily modify the cost functions in our élyois

to account for this if desired). Hence for most of the resulesre-
port the total number of push and pull messages (i.e., warassu
H=L=1).

For apushdecision, we use continuous replication of CouchDB
and there is a message involved every time the correspogdapip
node is updated. However, the way we count the numbgutf
messages is slightly different, and reflects the constamposed
by CouchDB and our setup. In fact, this results in a significan

underestimation in the number of pull messages as some of our

experiments also illustrate.

The way apull works in our system is that, the replication man-
ager asks CouchDB tsyncthe appropriate replication table (see
Section 3.1). However since the replication tables comedpo
clusters, all updates to that cluster are pulled from thestehs
home partition. To amortize the cost of this, we enforce amim
gap between two pulls corresponding to the same clusteribg us
atimeout In other words, if a cluster has been recently pulled, we
do not pull it again until the timeout expires. In our expegimtal
evaluation, the timeout is set to 800ms, so the data can bestt m
800ms stale (which is reasonable in a social network apjmita
We further discuss the rationale in Secfion 5.4.7.

5.4 Results

5.4.1 Impact of Histogram Granularity

We start with a set of experiments to verify our hypothes#t th
by making decisions in a fine-grained manner can result imifsig
cant savings. Figulld 5 shows the results for this experintéete
we varied the histogram granularity from 1/2 hour to 12 hparsl
counted the total number of messages that were neededallfhe
pull andall-pushapproaches are unaffected by this, however, we
can see that by making decisions at the finest granulagtygvery
1/2 hour, resulted in almost 33% savings over coarse-giaiee
cisions. This validates our hypothesis that we can exphaituser
activity patterns to reduce the network communicationsost

We also note that overall our default workload is read-heansl
hence all-push solution is usually better than all-pulusoh (al-
though it results in higher memory consumption). As we move
toward coarse-grained histograms, we observed that masteof
replication decisions became push. But our algorithm ie &bkx-

Network activity and load across partitions

7 N

700000

600000

500000

400000 |~

300000 [~

200000

100000

i

Serverl

Server2 Server3 Server4 Server5 Server6

0

Average Number of network messages (per site)

All Pull (XTXT% All Push onces

Figure 6: Hash partitioning results in almost uniform load
across the partitions

ploit the diversity in the access patterns when making imtssat
finer granularities to achieve significant savings.

5.4.2 Bandwidth Consumption and Network Load

Figure[® shows the total network communication across tivesse
For each server, we aggregated the network communicatiutt+e
ing from writes happening to the corresponding partitiard ¢he
reads directed to the partition. As we can see, all the appesa
resulted in fairly balanced load across the partitionshigbrid
achieving almost 20% savings owvai-pushin all cases. This can
be attributed to the hash partitioning scheme that we usé&hwh
guarantees that the overall read and write distributiomgsacthe
partitions are largely uniform.

5.4.3 Varying the Number of Clusters

Next we study the effect ok, the number of clusters in each
partition. We varied the number of clusters from 4 to 9, and we
show the results in Figufd 7. Along with the network commanic
tion costs (plotted on thkeft y-axis), we also plot the size of the
cluster mapping table, the metadata that is needed to detidé
of a node’s neighbors are replicated (on thght y-axis). As we
can see, as the number of clusters increases the size oltercl
mapping table increases as expected. What is somewhatecount
intuitive is that the total communication cost also incesalseyond
6. We expect that with large numbers of clusters, we can make
more fine-grained decisions which should aid in reducing ke
network communication cost.

The reason for this is somewhat subtle, and has to do with the
way pulls are handled in our system. Recall that a single pull ac-
tually syncs an entire cluster, i.e., it propagates all tggléor a
single cluster from the home partition to the partition nmakthe
pull. Thus increasing the cluster sizes results in an deeréathe
number of pulls that are required. We expect that if we werasto
ing the number of pulls explicitly, that would result in theHavior
as expected (however, in a read-heavy workload, that wouotdyi
that the all-push solution would always be better by a margin

5.4.4 Varying Write-Read Ratio

We examine how the replication techniques perform for work-
loads that have different mixes of reads and writes. We simpl
varied the read/write ratio of the workload and calculates av-
erage cost in terms of total number of communications, ieclir
by the three approaches. For hybrid, we also plot the cosewh
the fairness threshold is set to 0.5. Figurg]9 shows the results of

Network activity across partitions

4 5 6 7 8 9

Avg All Push 237300
Hybrid --+-

> ~
B les06 T T T T T 7 ¥ g
&)
g 800000 . 5
3 425 &
E 2
. 600000 = 20 é
o <
g =
3 - 15

g 400000 = 5
kS 2
— -1 10 =
Q <
—g 200000 + — @)
S 3 f_:ﬁ
o

& 0o ®
— (o}
£ S
Z %)

Avg All Pull =XxXx

Figure 7: Varying the number of clusters

Impact of fairness-factor on the average

@ number of messages

‘% 660000 T T T T

T Ee Ammmmmme —mmmmemmen s SEEEE TR |
& 640000 KT

s All Push -+~

8y 620000 [~ Hybrid --3-- 7 .
b Hybrid Fair --%-- X

% 600000 et

g e

= 580000 3

o]

=] /

2 560000 y

2

g /

£ 540000 5

=} /

T 520000 e

o /

g 500000 .

= /

L T e *

s k-===oTIIio o [V —— M mmmmmmm e Sy —— S mmmmmm e
S 460000 L L L L

Z 0 0.2 0.4 0.6 0.8 1

Fairness ratio

Figure 8: Impact of fairness factor on network communication

Impact of write/read ratio on network activity
900000 ; ; ;

800000
700000
600000
500000
400000
300000
AllPull ==+~
Hybrid ---- o

All Push --%--
Hybrid O.SIfairness --E--

200000

Il Il
0.1 0.15 0.2 0.25

Write:Read ratio
Figure 9: Increasing the write:read ratio results in favoring
pulls over pushes

Average number of network messages (per site)

100000
0.05

Impact of fairness-factor on latency

25 T T T T
e Hmmmmmmmmmm Kmmmmmmmmm K= K= m
—_
E 20 [RS
E Hybrid ----
> AllPull --3%-
2 Hybrid Fair --E--
8 15 | -
=]
—
5 kmmmmm) 3 mmmmmm Hmmmmm e === Xmmmmmmmmmm
]
S
T
£ B~
< Tl
S it = T a
4 B
Z st i = i
————————————————— BT B s S EGaa
0 I I I I
0 0.2 0.4 0.6 0.8 1

Fairness factor
Figure 10: Impact of the fairness factor on read query latenges

proach is somewhere in-between, with somewhat higherdaen

this experiment. We kept the number of reads more or less con- than theall-pushapproach but with, as we saw earlier, significantly
stant, and varied the number of writes. As we can see, our ap- lower network activity. As expected, when the fairnessdads

proach did consistently better than the other two. Sincatimeber
of reads were almost constant, the performance oathpull ap-
proach does not change significantly. However, the costfief t
other three approaches increase almost linearly, with bykgd
showing the best performance. In fact, with low write/reatia,
the hybrid approach is almost equivalentaib-push but as the
write frequency increases, pull decisions are favored, reyimtid
starts performing much better thafi-push With fairness thresh-
old set t00.5, thehybrid approach does worse than the bawsibrid
approach, because in order to guarantee fairness, it isddocdo
more active replication than optimal.

5.4.5 Varying the Fairness Threshold

Next we investigate the impact of fairness threshold (®acti
[2:3). We vary the threshold from 0 (in which case, the apprasc
the basic hybrid approach) to 1 (equivalenatiepush). In general,
increasing fairness threshold will result in more pushsieais than
is optimal. FiguréB illustrates this point where we plot dverage
network communication cost as before. As we can see, inagas
the fairness threshold results in a move toward all-pushtisol.
We do not plot the cost dll-pull in this case for clarity.

Figure[5.4b shows the latencies of read queries for thereifit
approaches. As we expect, the latency is lowest foralhpush
solution, with an absolute value of abd@ms The cost for theall-
pull approach is relatively quite high, almd2ms The hybrid ap-

varied, the average latency drops react2nggwith 7 = 1.

This set of experiments not only validates our assertionféia
ness threshold is an important novel consideration forlpidl-
namic graph databases, but also shows the efficiency of steray
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density

We also investigated how our system performs as we incrbase t
density of the graph. We changed the preferential attachfaen
tor (PA) in the graph generator to create graph with same sumb
of nodes but with different densities. Here by density we mibe
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance ofraiffe
replication strategies. This results in varying the averdegree of
the graph from about 5 to about 20.

Figure[11 shows that our hybrid replication techniquesiooes
to perform better thaall-pull andall-pushapproaches. One point
to note here is, as we increase the density of the graph the per
formance of our hybrid techniques degrades, and moves dswar
all-push The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequencyasese
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preferendecali
pushapproach. We note that the cost of #iepull approach in-
creases as expected with the increase in the graph density.

Network activity vs Preferential attachment factor
T T T T

700000

600000

500000

400000

300000

200000

100000

I DEeH

PA 20
All Push oinces

PAS PA 10 PA 15

All Pull (xX7X73%

Average Number of network messages(per site)

Figure 11: Increasing the density of the graph increases the
number of reads, and decreases the opportunities to explaihe
read/write skew

Impact of write/read ratio on network activity
16+08 ——rrrr ———rr ———rg
E Al Pull ==+~ ' i

All Push --%--
Hybrid ----]
Hybrid 0.5 fairness --E-- ¥

1e+07

1e+06

100000 M| s PR | s PR |

Average number of network messages (log scale)

Write:Read ratio (log scale)

Figure 12: Comparing the techniques without push/pull time
out (note that both axes are in log-scale)

5.4.7 Effect of the Pull Timeout

Finally we discuss théimeout used forpull in our system. We
note that we don’t have such a timeout fatsh. It might seem
to be an unfair comparison, but given the read-heavy wodklba
is a natural system design decision. Intuitively theweout cap-
tures the difference in cost betweempash and apull (we could
have also captured this by using appropriate valuegffi@nd L).
However we also performed a set of experiments withinoeout
for pull to further evaluate the uneven usetofmeout for push
andpull. Figure[I2 shows how different schemes perform with no
timeout parameter for eithesush or pull and with the read:write
ratio varying from 20:1 to 1:10. We can see thatsh is favored
when the workload is read-heavy, and as the number of writes i
creasespull is preferred. Our proposed hybrid approach performs
better than the best of those two, with the maximum benefit ob-
served when the workload is balanced in terms of reads ardswri
— the maximum benefit we see is almost 25% (note that both the
axes are in log-scale).

6. PREVIOUS WORK

There is an increasing interest in large-scale, distribagt@ph
data management, with several new commercial and opereour
systems being developed for that purpose. Some of the key sys
tems include Neo4/[37], HyperGraphDB[31], InfiniteGra2],

FlockDB [45], GraphBase[[10], Trinity [36], Pegaslis|[28hda
Pregell[35]. Neo4j is disk-based transactional graph dalwhich
can handle very large graphs, but does not do horizontatipart
ing. HypergraphDB, Trinity, InfiniteGraph all support hooital
partitioning and parallel query processing, with the fortme sup-
porting richer hypergraph data model. Our techniques caapbe
plied for minimizing the network communication and for rethg
query latencies in these systems. On the other hand, Pegadus
Pregel are both batch-processing systems based on the BlagRe
framework, and are not aimed at online query processing or dy
namic graphs.

There is much work on monitoring read/write frequencies and
making replication decisions based on them. For instancéfsdn
et al. propose thadaptive data replicatiompproach[[46], where
they adapt the replica placement based on the read/writerpst
Their algorithm is primarily designed for a tree commurimat
network, but can also handle general graph topologies. eTiser
much subsequent work on this topic (see Kadambi ef’al. [27] fo
a recent work on using a similar approach for geographiadifly
tributed data management system). However, the probleats th
we encounter in dynamic graph data management are sigtifican
different and require us to develop new approaches. Theapyim
reason for this is that the data items are not read indivigubaiit
are always accessed together in some structured manneexand
ploiting that structure is essential in achieving good gerance.

Similar decisions about pushing vs pulling also arise inteon
distribution networks (CDNSs), or publish-subscribe syste Each
node in the graph can be seen as both a producer of information
and a consumer of information, and we can use techniquethike
one proposed by Silberstein et al.][43] for deciding whethg@ush
or pull. However, that work has primarily considered a ditwra
where the producers and consumers are distinct from eaei, oth
and usually far apart in the communication network. Thepeci
rocal relationships observed in graph data change the atiion
problems quite significantly. Secondly, that work has taficfo-
cused purely on the information delivery problem, and thehte
niques cannot be directly used for executing other typesiefigs.

7. CONCLUSIONS

In this paper, we presented the design of a distributed syste
to manage and query large graphs efficiently. Despite thease
ing need for graph data management in a variety of applicgtio
there has been a surprising lack of research on generalg®jrpo-
line graph data management systems. To alleviate the peafare
concerns stemming from the partitioning of a graph acrossgel
number of machines, we proposed a hybrid replication méstran
that monitors the node read/write frequencies to make fiagrgd
decisions about when to use active replication vs passplecae
tion. We proposed a clustering technique to reduce the eaerbf
maintaining the replication decisions, and introducedniinel no-
tion of a fairness guarantee that enables us to trade iredtezsn-
munication for lower latencies. Our prototype system caromndy
handle large graphs efficiently, but can answer queries vtk
low latencies. Our experimental results validate the &ffeness
of our approach. We are continuing to extend our work in many
different directions. In this paper, we focused on a simpfeet
of graph query that requires accessing all the neighborsnotia,
and we are working on generalizing this to support otherdygfe
queries efficiently by maintaining statistics about whiddes are
accessed together. We are also working on designing gragih pa
tioning algorithms that can efficiently handle the highlyneynic
and evolving nature of many real-world networks, especiapid
changes to the graph structure itself.

Acknowledgments: This work was supported by Air Force Re-
search Lab (AFRL) under contract FA8750-10-C-0191, by NSF
under grant 11S-0916736, and an Amazon AWS in Education Re-
search grant.

[22] High Scalibility Blog. Friendster lost lead becauseaof
failure to scaleht t p: // hi ghscal abi i ty. com bl og/
2007/ 11/13/fri endster-1ost -1 ead- because- of - a-
failure-to-scale.htn,2007.

[23] J. Huang, D. Abadi, and K. Ren. Scalable SPARQL querying

8. REFERENCES

[1] B. Amann and M. Scholl. Gram: a graph data model and
query languages. IACM Hypertext1992.

[2] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E.
Stanley. Classes of small-world networksoceedings of
The National Academy of Scienc2600.

[3] A. Barabasi and R. Albert. Emergence of scaling in random
networks.Science1999.

[4] F. Benevenuto, T. Rodrigues, M. Cha, and V. A. F. Aimeida.
Characterizing user behavior in online social networks. In
Internet Measurement Conferen@909.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and

of large RDF graphs. INLDB, 2011.

[24] InfiniteGraphhtt p: // wwv. i nfi ni tegraph. con’, 2011.

[25] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently
answering reachability queries on very large directedhygap
In SIGMOD, 2008.

[26] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases/LLIDB, 2005.

[27] S. Kadambi, J. Chen, B. Cooper, D. Lomax,
R. Ramakrishnan, A. Silberstein, E. Tam, and H. G. Molina.
Where in the world is my data? MLDB, 2011.

[28] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system.I@DM, 2009.

S. Sudarshan. Keyword searching and browsing in databases [29] G. Karypis and V. Kumar. A fast and high quality multiedv

using banks. INCDE, 2002.

[6] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks.Journal of Statistical Mechanics-theory and
Experiment2008.

[7] M. Brocheler, A. Pugliese, and V. S. Subrahmanian. COSI:
Cloud oriented subgraph identification in massive social
networks. INASONAM 2010.

[8] A. Capocci, V. D. P. Servedio, F. Colaiori, L. S. Buriol,

D. Donato, S. Leonardi, and G. Caldarelli. Preferential
attachment in the growth of social networks: The internet
encyclopedia wikipedigPhys. Rev. E2006.

[9] U. V. Catalyurek and C. Aykanat. Patoh: Partitioning|tfmy
hypergraphsBilkent University, Tech. Reft999.

[10] FactNexus Pty Ltd. Graphbade.t p: // ww. gr aphbase.
net/, 2011.

[11] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph
pattern matching: from intractable to polynomial time. In
VLDB, 2010.

[12] G.F. Georgakopoulos and K. Politopoulos. Max-density
revisited: a generalization and a more efficient algorithm.
The Computer JournaR007.

[13] S. A. Golder, D. M. Wilkinson, and B. A. Huberman.
Rhythms of social interaction: messaging within a massive
online network CoRR abs/cs/0611137, 2006.

[14] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword
proximity search in complex data graphs.StGMOD, 2008.

[15] R. Gonzalez, R. C. Rumin, A. Cuevas, and C. Guerrero.
Where are my followers? understanding the locality effect i
twitter. CoORR abs/1105.3682, 2011.

[16] R. Guting. GraphDB: Modeling and querying graphs in
databases. INLDB, 1994.

[17] M. Gyssens, J. Paredaens, and D. van Gucht. A
graph-oriented object database modeP@DS 1990.

[18] J. Hamilton. Scaling linkedirht t p: / / per specti ves.

mvdi rona. com 2008/ 06/ 08/ Scal i ngLi nkedl n. aspx,
2008.

[19] H. He and A. K. Singh. Graphs-at-a-time: query language
and access methods for graph databaseSIGMOD, 2008.

[20] B. Hendrickson and R. Leland. An improved spectral grap
partitioning algorithm for mapping parallel computations
SIAM Journal on Scientific Computing995.

[21] High Scalability Blog. Why are facebook, digg, and tit
so hard to scaleRt t p: // hi ghscal abi li ty. con bl og/
2009/ 10/ 13/ why- ar e- f acebook- di gg- and-twi tter-
so- hard-to-scal e. ht i, 2009.

scheme for partitioning irregular graphs.$hAM, 1999.

[30] S. Khuller and B. Saha. On finding dense subgraphs. In
ICALP, 2009.

[31] Kobrix Software. A general purpose distributed dataest
2011/http: // www. kobri x. comf hgdb. j sp.

[32] R. Kumar, J. Novak, and A. Tomkins. Structure and
evolution of online social networks. KDD, 2006.

[33] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in largeiabc
and information networks. I/WW 2008.

[34] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural clusteesiz
and the absence of large well-defined clustéosirnal of
Internet Mathematigs2009.

[35] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing.RODC, 2009.

[36] Microsoft Research. Trinitsht t p: // r esear ch.
m crosoft.conlen-us/projects/trinity/},2011.

[37] Neo4j. Neo4j open source nosql graph databiasep: //
neo4j . org/, 2011.

[38] M. Newman. Why social networks are different from other
types of networksPhysical Review F2003.

[39] M. Newman. Modularity and community structure in
networks. InProc. of The Natl. Academy of Scienc2806.

[40] J. M. Pujol, V. Erramilli, and P. Rodriguez. Divide and
conquer: Partitioning online social networksoRR
abs/0905.4918, 2009.

[41] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laotis
P. Chhabra, and P. Rodriguez. The little engine(s) thaiocoul
scaling online social networks. BIGCOMM 2010.

[42] L. Sheng and Z. Ozsoyoglu. A graph query language and its
query processing. IICDE, 1999.

[43] A. Silberstein, J. Terrace, B. F. Cooper, and
R. Ramakrishnan. Feeding Frenzy: Selectively materiajizi
users’ event feeds. IBIGMOD, 2010.

[44] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k
exploration of query candidates for efficient keyword sharc
on graph-shaped (RDF) data.I@DE, 2009.

[45] FlockDB.https://github.conmtw tter/flockdb.

[46] O.Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. ITODS 1997.

[47] O. Wolfson and A. Milo. The multicast policy and its
relationship to replicated data placementTiBDS 1991.

[48] H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: Scalable
reachability index for large graphs. \ALDB, 2010.

http://www.graphbase.net/
http://www.graphbase.net/
http://perspectives.mvdirona.com/2008/06/08/ScalingLinkedIn.aspx
http://perspectives.mvdirona.com/2008/06/08/ScalingLinkedIn.aspx
http://highscalability.com/blog/2009/10/13/why-are-facebook-digg-and-twitter-so-hard-to-scale.html
http://highscalability.com/blog/2009/10/13/why-are-facebook-digg-and-twitter-so-hard-to-scale.html
http://highscalability.com/blog/2009/10/13/why-are-facebook-digg-and-twitter-so-hard-to-scale.html
http://highscalability.com/blog/ 2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/ 2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/ 2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://www.infinitegraph.com/
http://www.kobrix.com/hgdb.jsp
http://research.microsoft.com/en-us/projects/trinity/
http://research.microsoft.com/en-us/projects/trinity/
http://neo4j.org/
http://neo4j.org/
https://github.com/twitter/flockdb

	Introduction
	System Overview
	Data and Query Model
	Architecture
	Router
	Storage and Replication
	Replication Manager

	Trade-offs and Requirements

	Replication Manager
	Overview
	Monitoring Access Patterns
	Clustering

	Making Replication Decisions
	Problem Definition
	Analysis
	Proposed Algorithm
	Optimal Decisions for a Cluster-Partition Pair
	Guaranteeing Fairness

	Evaluation
	Dataset
	Experimental Setup
	Evaluation Metric
	Results
	Impact of Histogram Granularity
	Bandwidth Consumption and Network Load
	Varying the Number of Clusters
	Varying Write-Read Ratio
	Varying the Fairness Threshold
	Varying the Graph Density
	Effect of the Pull Timeout

	Previous Work
	Conclusions
	References

