
Sensitivity Analysis and Explanations for Robust Query
Evaluation in Probabilistic Databases

Bhargav Kanagal
bhargav@cs.umd.edu

Jian Li
lijian@cs.umd.edu

Amol Deshpande
amol@cs.umd.edu

Dept. of Computer Science, University of Maryland, College Park MD 20742

ABSTRACT
Probabilistic database systems have successfully established them-
selves as a tool for managing uncertain data. However, much of the
research in this area has focused on efficient query evaluation and
has largely ignored two key issues that commonly arise in uncer-
tain data management: First, how to provide explanations for query
results, e.g., “Why is this tuple in my result?” or “Why does this
output tuple have such high probability?”. Second, the problem of
determining the sensitive input tuples for the given query, e.g., users
are interested to know the input tuples that can substantially alter
the output, when their probabilities are modified (since they may
be unsure about the input probability values). Existing systems pro-
vide the lineage/provenance of each of the output tuples in addition
to the output probabilities, which is a boolean formula indicating
the dependence of the output tuple on the input tuples. However,
lineage does not immediately provide a quantitative relationship
and it is not informative when we have multiple output tuples. In
this paper, we propose a unified framework that can handle both
the issues mentioned above to facilitate robust query processing.
We formally define the notions of influence and explanations and
provide algorithms to determine the top-` influential set of variables
and the top-` set of explanations for a variety of queries, including
conjunctive queries, probabilistic threshold queries, top-k queries
and aggregation queries. Further, our framework naturally enables
highly efficient incremental evaluation when input probabilities are
modified (e.g., if uncertainty is resolved). Our preliminary exper-
imental results demonstrate the benefits of our framework for per-
forming robust query processing over probabilistic databases.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; H.2.m
[Database Management]: Miscellaneous; G.3 [Mathematics of
Computing]: Probability and Statistics

General Terms
Algorithms, Design, Management, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Keywords
Boolean algebra, Lineage, Probabilistic Databases, Query process-
ing, Sensitivity Analysis

1. INTRODUCTION
Probabilistic databases have established themselves as a success-

ful tool for managing uncertain data and for performing query pro-
cessing over such data. Models for expressing tuple uncertainty,
attribute uncertainty and complex correlations have been proposed
in the literature, and a large number of systems [1, 10, 31, 6, 32,
21, 24] have been developed for performing efficient query pro-
cessing. In each of the different probabilistic database systems, the
users specify probability distribution functions for the uncertain en-
tities in the probabilistic database. For instance, in Mystiq [10, 30],
the user specifies the probability distribution for the tuple-existence
using the parameter p, i.e., tuple belongs to the table with proba-
bility p and is absent with probability 1 − p. In PrDB [32, 24],
the user specifies the joint probability distribution for a set of cor-
related tuples in the database. Given a query as input, the proba-
bilistic database system uses these pdfs to determine the resulting
output tuples and their associated probabilities.

Although efficient algorithms have been developed for query pro-
cessing in prior work, they do not lend themselves to robust query
processing. We illustrate this with a motivating application of In-
formation extraction and integration [23, 18, 7, 15, 12, 13]. Con-
sider an application which extracts structured entities from unstruc-
tured text on the Internet and populates a relational database. These
systems utilize entity recognition (e.g., identifying people, loca-
tions, companies), relationship detection (e.g., affiliations), sen-
timent analysis (e.g., from reviews), entity resolution (e.g., “Y!
Labs” and “Yahoo! Labs” refer to the same entity), and other com-
plex machine learning algorithms. These algorithms rely on prob-
abilistic models such as Bayesian networks, CRFs and similarity
logics to assign probabilities to the extracted tuples. Bayesian in-
ference is #P-hard, therefore the probabilities computed are usually
approximate (with no guarantees on bounds [9]), and further, simi-
larity metrics are usually ad-hoc. Hence, the probabilities assigned
to the tuples are often noisy, imprecise, and erroneous. An example
of such a probabilistic database is shown in Figure 1(a,b,c). Given
such a probabilistic database, a user may be interested to pose a
query such asQ : “List reputed car sellers in the San Jose area who
offer Hondas”. Existing systems provide answers as shown in Fig-
ure 1(d) (Q’s result shown). This output relation, however, is not
very informative for the user since it does not provide any intuition
about two important issues.

1. First, existing systems do not provide explanations for the query
results – e.g., “Why is tuple t in the output result?” or “Why

does output tuple t1 have such a high probability, as compared
to tuple t2?”. As noted by Re et al. [30], even in a biological
domain, where scientific decisions are made based on several
uncertain hypotheses, it is critical to know the input hypotheses
that contribute significantly to the output decision. Hence, it
is essential to provide this information in addition to the actual
results, to the users of the system.

2. Second, current systems do not provide the sensitive input tu-
ples for a query, i.e., the set of tuples that can potentially modify
the result probabilities the most. This information is critical in
most application domains that need to handle uncertain data, be-
cause of the inexact nature of the probability values. Hence,
they would be interested to know the input tuples that are likely
to change the output probabilities significantly, when their prob-
abilities are modified. In other words, we need to find the set of
input tuples which highly influence the output probability values.
Providing this information helps the user to focus his/her effort
in procuring more accurate probabilities for this particular set
of input tuples.

Finally, since input tuple probabilities may be modified several
times, the system also needs to solve the ensuing problem of sup-
porting incremental updates to the query results by exploiting pre-
viously executed computation. For example, the users may choose
to resolve uncertainty using data cleaning techniques based on Cheng
et al. [5] or by using techniques based on value of information [26].
Or the users may procure more accurate values for the probabilities,
e.g., by running more iterations [29] or by querying an expert.

One approach that systems like Trio [31] use to address this prob-
lem is to additionally provide the lineage of each of the output tu-
ples – a boolean formula which qualitatively explains the reasons
for occurrence of the output tuple. However, lineage does not di-
rectly quantitatively specify the relationship between the output tu-
ple probability and the input tuple probabilities. Also, lineage can
be very large (e.g., projection of a million tuples on to a single tuple
results in a lineage formula of size one million), hence it is diffi-
cult for the user to obtain any useful information from the lineage
alone. Re et al. [30] originally considered the problem of com-
puting influential input tuples and explanations for boolean con-
junctive queries. They propose alternative forms of approximate
lineage and develop algorithms to recover influential tuples from
them, while our focus is on efficient exact computation based on
the original lineage itself. Our proposed definitions of influence
and explanations generalize Re et al.(Section 3)’s definition (which
is restricted to boolean conjunctive queries) and are applicable to
a variety of queries. Our techniques also handle aggregation and
top-k queries in addition to conjunctive queries. Recently, Meliou
et al. [27] proposed techniques for determining the causes for a re-
sult tuple and developed algorithms for computing the degree of
the cause (called responsibility) for conjunctive queries in a rela-
tional database (not for probabilistic databases). Their techniques
are based on Halpern and Pearl’s [20, 19] fundamental definition
of causality. While we use a different definition for causality that
is more suited for probabilistic databases, both definitions are quite
related and can be reasoned in terms of possible world semantics.
We discuss the exact relationship between the two approaches in
Section 3.4.

In this paper, we develop a robust query processing framework
for probabilistic databases by augmenting our probabilistic database
system with support for performing low overhead sensitivity anal-
ysis and by providing explanations for query answers. Our system
provides an option for the user to mark a query for performing ei-
ther sensitivity analysis or explanation analysis over the results of

lid SID Name Address ?
y1 239 Honda of San Jose 12345 0.3
y2 239 Honda Company, San Jose 12345 0.3
y3 231 Ford Company 12207 0.8
y4 340 Toyota Car Company 12209 0.9

(a) Location

tid VIN SID Model Price ?
x1 1A0 239 Honda 3500 0.3
x2 1A1 231 Honda 4500 0.8
x3 2B2 231 Honda 4500 0.5
x4 2B3 231 Toyota 4500 0.4
x5 2B4 231 Ford 4500 0.1

(b) CarAds

rid SID Rep ?
z1 239 Good 0.3
z2 231 Bad 0.7

(c) Reputation

239 x1(y1 + y2) 0.8
(d) Result for query Q1

Figure 1: Relations extracted by an information extraction system about car
sellers and car advertisements. All tables have tuple uncertainty.

the query. When a query is marked for sensitivity analysis, we pro-
vide the set of top-` (where ` is a user specified parameter) influen-
tial input tuples for the query and when a query is marked for expla-
nations analysis, we provide the set of input tuples of size ` which
provides the best explanation for the query results. We would like
to note here that our system currently looks at the problem by ini-
tially computing the lineage of the output tuples and subsequently
executes sensitivity and explanation analysis. In future, we plan to
approach the problem using extensional [10] techniques, without
explicitly computing the lineage. Our primary research contribu-
tions are as follows:
• We provide definitions for influence of tuple(s) on a query result

and explanations that are applicable to a wide range of database
queries including conjunctive queries, aggregation queries and
top-k queries.

• Sensitivity Analysis

1. We show that the problem of identifying top-` influential vari-
ables for conjunctive queries is #P-complete.

2. For conjunctive queries that lead to read-once / 1OF lineage
formulas [33, 16, 28], we provide linear time algorithms (in
size of the lineage). For the general case, we provide algo-
rithms that are exponential in the treewidth [14] of the boolean
formula.

3. We develop algorithms for identifying influential variables for
aggregation (SUM/COUNT/MIN/MAX) queries.

4. We develop novel pruning rules to speed up the computation
of influential variables for top-k queries (by probability).

• Explanation Analysis

1. We show that the problem of determining the top-` explana-
tions for conjunctive queries is NP-hard in general. As with
sensitivity analysis, we develop algorithms for identifying the
best explanations for queries that lead to read-once lineages.

2. We develop novel techniques for computing explanations for
aggregation (SUM/COUNT/MIN/MAX) queries.

• For conjunctive queries and aggregation queries, we provide in-
cremental algorithms for re-evaluating query results when input
probabilities are modified.

Outline: In the next section, we provide a brief background for
probabilistic databases and some of the key concepts we use in the
rest of the paper. In Section 3, we formally state the sensitivity
analysis and the explanation analysis problems and their seman-
tics. In Section 4 and Section 5, we develop techniques to solve the
sensitivity analysis problem and the explanation analysis problem

respectively. In Section 6, we briefly describe some techniques for
incrementally re-evaluating query results when input probabilities
have been modified. We conclude with some initial experimental
evaluation in Section 7.

2. PRELIMINARIES
In this section, we provide background for probabilistic databases

and the different concepts discussed in the paper. We start with a
description of tuple uncertainty probabilistic databases.

2.1 Tuple Uncertainty Probabilistic Database
We assume a tuple uncertainty probabilistic database model sim-

ilar to Dalvi et al. [10], i.e., each tuple ti exists with probability
pi. Also, the existence of a tuple is independent of the existence
of the other tuples in the database. We associate each tuple ti in
the database with a binary random variable xi such that xi = 1
if ti belongs to the database and xi = 0 otherwise. Note that
pi = Pr(xi = 1). Let P = {p1, p2, . . . , pn} be the set of in-
put probabilities.

2.2 Queries
In this paper, we consider conjunctive queries, top-k queries (by

probability) and aggregation queries. We describe each in turn.

Conjunctive queries: A conjunctive query is a fragment of first-
order logic restricted to ∃ and ∧. In SQL, they correspond to
select-project-join queries, restricted to equi-joins and
conjunctions in the where clause. As shown by Das Sarma et
al. [31], a conjunctive query can be evaluated over a probabilistic
database by first computing the lineage/provenance for each output
tuple, which is a boolean formula that represents all possible deriva-
tions of the output tuple, and subsequently evaluating the probabil-
ities of the lineage formulas. The general problem of conjunctive
query evaluation has been shown to be #P-complete [10]. However,
if the lineage formula can be represented using a read-once or 1-
OF form [28, 33] (a boolean formula in which each literal appears
exactly once), then the probability of the lineage can be computed
in polynomial time. For example, the boolean formula (x1 ∧ x2)∨
(x2 ∧ x3) can be rewritten as x2 ∧ (x1 ∨ x3) which is a read-once
formula. On the other hand, (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1)
cannot be rewritten as a read-once formula. A read-once formula
can be represented as an AND/OR tree as shown in Figure 2. The
probability of a read-once formula can be computed using a bottom
up algorithm over the AND/OR tree, which computes probabilities
of intermediate nodes using the following equations. Suppose that
z is a node with children x1 and x2:

if z = x1 ∧ x2 p(z) = p(x1)p(x2) (1)
if z = x1 ∨ x2 p(z) = 1− (1− p(x1))(1− p(x2)) (2)

Given a boolean formula in DNF form, we can check whether it
can be represented using a read-once representation in time linear
in the size of the formula using the co-graph recognition algorithm
of Golumbic et al. [16]. We illustrate this algorithm with an exam-
ple in Section 2.3. If the boolean formula cannot be represented
in a read-once format, we use Shannon expansions as described by
Olteanu et al. [28] in order to compute its probability (See Sec-
tion 2.4).

Probabilistic Threshold/Top-k Queries: We consider:
1. Probabilistic threshold queries: A conjunctive query Q is speci-

fied along with a threshold probability value τ ; the output is the
set of the output tuples of Q whose probabilities exceed τ . We
assume that the output probabilities are not part of the result.

2. Top-k queries by probability: This query requires us to return the
set of top-k tuples sorted by probability. This is different from
threshold queries because in this case, we only return k tuples,
whereas threshold queries are not restricted to k output tuples.

Aggregation Queries: The final class of queries we consider are
aggregation queries such as SUM, MIN, MAX and AVG. In this
paper, we only consider aggregates over a single table containing a
set of independent base tuples. Each base tuple has a real valued
score attribute A and the above aggregation functions operate on
the scores. We use ai as a shorthand notation for ti.A, the score of
tuple ti. For both the sensitivity analysis problem and explanation
analysis problem, we consider the expected values version where
the output of the query is the expected value of the aggregate. For
example, the answer to SUM is E[

∑
i aixi], where xi is the binary

random variable defined in Section 2.1.

2.3 Detecting read-once lineages
In this section, we describe Golumbic’s algorithm [16] which

takes as input, a DNF boolean expression λ and determines if λ
can be rewritten using a read-once representation. It also returns
the read-once rewriting if it exists. The algorithm is complete, i.e.,
if it cannot determine a rewriting, then it does not exist. The algo-
rithm starts by constructing a co-occurrence graph of the boolean
formula. The co-occurrence graph of the formula is an undirected
graph in which the nodes are literals of the formula and an edge
exists between 2 literals if they occur together in some clause in
the DNF formula. In the next step, the algorithm checks if the co-
occurrence graph is a co-graph [8]. If yes, then the algorithm com-
putes the co-tree representation of the co-occurrence graph, which
is the required read-once representation. We illustrate the algorithm
with an example.

Suppose we have a boolean formula: (x1 ∧ x2) ∨ (x2 ∧ x3) ∨
(x3 ∧ x4) ∨ (x4 ∧ x1). The co-occurrence graph G for the for-
mula is shown in Figure 2(ii). Since the graph is connected, the
algorithm creates an AND node (Z) in the co-tree (Figure 2(iv))
and constructs the complement of G, Gc as shown in part(iii). If
Gc is connected, then the formula does not have a read-once rep-
resentation. Otherwise, it considers each component separately. It
creates an OR node in the co-tree for each component, which are
made the children of (Z). The algorithm recursively continues until
we reach singleton graphs, which are added as leaves, or we reach
a termination due to non-existence of a read-once representation.

A small caveat with this approach is that the algorithm works
only for normal boolean formulas. A boolean formula is normal if
we can reconstruct it from its co-occurrence graph. For example,
x1 ∧ x2 ∧ x3 is normal but (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) is
not normal. Note that the co-occurrence graphs for both formulas
are the same. In recent work, Sen et al. [33] have shown that lin-
eage formulas are always normal (for conjunctive queries without
self-joins), hence we do not need to make this check. Next, we dis-
cuss Shannon expansions of a boolean formula, which we use for
handling non-read-once lineages.

2.4 Shannon Expansions
Shannon expansions is a technique for representing a boolean

formula as a XOR of two smaller sub-functions of the formula.
Using Shannon expansions, we can express a non-read-once for-
mula using a number of (exponential, in the worst case) read-once
formulas and thereby compute its probability. Given a boolean for-
mula λ, and a variable x that appears in λ, we can represent λ by
means of the identity:

λ = (x ∧ λx=1)⊕ (x ∧ λx=0)

(i) (ii) (iii)

YX

Z
AND

OR OR

x1 x2

x3x4
x1 x2

x1

x3

x2

x4
x3 x4

x1 x2 x3 x5x4

q6

x6

o

q1 q2

q3
q4 q5

AND AND AND

OR OR

AND

(iv)
Figure 2: (i) Boolean formula (x1x2 + x3x4)(x5x6 + x7) represented using an AND/OR tree. Leaves denote variables of the formula, internal nodes are
intermediate expressions. (ii, iii, iv) Steps involved in generating the read-once formula for (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) ∨ (x4 ∧ x1)

λx=1 and λx=0 are called the Shannon co-factors of λ w.r.t. x.
λx=1 is the boolean formula obtained by setting x = 1 in the for-
mula and λx=0 is the boolean formula obtained by setting x = 0
in the formula. x denotes the negation of variable x. The XOR
between the terms is because the assignments satisfying the first
term are mutually exclusive of the assignments satisfying the sec-
ond term.

Consider the boolean formula λ = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨
(x3 ∧ x4). Suppose we want to expand the formula along x2. The
expansion we get is:
x2(λx2=1)⊕ x2(λx2=0) = x2 ∧ (x1 ∨ x3)⊕ x2 ∧ (x3 ∧ x4).
Note that both (x1 ∨ x3) and (x3 ∧ x4) are read-once and hence
their probabilities can be evaluated easily. Also, since the two terms
in the expansion are mutually exclusive, we can simply add their
probabilities to get the probability of the original boolean formula.

3. FORMAL PROBLEM STATEMENT
In this section, we formally state the sensitivity analysis and the

explanation analysis problems.

3.1 Sensitivity Analysis
We start by defining the notion of influence of a given input prob-

ability on a query result. Queries on a probabilistic database can be
of two categories based on the type of output: value queries and set
queries. We define influence for each query type in turn.

Value queries: The output of a value query is either a single nu-
merical value v or a set of numerical values {v1, v2, . . . , vn}. Ex-
amples of value queries include boolean conjunctive queries (out-
put value is a probability) and aggregation queries (output value is
the expected value of the aggregate).

DEFINITION 1. The influence of an input tuple t on a value
query with output v is given by the derivative ∂v

∂p
, where p is the

probability that t exists. If the output is a set of values, then the
influence is the sum of the influences of t on each output value.

For conjunctive queries, even if we change the probabilities of
the input tuples, the output set of tuples remains the same, only the
probabilities of the output tuples change. Thus, the sensitivity of an
input probability on a boolean conjunctive query result represents
how the output probability changes when the input probability is
changed. Influence of an input tuple t on the output tuple with
lineage formula λ, denoted by inflt(λ) is given by the derivative
∂p(λ)
∂p

. An alternate definition of influence of a tuple on a con-
junctive query, was proposed by Re et al. [30]. Re et al. define
influence of a tuple as the difference between the output probabil-
ities obtained in two cases, first by assuming that the tuple exists
and second by assuming that the tuple does not exist. As we show
in Theorem 1 in Section 4.1.1, the two definitions are equivalent.

For aggregation queries, we measure how the expected value of
the aggregate changes when the input probability is modified, i.e.,

for the AVG aggregate, we define influence of ti to be the derivative
∂E[AVG]
∂pi

.

Set Queries: Examples of Set queries are probabilistic threshold
queries and top-k queries. If we change the probability of an input
tuple, either new tuples enter the result set or existing tuples leave
the result set. To define influence over discrete sets such as these,
we introduce the notion of ε-influence.

DEFINITION 2. Input tuple t with probability p is ε-influential
on the output set S if using p + ε in place of p modifies the result
from S to S′, where S′ 6= S. The degree of influence is the cardi-
nality of the symmetric difference S∆S′ = (S \ S′) ∪ (S′ \ S).

Note that ε is a parameter this is provided by the user. In Sec-
tion 4.3, we show how to provide hints to the user to set ε.

Formal Problem: Sensitivity Analysis
Given a probabilistic database and a query, determine the set of
top-` influential/ε-influential variables for the query. We use ` to
distinguish it from conventional top-k queries.

3.2 Explanation Analysis
Intuitively, an explanation for a query result is a set of tuples

which provides the best reason for obtaining the particular result
tuple and its associated probability. It is critical to consider a set of
tuples and their combined contribution rather than contributions by
each individual tuple individually. For example, consider an output
tuple with lineage (a∧b)∨(c∧d). Suppose that probability of a and
b are very high compared to that of c. The contributions of a and b
treated individually are very high compared to that of c. However,
the contribution of the set {a, c} is higher than the contribution
of {a, b} since we can bring the output probability down to 0 by
setting a and c to false (which is not possible with {a, b}). Hence
we define the contribution for a set of tuples as follows.

DEFINITION 3. A contribution of a set of input tuples S is de-
fined as the change in the output obtained when we set the proba-
bilities of all tuples in S to zero.

For value queries, the change in the output is simply the differ-
ence between the two resulting values. For example, in the case
of boolean conjunctive queries, this corresponds to the set of tu-
ples which cause the maximum change in the output probabilities
if their probabilities are set to 0. For set based queries, the change
is the cardinality of the symmetric difference between the resulting
sets, as we did with sensitivity analysis. For explanation analysis,
we only consider value queries in the rest of the paper. We leave
the problem of set queries to future work.

Formal Problem: Explanation Analysis
Given a probabilistic database and a value query, determine the set
of input tuples of size ` which has maximum contribution among
all subsets of size `.

3.3 Warmup: SUM/COUNT
As a warmup, we illustrate the concepts we just introduced using

SUM/COUNT queries. Using linearity of expectation, we can see
that SUM = E[

∑
i aixi] =

∑
i aipi. COUNT is just a special

case of SUM where ai = 1∀i. Therefore, the influence of tuple
ti is simply ∂SUM

∂pi
= ai. We can just sort the input tuples by their

attribute values (i.e., ai) and return the top-` influential tuples.
It is also easy to see the contribution of the set S of tuples is∑
ti∈S aipi. Therefore, the explanations for COUNT correspond

to the ` tuples with maximum aipi values.
Recomputing the results for SUM/COUNT queries is also straight-

forward. For instance, if we change pi, the probability ti, to p′i,
then the new query answer is E[SUM]−aipi +aip

′
i, which can be

done in constant time.

3.4 Relation to Meliou et al. [27]
Meliou et al. [27] define the notion of responsibility of a tuple

t for a query answer/non-answer as the inverse of the size of the
smallest contingency set for the tuple. A contingency set is a set
of conditions that need to be satisfied for the tuple t to cause a dif-
ference to the output. The bigger the contingency set, the smaller
is the set of possible worlds that the tuple can influence. If the
size of the contingency set is s, then the total number of possible
worlds that can be influenced is of the order of: O(2n

2s−1), n be-
ing the number of input tuples. In our definition of influence, we
measure the sum of the probabilities of all possible worlds that are
influenced by the given input tuple since all possible worlds need
not have the same probability. Hence, for the case of probabilistic
databases, the concept of influence is more meaningful, although
the two concepts are closely related.

4. SENSITIVITY ANALYSIS
In this section, we discuss our algorithms for solving the sensitiv-

ity analysis problem, i.e., computing the top-` influential variables
for a given query. In the first part, we discuss value queries and
subsequently we discuss set-based queries.

4.1 Value queries
We start by developing algorithms to compute influential vari-

ables for boolean conjunctive queries and extend the algorithms for
arbitrary conjunctive queries. For ease of exposition, we list the
following straightforward lemma that is used throughout the paper.
Suppose q is a value query and suppose that the input tuple proba-
bilities are P = {p1, p2, . . . , pn}. Let Ppi←a be the same vector
as P except the ith entry being replaced by a.

LEMMA 1. If q(P) = q(p1, . . . , pn) is a linear function of pi,
i.e., q(P) = c · pi + d where c, d are constant w.r.t. pi, then

∂q(P)

∂pi
=
q(Ppi←a)− q(Ppi←b)

a− b .

for any a, b ∈ [0, 1] and a 6= b.

4.1.1 Boolean conjunctive queries
We first show our definition of the influence of a tuple is equiv-

alent to the definition proposed by Re et al. [30]. Recall that they
define influence of a tuple to be the difference between the output
probabilities obtained in two cases, first by assuming that the tuple
exists and second by assuming that the tuple does not exist.

THEOREM 1. (1) Given a boolean formula λ, which is a func-
tion of input variables x1, x2, . . . , xn, p(λ) is linear in each pi
treated individually, i.e., p(λ) = (cipi + c′i) for each i.

(2) Our definition of the influence is equivalent to the one pro-
posed by Re et al. [30], i.e., ∂Pr[λ(t)]

∂p(t)
= Pr[λxi=1]− Pr[λxi=0].

PROOF. Consider a boolean random variable xi which appears
in the formula λ. Using Shannon expansion,

λ = (xi ∧ λxi=1) ∨ (xi ∧ λxi=0)

=⇒ p(λ) = p(xi = 1)p(λxi=1) + p(xi = 0)p(λxi=0)

(This is because the two terms are mutually exclusive)
=⇒ p(λ) = pip(λxi=1) + (1− pi)p(λxi=0)

=⇒ p(λ) = pici + c′i

Here, ci and c′i are constants, i.e., independent of pi. The second
part is a easy consequence of the first part and Lemma 1.

As indicated in Section 2, conjunctive queries are evaluated by
first computing the lineages of the output tuples. In the case of
boolean queries, we have a single output lineage for which we need
to compute the influential variables. According to Theorem 1,
the probability of a boolean formula is linear in each input tuple
treated individually, i.e., p(λ) = cipi + c′i. Hence, it is enough to
determine ci values for each input tuple and then select the top-`
among them. However computing the influence values for all input
tuples is #P-complete as shown in Theorem 2.

THEOREM 2. The problem of computing the influences of all
variables for a non-read-once lineage is #P-complete.

PROOF. We prove via a counting reduction from the problem
of computing p(λ) where λ is a k-DNF formula, which is a well
known #P-complete problem. Assume that we can indeed compute
the influence of all variables on a non-read-once boolean formula
λ of size n in polynomial time. Suppose that the variables in λ are
x1, x2, . . . , xn. Using Theorem 1, can write the probability of λ
as:

p(λ) = p(x1)p(λx1=1) + (1− p(x1))p(λx1=0)

= p(x1)(p(λx1=1)− p(λx1=0)) + p(λx1=0)

= p(x1)inflx1(λ) + p(λx1=0)

Note that λx1=0 is a boolean formula with n− 1 variables.
It can be expanded further.

= p(x1)inflx1(λ) + p(x2)inflx2(λx1=0) + p(λx1=x2=0)

= p(x1)inflx1(λ) + p(x2)inflx2(λx1=0) + . . .

=
∑
i

p(xi)inflxi(λx1=...=xi=0)

Hence, computing the influences of a variable for an arbitrary DNF
is at least as hard as computing the probability of the formula λ (#P-
hard). Moreover, since inflxi(λ) =

p(λ)−p(λxi=0)

p(xi)
, our problem is

in #P. Therefore, it is #P-complete.

Although the general problem is hard, we can devise algorithms
for the special case when the boolean formula is read-once. We
discuss this case first.

Read-once lineage: In this case, we develop a recursive algorithm
for computing the influences of all input tuples in O(n) time (n
is the size of the lineage formula). Consider the lineage shown in
Figure 2(i). In order to compute the influence of x1 on the output
probability, i.e., ∂o

∂x1
, we can use the chain rule from calculus,

∂o

∂x1
=

∂o

∂q1

∂q1
∂q3

∂q3
∂x1

(3)

The terms on the RHS can be obtained by taking appropriate deriva-
tives of Equations 1 and 2. Suppose z is a node with two children
x1 and x2. Then,

if z = x1 ∧ x2:
∂z

∂x1
= x2 &

∂z

∂x2
= x1

if z = x1 ∨ x2:
∂z

∂x1
= 1− x2 &

∂z

∂x2
= 1− x1

Algorithm 1 deriv(x), Read as derivative w.r.t x

1: if parent(x) = null {x is root} then
2: deriv(x) = 1
3: else
4: if parent(x) is an AND node then
5: deriv(x) = deriv(parent(x)) * Pr(sibling(x))
6: else
7: deriv(x) = deriv(parent(x)) * (1 - Pr(sibling(x)))

Using the chain rule and the above equations, we develop a re-
cursive algorithm as follows. Each node in the AND/OR tree stores
the derivative of the output probability with respect to itself. We use
this to compute the derivatives of its children using the above re-
cursive equations in a top-down manner to finally get the derivative
with respect to the leaf nodes (input tuples). Note that the prob-
abilities of all the nodes are precomputed in a single O(n) pass
as a preprocessing step. The relevant snippet of the algorithm is
shown in Algorithm 1. After computing the influences of each of
the input variables, we determine the top-` influential variables ei-
ther by sorting O(n logn) or by making a linear scan over the input
tuples O(n`), based on the value of the input `. We also cache the
computed influence values for the input tuples – those can be used
for quickly recomputing results in certain cases. Although we il-
lustrated the algorithm for binary trees, our implementation can be
easily extended to handle k-ary AND/OR trees.

Non-read-once lineage: Next, we consider the sensitivity analysis
for non-read-once formulas. We propose a heuristic for evaluating
the influences, which is similar to the Dtree construction algorithm
of Olteanu et al. [28]. Essentially, we perform a sequence of Shan-
non expansions to expand a non-read-once lineage to a set of mutu-
ally exclusive read-once formulas. The complexity of the operation
is exponential in the treewidth [14] of the boolean formula. The
complete algorithm is shown in Algorithm 2. We now explain the

Algorithm 2 infl(λ, ~I)

Require: Boolean formula λ, influence vector ~I
1: if λ is read-once then
2: return infl_read_once(λ)
3: else
4: Select boolean variable x in λ that repeats most times
5: Shannon expansion: λ = (x ∧ λx=1)⊕ (x ∧ λx=0)

6: ~I = (1− p(x)) infl(λx=0, ~I) + p(x) infl(λx=1, ~I)

7: ~I[x] = Pr(λx=1)− Pr(λx=0) {influence of x itself}
8: return ~I

main aspects of the algorithm.
In Step 1, we check if the boolean formula has a read-once rep-

resentation using Golumbic’s algorithm (Section 2.4). If it has a
read-once representation, then we use the previous algorithm itself.
Otherwise, we expand the boolean formula using Shannon expan-
sion, selecting the variable that appears the most number of times.

The expansions of the boolean formula are stored in a binary tree
data structure which we call as a Dtree (after Olteanu et al. [28]).
Each node in the Dtree corresponds to a boolean formula. Once we
obtain a read-once formula, we stop expanding and compute the
influences (local) of all the variables in the formula (Step 2). Over
the nodes we execute the Shannon expansion, we also compute the
influence for the variable over which using Step 7. Each node in the
tree has an influence vector of size n, where n is the total number of
variables in the input lineage. The values in the vector correspond
to the local influences of the variables on the boolean formula cor-
responding to the node. This vector is recursively updated, based
on the childrens’ vectors in Step 6. Finally, the influence vector at
the root of the tree has influences of all the variables in the formula.

We illustrate the above algorithm using an example.

EXAMPLE 1. Consider the boolean formula given by λ = a1b1c1+
a1b2c2 +a2b3c1 +a3b4c1. It cannot be represented as a read-once
formula. Hence, the algorithm first performs Shannon expansion
around c1 (since it appears 3 times) as shown below.

λ = c1(a1b1 + a1b2c2 + a2b3 + a3b4) + c1(a1b2c2) = c1λ1 + c1λ2

We can easily see that both λ2 = a1b2c2 and λ1 = a1(b1 +
b2c2) + a2b3 + a3b4 are already in read-once format and no more
expansion occurs. Now, the influence vectors at λ1 and λ2 are
computed based on Algorithm 1. In addition, the influence of c1,
p(λ1) − p(λ2) is computed. Following this, the influence vector
at the parent node is updated. Note that since a1 appears in both
λ1 and λ2 nodes of the tree, its influence on λ is available at the
influence vector of the root node.

4.1.2 Conjunctive queries
Here, we consider arbitrary conjunctive queries which return mul-

tiple output results. As defined earlier (Section 2), the influence of
an input variable is the sum of its influences on each of the output
tuples. Note that even though the output tuples may be in read-
once format, the set of output tuples may be correlated with each
other, since the input tuples may be shared among the lineages of
the output tuples [10]. Hence, we cannot use the naïve approach
of looking at the top-` set of influential tuples for each output tuple
and use them to determine the overall top-`. For example, suppose
we are interested in determining the top-3 influential tuples for a set
of correlated output tuples. A single input tuple might be influential
for the output tuples combined, but it may not be enough to appear
in the top-3 lists of influential tuples for each of the individual out-
put tuples. However, summing up all the influences would be large
enough for it to be in the top-3 list; since the naïve approach does
not consider this tuple at all, it fails. Instead, we use a brute force
approach where we sum up the influences of a given input tuple on
each of the output tuples and pick the top-` input tuples based on
this value. We are currently working on developing more efficient
algorithms for conjunctive queries based on extensional techniques.

4.1.3 Aggregation queries
Here, we determine the influence of each input variable on the

expected value of the aggregate. We provide algorithms for de-
termining the top-` influential variables for MIN/MAX and AVG
aggregates.

MIN/MAX: We only consider MAX here. The algorithm for MIN
is very similar and we omit it here. We assume all ais are positive
and there is a dummy tuple with value 0 and probability 1 to avoid
the empty possible world where MAX is undefined. We assume
tuples are sorted in a non-increasing order of their scores. Recall
xi is the indicator variable of the existence of ti. It is easy to see

that

MAX = E[max
i
xiai] =

∑
i

aipi
∏
j<i

(1− pj).

It is easy to see from the above formula that MAX is a linear
function of pi for any i. Recall Ppi←a is the same vector as P
except the ith entry being replaced by a. By Lemma 1, we have

∂MAX(P)

∂pi
=

MAX(P)−MAX(Ppi←0)

pi
.

Now, we describe our algorithm. We first show how to com-
pute MAX in linear time. Suppose we denote by max[i, j] the
maximum of the random tuples ti, ti+1, . . . , tj . If we assume
ai ≥ ai+1 ≥ . . . ,≥ aj , then, max[i, j] = ai with probability
pi and max[i, j] = max[i + 1, j] otherwise. Therefore, we have
that

E[max[i, j]] = piai + (1− pi)E[max[i+ 1, j]]. (4)

When we compute MAX, we store all values E[max[i, n]] for all i.
We can also easily compute

∏i
j=1(1− pj) values for all i in linear

time. Now, we show how to quickly compute MAX(Ppi←0) for
each i in constant time, provided we have already computed MAX,
E[max[i, n]]∀i and

∏i
j=1(1 − pj)∀i. In fact, it is not hard to see

that

MAX(Ppi←0) =
∑
j<i

ajpj
∏
k<j

(1− pk) +
∑
j>i

ajpj
∏

k<j,k 6=i

(1− pk)

=MAX−
∏
j≤i

(1− pj)E[max[i, n]]

+
∏
j<i

(1− pj)E[max[i+ 1, n]]

Therefore, the overall running time for finding the top-` influential
tuples is O(n).

AVG: Now we consider the problem of computing top-` influential
variables for AVG. Formally, AVG is defined to be

AVG = E
[∑

i aixi

1 +
∑
i xi

]
.

Note that we have included a dummy tuple with value 0 and prob-
ability 1 to keep the denominator non-zero. The following theorem
plays a central role for the streaming algorithm in [22] and is also
crucial for computing the influence.

THEOREM 3. ([22]) For the probabilistic tuples t1, . . . , tn, let
pi and ai be the existence probability and the value of ti, respec-
tively. Define function hAVG(x) =

∑
i aipix ·

∏
j 6=i(1−pj +pjx).

Then, AVG =
∫ 1

0
hAVG(x)dx.

From the above theorem, it is easy to see that hAVG(x) is linear
in pi. Since the integral is over x, AVG is also linear in pi. Thus,
from Lemma 1, we have

∂AVG(P)

∂pi
=

AVG(P)− AVG(Ppi←0)

pi
.

It is known that computing AVG for a dataset of size n (in partic-
ular, expanding hAVG(x)) can be done in O(n log2 n) time [22].
Computing AVG(Ppi←0) once AVG is already computed addition-
ally takes only linear time given the expansion of hAVG(x) (see Sec-
tion 6 on recomputing query results). For each tuple ti, we need to
compute ∂AVG

∂pi
. Therefore, the overall running time is O(n2).

4.2 Set queries
In this section, we discuss set-based queries and we develop

techniques for computing ε-influential variables for these queries.
We start with probabilistic threshold queries.

4.2.1 Probabilistic Threshold Queries
To evaluate a probabilistic threshold query PT (Q, τ), we first

run the conjunctive query Q and subsequently select all output
tuples with probability more than τ . Since the lineage formulas
generated by conjunctive queries are monotone and positive [30],
increasing the probability of an input tuple can only increase the
probability of the output tuples, thereby increasing the number of
output tuples; similarly, decreasing the probability of an input tuple
might remove those output tuples whose probabilities become less
than τ . We only consider the case when the input probabilities are
increased. The symmetric case of decreasing the input probabilities
is analogous and is not discussed here. Our objective is to compute
the top-` ε-influential variables (Section 2). We rank an input tuple
by its degree of ε-influence, i.e., the number of output tuples that
will be added to the output set, if we increase its probability by ε
(Definition 2).

We briefly discuss the naive algorithm before presenting tech-
niques for improving it. In the first step, we compute the output
tuple lineages and subsequently, the influences of each input tuple
on each output tuple. In the second step, we go over each input tu-
ple (ti) and determine the number of output tuples (Ci) that would
cross the threshold if we increase its probability by ε. Finally, we
compute the top-` influential input tuples from this list. This tech-
nique is quite inefficient as the complexity of the first step isO(no),
where o is the number of output tuples and n can potentially include
all input tuples. We reduce the complexity of this operation by con-
sidering only those output tuples which contribute to the Ci values,
by developing three pruning rules.

Rule 1: Ignore output tuples with probability > τ – increasing the
probability of its input tuples will not change the output.

Rule 2: Restrict attention to output tuples with probability> τ−ε.
The influence of an input tuple over a single output tuple for con-
junctive queries is always less than 1, since influence is defined as
a difference between two probability values. Therefore, the proba-
bility of an output tuple can at most increase by ε and output tuples
with probability values less than τ − ε cannot get into the result set.

Next, we propose another pruning rule which works only for
read-once lineages. Consider output tupleOi. Suppose it has prob-
ability oi < τ . The input tuples that can drive this probability to τ
must have influence at least equal to θ = (τ − oi)/ε. So, we only
need to increment Cj values of those input tuples whose influences
exceed θ. We modify the infl_read_once routine of Section 4.1.1
to only return the input tuples that satisfy the above requirement by
exploiting the following property:

THEOREM 4. The derivatives of the nodes in an AND/OR tree
monotonically decrease as we go down the AND/OR tree.

PROOF. The proof is very easy to see using recursion. Recall
the recursive equations used to update the probabilities of internal
nodes in the AND/OR tree.

if z = x1 ∧ x2
∂z

∂x1
= x2 < 1

if z = x1 ∨ x2
∂z

∂x1
= (1− x2) < 1

Now, using Equation (3), we can see that the values of the deriva-
tives decrease as we go down the tree since we continuously multi-

ply by a number less than 1 at each level. The derivative of the root
with respect to itself is 1 by definition.

Rule 3: In infl_read_once, if the value of the derivative is less than
θ, we do not recurse along the branch. We only recurse along
the portion of the tree whose derivative is more than θ. Since the
derivatives are computed in a top-down manner, pruning via this
rule can provide several benefits for large data sets.

4.2.2 Top-k queries by probability
The output of a top-k query is a list of output tuples sorted in

decreasing order by their probabilities. Therefore, modifying input
tuples can cause new tuples to enter the output while simultane-
ously removing the same number of existing output tuples. Sup-
pose we treat the probability of the kth output tuple (in order) as the
threshold τ . As with probabilistic threshold queries, the only tuples
that can enter the result are the set of output tuples with probabili-
ties in the range [τ − ε, τ]. Hence, we can apply the pruning rules
1 and 2 work here also. Hence the only input tuples which are
influential are the ones that appear in the lineages of these tuples.
The algorithm for computing influential variables here is similar to
the one for probabilistic threshold queries. The difference between
top-k and probabilistic threshold queries is that, for an input tuple
t to force the output tuple Oi into the top-k output, it is not enough
that its influence value exceed (τ−oi)/ε. The reasons are two fold.
First, by increasing the probability of an input tuple, we may be in-
creasing the threshold τ itself, i.e., if the input tuple appears in the
lineage of the kth ranked tuple. Second, once a new tuple enters the
top-k, the value of τ needs to be increased. Hence, we have to ex-
plicitly check the number of new tuples entering the top-k for each
input tuple and then compute the top-` influential input tuples. We
plan to develop more efficient algorithms for this purpose in future
work.

4.3 How is ε assigned?
Until now, we assumed that εwas provided by the user. However,

it is unlikely to expect the user to know the value of ε. Firstly, a user
might know the margin of error that might be present in the input
probabilities. For instance, if the application generating the input
probability reports that there may be ±δ error in the probabilities,
then the user can pick ε between [0, δ]. Another way to pick a
reasonable ε value might be through a visualization tool. Given an
input tuple t with probability p, the output probabilities are linear
in p and can be visualized as straight lines. The user can now pick
ε using this visualization, e.g., a region with several intersections.

5. EXPLANATION ANALYSIS
In this section, we provide algorithms for computing the top-`

explanations for value queries.

5.1 Boolean Conjunctive Queries
Recall that computing explanations requires us to determine the

set of ` input tuples, whose probabilities when set to 0, causes the
maximum decrease in the output probabilities.

THEOREM 5. The problem of computing the top-` explanations
for boolean conjunctive queries (even without self-joins) is NP-
hard.

PROOF. We use a reduction from vertex cover on 3-uniform 3-
partite hypergraph [34] similar to Theorem 4.1 of Meliou et al. [27].
Consider a 3-uniform 3-partite graphGwith partitionsR, S and T .
Every hyperedge contains exactly one vertex from each partition.
We construct a database D with 4 relations R(x), S(y), T (z) and

U(x, y, z). For each vertex in R,S and T , we introduce a tuple
(with tuple-uncertainty) in R(x), S(y) and T (z) respectively. For
each hyperedge in G, we introduce a new deterministic tuple in
U(x, y, z). Consider the boolean conjunctive query:

q() : −R(x), S(y), T (z), U(x, y, z)

We can easily see there is a vertex cover of size at most ` in G, if
and only if we can determine an explanation of size ` that reduces
the probability of the output tuple to zero (maximum possible re-
duction) in the probability.

Although the problem is hard in general, for queries that lead to
read-once lineage formulas, there exists an optimal algorithm. We
describe this algorithm next.

Read-once formulas
For the case of read-once functions, we use a dynamic program-
ming algorithm to compute the explanation. Consider a lineage
formula λ with two subtrees λl and λr . Suppose the function
OPT (λ, k) represents the smallest possible value for probability
of λ by setting k input probabilities to 0 (i.e., maximum possible
reduction in the probability). The appropriate recursion for the dy-
namic program is shown below.

If λ = λl ∧ λr ,

OPT (λ, k) = min
k1

(OPT (λl, k1)×OPT (λr, k − k1))

If λ = λl ∨ λr ,

OPT (λ, k) = min
k1

[
OPT (λl, k1) +OPT (λr, k − k1))
−OPT (λl, k1)×OPT (λr, k − k1)

]
We modify the above program to also include the top-` input

tuples at each step. The proof of correctness of the above program
can be seen via contradiction. Assume, for the sake of contradiction
that there exists a different solution S′ (set of ` variables) which is
better than the solution obtained by the algorithm S. We consider
two cases. Suppose the root node is an AND node with two children
λl and λr . Also suppose S′ has l1 variables on the left child and l−
l1 variables on the right child, which are different from S. Denote
Pr(λ, S) the probability of the boolean formula λ by setting the
probabilities of variables in S to 0. According to our assumption
Pr(λ, S′) < Pr(λ, S). This means that Pr(λl, S

′
l)Pr(λr, S

′
r) <

Pr(λl, Sl)Pr(λr, Sr). However, this statement is false since the
sets Sl and Sr were chosen such that their product was minimum
(according to our update rule).

The complexity of the above program is O(n`2) since at each
step we spend time O(`) to determine OPT (λ, `) and we need to
compute OPT for different values from {1, 2, . . . , `}.

Non-read-once formulas
We propose two greedy heuristics for this problem.

First Approach: For each input tuple ti, we compute its influence
αi for the output tuple and sort the tuples by the value of αipi. We
select the top-` tuples as the best explanation for our purpose. The
motivation for this heuristic is that the product of the influence and
the probability corresponds to the “individual contribution” made
by the tuple (to a first approximation). Note that this ignores the
pairwise and higher order contributions.

Second Approach: Now, we propose a slightly better approxima-
tion. In the first step, we select the tuple with the highest contribu-
tion, i.e., αipi value. Next, we set this tuple probability to zero and
recompute the contributions for the remaining tuples. We pick the
tuple with the highest contribution and repeat the process ` times.

5.2 Aggregation queries
We describe how to compute explanations for MAX and MIN

efficiently. For AVG, we leave it as an open problem.

MAX Again, we assume all values are positive and the maximum
value is 0 if no tuple exists. We first note here that greedy algo-
rithms do not work in this case, i.e., selecting the tuples sorted by
score ai or sorted by probability pi or sorted by aipi values. For ex-
ample, consider the set of four tuplesX1 = 10,X2 = 9,X3 = 5.1
and X4 = 3 with probabilities 0.1, 0.9, 0.2 and 0.3 respectively.
Choosing the greedy heuristic based on the aipi value would force
us to choose X2 and X3, however it can be seen that the optimal
solution here is by choosing X1 and X2.

We propose a dynamic program for this problem. Firstly, note
that in the MAX case, the expected value can only reduce if we set
probability values to zero. Also, if we set more tuple probabilities
to zero, the expectation can only come down. Hence, the optimal
solution will have exactly ` tuples. The following recursive rela-
tionship is particular useful to us. Suppose we denote max[i, j]
as the maximum of the random tuples ti, ti+1, . . . , tj . We also
assume a1 ≥ a2 ≥ . . . , an.

Now, we describe our dynamic program. LetOPT (i, j) denotes
the minimum expectation for the maximum of {ti, . . . , tn} by re-
ducing the probabilities of j tuples to zero. Suppose we had optimal
solutions to the sub-problem {ti+1, ti+2, . . . , tn} for all different
values of k, i.e., OPT (i + 1, j) for j = 1 . . . `. Then, we update
the optimal solution using the following recursive equation.

OPT (i, j) = min{OPT (i+1, j), (1−pi)OPT (i+1, j−1)+piai }

The first term in the right hand side of the recursion corresponds
to that ti is not chosen while the second corresponds otherwise.
The second holds because of (4). The optimal solution is simply
OPT (1, n).

The dynamic program maintains an array of size n × `, which
maintains the optimal solution OPT (i, j) for each value of i start-
ing from n to 1. Computing each entry needs constant time. There-
fore, the overall running time is O(n`+ n logn).

MIN: We make the same assumption as MAX that all values are
positive and the minimum value is 0 if no tuple exists. The dy-
namic programming recursion is very similar to the case for MAX.
The only difference is that the expected value can either increase or
decrease by setting certain probabilities to 0. Therefore, we use two
tables, one for computing the maximum increase and the other for
the maximum decrease. Then, we pick the one with larger absolute
value as the final answer.

6. INCREMENTAL RECOMPUTATION
In this section, we describe how our techniques for computing

influences can be used to recompute the results of a query when
some of the input probabilities are modified. Note that in addition
to query results, we need to update the influences of the input tuples
also. It is desirable that the cost for recomputing query results be
less than executing the query again from scratch. We propose effi-
cient incremental algorithms for recomputing query results which
exploit previous computation. We start by describing the algorithm
for updating conjunctive query results.

6.1 Conjunctive Queries
We consider boolean conjunctive queries. Handling set-based

conjunctive queries is a very simple extension and we do not ex-
plain this case, owing to space constraints. To recompute answers
to conjunctive queries, we use the values of the gradient that we

computed while determining the influential variables. For instance,
if the user changes the value of a single input tuple Xi from pi to
p′i, then we can use the previously computed derivative to compute
the new answer probability in O(1) time :

pnew = pold +
∂p

∂pi
(p′i − pi)

Obviously, this works only when exactly one input tuple probability
is modified. When multiple input tuple probabilities are modified,
we can efficiently update the results for read-once lineages.

Read-once Lineages: Suppose that the user modifies c input tuple
probabilities. Then, we can update the output probabilities in time
O(c log(`)), where ` is the size of the lineage. We illustrate this
algorithm below. As we mentioned before, we store the AND/OR
tree which was initially generated for executing the query. We first
construct a Steiner tree in the AND/OR tree connecting the input
tuples that are modified by the user and the root of the tree. We sub-
sequently update the probabilities of each of the nodes contained in
the AND/OR tree using a bottom-up algorithm. Each node sends
its old probability and new probability to its parent, based on which
the parent determines its new probability and sends its old and new
probability values to its parents recursively. The update procedure
is given below: Suppose that p is the parent of node x, which sends
xold and xnew to it. Then node p executes the following routine.

Algorithm 3 update(xnew, xold)

1: if p is an AND node then
2: pnew = pold x

new

xold

3: else
4: pnew = 1− (1− pold) 1−xnew

1−xold

5: Send pold and pnew to parent of p

We illustrate the algorithm with a simple example. Suppose that
the user updates the probabilities of the input tuples x1 and x4 in
Figure 2. In that case, a Steiner tree is constructed, connecting
x1, x4 and o. After this, the probabilities of nodes q3 and q4 are
updated using the equations described above. Following this, the
probabilities of the nodes q1 and o is updated. The complexity of
the above operation is O(ch) where c is the number of nodes that
are updated and h is the height of the tree. If a substantial number
O(n) of input probabilities are updated, we instead use the linear
algorithm of Section 2.2.

Once we modify the probability of a tuple, the derivatives cor-
responding to each of the other nodes change and we also need to
update them. We propose a lazy technique for updating the proba-
bilities. For simplicity, suppose that only one variable is updated.
As described earlier, after computing the path from the modified
node towards the root, we update their probabilities. However, note
that the derivatives for each of these nodes remain the same. We
need to update the derivatives for the other nodes in the tree, which
is at least linear in the size of the tree. Instead, we simply mark
those nodes, whose children’s derivatives are inconsistent. To actu-
ally update the derivatives, we adopt a recursive top-down strategy
where we update the derivative of the node based on the probabil-
ity of the parent. If several tuples are modified, we batch together
multiple updates and perform the derivative update simultaneously
in O(n) time.

Non-read-once Lineage: To update the probability of a non-read-
once lineage, we exploit the binary tree data structure that we gen-
erated while compute the influences (See Section 4.1.1). For sim-
plicity, suppose that the user modifies the input probability of a

tuple t. Since the variable x corresponding to t might appear in
several portions of the tree, we need to essentially update all por-
tions of the tree that contain x. Hence, we recurse over the binary
tree top-down over the nodes that contain x. Note that we can use
the influence vector in order to determine whether a node contains
x by simply checking if its influence value is 0. Once the children
update the probabilities, we update the probabilities of the parent.
We also update the influences of the variables. We exclude the de-
tails of updating the influences owing to space constraints.

6.2 Aggregation
Now, we discuss the problem of incrementally re-evaluating the

results of aggregation queries, specifically MIN/MAX and AVG.

MAX: For MAX queries, our result is a dynamic data structure DS
such that
1. The MAX query can be answered from DS in constant time,

2. We need O(n) time to build DS from scratch.

3. If the probability of a tuple gets changed, we needO(logn) time
to update DS.
Recall the notation max[i, j] denotes the maximum of the ran-

dom tuples ti, ti+1, . . . , tj . We assume a1 ≥ a2 ≥ . . . ≥ an
where ai is the score of tuple ti. Let P [i, k] =

∏k
x=i(1− px). We

can easily show the following generalization of (4) by induction
(proof omitted here): For any i ≤ k ≤ j,

E[max[i, j]] = E[max[i, k]] + P [i, k]E[max[k + 1, j]]. (5)

DS makes use of interval trees (see e.g., [11]) which we briefly
describe as follows. An interval tree T is a binary tree where each
node represents an interval [i, j] for some integer i ≤ j. The root
corresponds [1, n]. For a node [i, j], its left child and right child
represent [i, b i+j

2
c], [b i+j

2
c + 1, j], respectively. The leaves of T

correspond to singletons. It is easy to see that such a tree with n
nodes has height O(logn).

DS consists of two interval trees TP and TE , the first used for
maintaining the information of E[max[i, j]]s and the second for
P [i, j]s. In other words, node [i, j] in TP (TE) stores the value of
P [i, j] (E[max[i, j]]). Assuming we have constructed TP and TE ,
the answer to the MAX query is just E[max[1, n]] which can be re-
trieved in constant time. It is also not hard to show that both TP and
TE can be constructed in linear time. We just start from leaves and
build the trees bottom up using formulas P [i, j] = P [i, k]P [k +
1, j], i ≤ k ≤ j and (5). Now, we describe how to do updating
operation in O(logn) time for TP . Suppose we update the proba-
bility of a leaf v (which corresponds to a singleton tuple). The new
P value for that node is trivial to compute. The key observation is
only the nodes on the path from v to the root need updates and theP
values for any other nodes remain the same because their intervals
do not intersect with that of v. The updates can be done bottom up
from v to the root and take at most O(logn) times. The updating
operation for TE is the same as for TP , except that in each update
we need some value P [i, j] (recall we use (5) to update the val-
ues). But fortunately, such a P [i, j] can be readily retrieved from
the corresponding node in TP in constant time (for this purpose, we
need for each node [i, j] in TE a pointer to node [i, j] in TE). The
procedure for MIN is similar to that of MAX and is omitted.

AVG: Now, we discuss how to recompute the query result for AVG
query. Our algorithm needs anO(n log2 n) preprocessing time and
O(n) time for each probability update. Recall function hAVG(x) =∑
i ai ·

∏
j 6=i(1− pj + pjx) and AVG =

∫ 1

0
hAVG(x)dx (see The-

orem 3). The algorithm maintain the expansions of the two poly-
nomials hAVG(x) and P (x) =

∏
j(1 − pj + pjx). Initially, the

expansion of hAVG(x) can be computed in O(n log2 n) time using
the algorithm from [22]. The expansion of

∏
j(1− pj + pjx) can

be computed similarly using the same time. For each update of
pi, we recompute P (x) as follows: Suppose the the old and new
probabilities of ti are pi and p′i, respectively.

P (x)← P (x)
1− p′i + p′ix

1− pi + pix
.

hAVG(x) can be recomputed as follows:

hAVG(x)←

hAVG(x)− aipix
∏
j 6=i

(1− pj + pjx)

 1− p′i + p′ix

1− pi + pix

+ aipix
∏
j 6=i

(1− pj + pjx)

where
∏
j 6=i(1− pj + pjx) can be computed from P (x) in linear

time. We can easily see other operations also run in linear times.
Thus the overall updating time is O(n).

7. EXPERIMENTAL EVALUATION
The main objectives of our experimental analysis are to show:(1)

sensitivity analysis is critical for probabilistic databases, (2) sensi-
tivity analysis can be performed at low overhead, (3) explanations
can be performed efficiently and (4) incremental recomputation of
query results is efficient. We focus on conjunctive queries to illus-
trate the above points. We implement our system using JDK 1.6.
We use MySQL to store the relations in our database. All experi-
ments were run on a 2.4Ghz Core 2 Duo machine with 2GB of main
memory. We begin with a discussion of the experimental setup.

Dataset: We synthesized a 100 MB TPC-H dataset augmented with
tuple uncertainty for each tuple (lineage is stored as a separate col-
umn). The probabilities of existence were chosen uniformly be-
tween [0, 1]. To speed up computation, we build indexes on the
primary and foreign key attributes of each of the relations.

Queries: For experiments on conjunctive queries and probabilistic
threshold queries, we used TPC-H queries Q2,Q3,Q5,Q7,Q8 and
Q10. We omitted the queries over one relation because of their
simplicity. For each of these queries, we removed all aggregation
constructs. In addition, we generated boolean versions of these
queries by projecting the final outputs to 1, the resulting queries are
respectively labeled R2, R3, R5, R7, R8 and R10. Lineages for the
output tuples are computed using a query rewrite-based approach
shown in Kanagal et al. [24].

7.1 Experimental Results
Sensitivity analysis is essential and critical: Queries over prob-
abilistic databases are highly sensitive to input tuple probabilities.
The sensitivity is even more pronounced for queries that return sets.
We use a top-k query by probability to illustrate this point. We first
execute the corresponding conjunctive query and compute the in-
fluences of all the input tuples on the output tuples. Then we extract
a fragment of the set of output tuples and plot their probabilities
against a particular input tuple probability x in Figure 3(a). As
shown earlier, all output probabilities are linear functions of x. Tu-
ple O4 did not contain x. Therefore, its probability was constant.
As we vary the probability of x, notice that the top-k list changes
significantly. If the p(x) is near 0.6, then the top-k list changes if
we increase or decrease its probability by a small amount. Hence
there is a need for sensitivity analysis to verify query results and
provide robust query processing capability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ob

ab
ili

ty

O1
O2
O3
O4

 0

 10

 20

 30

 40

 50

 60

 70

Q10Q8Q7Q5Q3Q2

Q
ue

ry
 p

ro
ce

ss
in

g,
 s

Probability
Sensitivity

10-1

100

101

102

103

104

105

Q10Q8Q7Q5Q3Q2

Q
ue

ry
 p

ro
ce

ss
in

g,
 m

s

Lineage
Dtree
Prob
S.A

(a) top-k queries (by prob) are very sensitive (b) Overheads for TPC-H queries (c) Query proc time break-up (TPC-H)

10-1

100

101

102

103

104

105

106

R10R8R7R5R3R2

Q
ue

ry
 p

ro
ce

ss
in

g,
 m

s

Lin
Dtree
Prob
S.A

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

tim
e,

 m
s

No pruning
With Pruning

-10

 0

 10

 20

 30

 40

 50

 60

100 104 105 105 105 105

tim
e

(s
ec

)

Explanations (size 2)
Explanations (size 4)
Explanations (size 6)
Explanations (size 8)

Explanations (size 10)

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
4

10
5

10
5

10
5

10
5

10
5

ti
m

e
 (

m
ic

ro
s
e

c
)

N
O

T
E

:
L

O
G

 S
C

A
L

E Complete re-evaluation
Incremental (10 updates)
Incremental (20 updates)
Incremental (50 updates)

(d) Query proc time break-up (boolean) (e) Pruning helps when ε is small (f) Explanations vs lineage size (g) Incremental recomputation

Figure 3: Results: (a) Top-k queries by probability are sensitive to input probabilities. As we modify the probability p(x), the output probabilities and the
top-k output change as shown. (b,c) Here we demonstrate that sensitivity analysis can be implemented very efficiently. The overhead above computing output
probabilities for TPC-H queries is at most 5%. (d) The break up of the times spent in the different components of the algorithm. S.A refers to sensitivity
analysis. (e) Same as part(d) for Boolean TPC-H queries (f) Illustration of the benefits of pruning algorithms. (g) Explanation analysis is efficient. (h)
Incremental recomputation for boolean conjunctive queries is efficient.

Overhead of sensitivity analysis is small: Now, we want to show
that sensitivity analysis can be performed efficiently. When a user
marks a query for sensitivity analysis, we not only have to compute
query results, but also the influential variables. We measure the
overhead of computing influential variables over computing just
the query result probabilities. We measure this overhead for the set
of TPC-H queries mentioned before, and their boolean versions.
The results are shown in Figures 3(b), (c) and (d). As shown in
Figure 3(b), the overhead involved in computing influential vari-
ables is very small, less than 5% in all queries considered. Note
that this is true even for unsafe queries Q7 and Q8. We now study
the time taken for different components of the sensitivity analysis.
The breakdown of the times for different components is shown in
Figure 3(c). As shown in the figure, one of the significant time con-
suming steps is the computation of the lineage itself (indicated by
red bars with large crossings) and the time for building the Dtree
(Section 4.1.1, indicated by green bars with tiny squares). The time
taken for computing output probabilities and for sensitivity analy-
sis (S.A.) are mostly comparable. Note that for read-once lineages
(Q2,Q3,Q8,Q10), the time taken for lineage computation is the
most dominating factor. For queries generating non-read-once lin-
eages, the time taken to compute the appropriate Dtree is the most
dominating factor (Exponential complexity). Once the Dtree is
constructed, computing the probability and the influential variables
is fairly quick. We observe similar results for boolean conjunctive
queries in Figure 3(d). Except for R2, every boolean query gener-
ated a non-read-once lineage. The overheads are slightly higher for
boolean queries since we only need to compute a single probability
(unlike conjunctive queries), but multiple influence values (one for
each input tuples).

Pruning: In this experiment, we study the performance of our prun-
ing rules. We used the probabilistic threshold query:TPC-H query
Q2 with threshold 0.7 and selected different values of epsilon, from
0.1 to 0.7. We evaluate the naive query+influence times versus the
query+influence times obtained by using all the three pruning rules
of Section 4.2. The results are shown in Figure 3(e). As shown
in the figure, for small values of ε, our pruning rules bring down
the evaluation time by about 50%. When the value of ε increases

beyond a point, we need to look at every output tuple, hence the
performance drops, ultimately to that of the naive strategy.

Computing explanations is efficient: In this experiment, we study
the performance of our algorithms that compute explanations. We
vary the size of the lineage and measure the time taken to compute
the explanations. We experiment with different sizes of explana-
tions from 2 to 10. Our results are shown in Figure 3(f). We note
here that we only considered read-once lineages for the experiment
since the greedy heuristics that were proposed (Section 5) for non-
read-once lineages are very efficient. According to Section 5, com-
puting explanations is linear in the size of the lineage. This was
experimentally verified as shown in Figure 3(f) (we plot the figure
after fitting a line over the data points, actual points are not shown).
As we can see from the figure, even for fairly large lineage formu-
las, computing explanations is quite fast and is comparable to the
actual query execution times.

Study of incremental recomputation of output probabilities: In
this experiment, we study the performance of incremental re-evaluation
of output tuple probabilities when input probabilities are modi-
fied. For lineage formulas of different sizes, we modify the in-
put tuple probabilities and compute the time (a) for completely re-
evaluating the probability from scratch, and (b) incrementally re-
computing the probabilities as described in Section 6. We evaluate
three cases in which we modify 10, 20 and 50 input tuple prob-
abilities. The results are shown in Figure 3(h). As shown in the
figure, the time taken for incremental recomputation is an order of
magnitude lesser, even when we modify upto 50 input tuple prob-
abilities (Please note that the y-axis is a log plot). This illustrates
the advantages of our incremental re-evaluation approach.

8. RELATED WORK
In recent work, Meliou et al. [27] develop the notion of causality

of input tuples on the result tuples of a query, based on the fun-
damental notion of causality proposed by Halpern and Pearl [19,
20]. Informally, a tuple t is a cause for a query result if there exists
a possible world in which the presence/absence of t changes the
query result for that world. The responsibility of a tuple t on the

query result, as defined in Meliou et al. [27] relates to the number of
possible worlds that are affected by the presence/absence of the tu-
ple. We describe the connection between responsibility as defined
here and influence is Section 3.4.

Provenance has been widely studied in the database literature [2,
4, 17, 35] and several models of provenance have been proposed
based on boolean formulas (lineage), semirings and so on. In prob-
abilistic databases, the lineage formulas are very large and it is
therefore difficult to understand the interesting tuples for a query.
Further, the input tuples may have different probabilities and a
boolean formula by itself does not capture all the properties of the
input tuples. Hence, in our work, we build on top of the lineage
provenance by extracting two useful entities, i.e., the most influen-
tial/sensitive input tuples and the best explanations from the lineage
formula and the associated input tuple probabilities. Re et al. [30]
discuss techniques for identifying the most influential tuples for a
query by using as input, an approximate lineage formula. We dis-
cuss its relationship to our work in Section 1.

Van der Gaag et al. [25] prove that sensitivity of an output vari-
able in a Bayesian network with respect to each input CPT param-
eter can be computed in O(n) time (n is the size of the network)
using techniques similar to junction tree belief propagation. The
number of CPT parameters is typically exponential in the size of
the largest factor in the Bayesian network. Chan et al. [3] have
continued this line of work to compute influences of pairs of in-
put parameters. These analyses are more general than our methods
since we make assumptions regarding (1) tree structured nature of
the Bayesian network , (2) boolean input variables, implying much
fewer input parameter and, (3) we are only interested in measuring
the sensitivity of one designated child-less output node. Owing to
the simplified nature of our problem, we have been able to provide
more efficient algorithms in our case.

9. CONCLUSIONS
In recent years, there has been a surge of interest in develop-

ing systems for managing and querying uncertain data. While sig-
nificant advances have been made so far in this effort, most of
the systems developed assume query processing over probabilis-
tic database queries as a one-shot process. However, probabilis-
tic databases need to be designed as an interactive application in
which users have flexibility to identify relevant input probabilities
for a given query and re-evaluate the query with the new values
for the probabilities of these tuples. In this paper, we take a first
step in this direction by extending a probabilistic database system
to support sensitivity analysis and explanation analysis. Explana-
tions help users understand the cause of an answer while sensitivity
analysis considers the stability of the output probabilities, thereby
helping users to focus their attention on input tuples that might sig-
nificantly alter the output. Providing such functionality enables a
robust framework for query evaluation in probabilistic databases.

Acknowledgement
This work was supported by NSF Grants IIS-0546136 and IIS-
0916736.

10. REFERENCES
[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple

relational processing of uncertain data. In ICDE, 2008.
[2] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A

characterization of data provenance. In ICDT, pages 316–330, 2001.
[3] H. Chan and A. Darwiche. Sensitivity analysis in Markov networks.

In IJCAI, pages 1300–1305, 2005.
[4] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases:

Why, how, and where. Foundations and Trends in Databases, 2009.

[5] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality
guarantees. PVLDB, 2008.

[6] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, 2003.

[7] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan. Systemt: An algebraic approach to declarative
information extraction. In ACL, 2010.

[8] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition
algorithm for cographs. SIAM J. Comput., 14(4), 1985.

[9] P. Dagum and M. Luby. Approximating probabilistic inference in
Bayesian belief networks is np-hard. Artif. Intell., 60(1), 1993.

[10] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, 2004.

[11] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications (Third
Edition). Springer-Verlag, 2008.

[12] A. Doan, R. Ramakrishnan, F. C. 0002, P. DeRose, Y. Lee,
R. McCann, M. Sayyadian, and W. Shen. Community information
management. IEEE Data Eng. Bull., 29(1), 2006.

[13] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with
uncertainty. In VLDB, 2007.

[14] A. Ferrara, G. Pan, and M. Y. Vardi. Treewidth in verification: Local
vs. global. In LPAR, 2005.

[15] H. Garcia-Molina. Entity resolution: Overview and challenges. In
ER, pages 1–2, 2004.

[16] M. C. Golumbic, A. Mintz, and U. Rotics. Factoring and recognition
of read-once functions using cographs and normality. In DAC, 2001.

[17] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, pages 31–40, 2007.

[18] R. Gupta and S. Sarawagi. Creating probabilistic databases from
information extraction models. In VLDB, 2006.

[19] J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach - part ii: Explanations. In IJCAI, 2001.

[20] J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach: Part 1: Causes. In UAI, 2001.

[21] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas. Mcdb: a monte carlo approach to managing uncertain data. In
SIGMOD, 2008.

[22] T. S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms
for probabilistic data. In SODA, pages 346–355, 2007.

[23] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar information extraction system. IEEE Data Eng. Bull.,
2006.

[24] B. Kanagal and A. Deshpande. Lineage processing over correlated
probabilistic databases. In SIGMOD, 2010.

[25] U. Kjærulff and L. C. van der Gaag. Making sensitivity analysis
computationally efficient. In UAI, 2000.

[26] A. Krause and C. Guestrin. Optimal nonmyopic value of information
in graphical models - efficient algorithms and theoretical limits. In
IJCAI, 2005.

[27] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers and
non-answers. In PVLDB, 2011.

[28] D. Olteanu, J. Huang, and C. Koch. Approximate confidence
computation in probabilistic databases. In ICDE, 2010.

[29] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In ICDE, pages 886–895, 2007.

[30] C. Ré and D. Suciu. Approximate lineage for probabilistic databases.
PVLDB, 2008.

[31] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom. Working
models for uncertain data. In ICDE, 2006.

[32] P. Sen, A. Deshpande, and L. Getoor. Prdb: managing and exploiting
rich correlations in probabilistic databases. VLDB J.,
18(5):1065–1090, 2009.

[33] P. Sen, A. Deshpande, and L. Getoor. Read-once functions and query
evaluation in probabilistic databases. In PVLDB, 2010.

[34] P. Senellart and G. Gottlob. On the complexity of deriving schema
mappings from database instances. In PODS, pages 23–32, 2008.

[35] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, 2005.

