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distributed systems is most often specified in
terms of quality-of-service (QoS) require-
ments, which help define the acceptable levels
of dependability with which capabilities such
as processing capacity, data throughput, or
service availability reach users. For longer-term
properties such as scalability, maintainability,
adaptability, and system security, we can simi-
larly use persistent software attributes (PSAs)
to specify how and to what degree such prop-

erties must remain intact as a network expands
and evolves over time. 

In the past, a common approach to ensuring
the long-term persistence of important service
properties was simply to freeze all changes after
a system’s properties had been sufficiently vali-
dated. However, for an increasing range of im-
portant QoS-intensive systems, this kind of de-
velopment process no longer suffices. Today’s
global information economy strongly encour-
ages forms of development that bring together
participants from across geographical loca-
tions, time zones, and business organizations.
While such distributed development processes
provide a powerful and economically impor-
tant development model, they unfortunately
also increase the churn rates in QoS-intensive
software (see the “QoS and PSAs” sidebar).
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Such churn typically destabilizes QoS proper-
ties such as latency, jitter, and throughput rates
as well as—perhaps even more ominously—
PSA attributes such as reliability, scalability, ef-
ficiency, adaptability, maintainability, and
portability. Rapid code changes can also occur
due to the use of evolution-oriented processes1

such as agile practices, where many small code
change increments are routinely added to the
base system. The challenge in such cases is to de-
velop techniques that can both help coordinate
remote developers and allow them to cope more
efficiently with frequent software changes.
These new techniques must enable distributed
teams to detect, diagnose, and correct changes
that could damage not only QoS constraints
but also the longer-term, investment-preserving
PSA properties of such systems.

In practice, budgets for development and
in-house quality assurance are often too lim-
ited to perform a comprehensive exploration
of the software configuration space (see the re-
lated sidebar). Instead, developers typically as-
sess PSAs for only a few software configura-
tions and then arbitrarily extrapolate their
results to the entire configuration space. This
approach is risky, however, because it can let
major sources of PSA degradation escape de-
tection until systems are fielded. Even worse,
since in-house–tested settings are often se-
lected in an ad hoc manner, the points from
which such generalizations are made might
not even include any actual settings in fielded
systems. What we need, then, are QA tech-
niques that can provide a scalable, effective
approach to understanding and navigating
large software configuration spaces.

We selected and merged two existing tech-
niques to address this challenge: distributed
continuous quality assurance (DCQA)2 and
the Skoll model-driven approach to coordinat-
ing distributed activities (www.cs.umd.edu/
projects/skoll). We developed Skoll DCQA to
help automate QoS and PSA compliance in ge-
ographically distributed systems and teams.
Skoll DCQA approaches QoS and PSA com-
pliance in much the same way as a more tra-
ditional distributed data-processing task—by
assigning subtasks that can be sent iteratively,
opportunistically, and continuously to partici-
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Persistent software attributes are akin to quality-of-
service guarantees: they both require that specified func-
tional properties remain intact during operational use.
The main difference between them is that QoS require-
ments focus on immediate operational properties, such
as throughput and latency, whereas PSAs focus on the
resilience of long-term software engineering properties
such as scalability, security, and maintainability. PSA
and QoS concepts are closely intertwined, since a failure
to specify and implement PSA requirements (for exam-
ple, persistent scalability) can lead directly to serious 

QoS failures (for example, an inability to handle peak
loads due to throughput failures).

This article addresses the difficult problem of how to
meet and maintain QoS and PSA requirements in large
distributed systems. The authors’ approach, Skoll DCQA,
helps keep the PSA validation process manageable
through its use of modeling techniques that intelligently
guide the process of distributed and continuous valida-
tion of properties. The article includes examples of how
Skoll DCQA uncovered previously unrecognized prob-
lems in a large, well-maintained, widely used framework
for distributed systems. 

—Terry Bollinger, Jeffrey Voas, and
Maarten Boasson, guest editors

WHY  TH IS  MATTERS

PRESERVING DISTRIBUTED 
SYSTEMS’ PROPERTIES

Quality-of-service and persistent-software-attributes requirements often
are tightly linked; for example, a QoS need for minimum services availabil-
ity might not be achievable if a broader PSA requirement for continued
long-term dynamic scalability of the distributed system can’t also be met.
QoS-intensive systems are ones in which services must either continually
meet a wide range of strict QoS limits or face serious to catastrophic conse-
quences. QoS-intensive systems are necessarily also PSA-intensive, because
large-scale distributed systems aren’t sufficiently fixed over time for their
QoS certifications to remain adequately stable.

QoS-intensive distributed systems also often have both real-time and em-
bedded properties. Examples include air traffic control systems and electri-
cal power grid control systems, for which a serious failure to meet QoS and
PSA requirements could lead to significant damage and even loss of human
lives. Other examples of QoS-intensive systems include high-performance
scientific-computing systems, in which losing a critical system property at the
wrong time could be extremely costly or could lead to the loss of one-of-a-
kind data. Examples of scientific QoS-intensive systems include robotic
space missions, high-energy physics experiments, and long-running compu-
tational fluid dynamics simulations.

QoS and PSAs



pating network clients.2 Skoll DCQA makes it
easier and more efficient to automate the
analysis and synthesis of customization-related
artifacts such as component interfaces, imple-
mentations, glue code, configuration files, and
deployment scripts.3

The Skoll DCQA process
The Skoll DCQA process was inspired by

earlier work, including the Options Configura-
tion Modeling language,4 the Benchmarking
Generation Modeling Language (BGML),5

commercial systems efforts such as the Netscape
Quality Feedback Agent and Microsoft’s XP
Error Reporting, the distributed regression test
suites that open source projects use, and auto-
build scoreboards such as the ACE+TAO

Virtual Scoreboard (www.dre.vanderbilt.edu/
scoreboard) and Dart (www.public.kitware.
com/Dart).

Figure 1 depicts Skoll DCQA’s process ar-
chitecture; in this case, two of several Skoll
client groups are communicating (shown as
red bidirectional arrows) with a central collec-
tion site. Each collection site comprises a clus-
ter of servers connected via high-speed links
(blue bidirectional arrows). The (yellow) call-
outs show the servers’ contents in terms of the
DCQA model and configuration artifacts. We
use Skoll’s configuration model to intelligently
guide the distribution and continuous execu-
tion of Skoll clients across a grid of computing
resources. In this process, Skoll provides lan-
guages for modeling system configurations
and their constraints, algorithms for schedul-
ing and remotely executing tasks, and analysis
techniques for characterizing faults.2 The re-
sults of the distributed evaluations are re-
turned to central Skoll servers, where they are
fused together to guide subsequent iterations
of the Skoll DCQA process.

Skoll DCQA’s analytical cornerstone is its use
of a formal model of the software configuration
space in which its processes must operate. This
formal model makes it possible to capture valid
configurations and use them to develop specific,
well-defined QA subtasks. A configuration in
Skoll is represented formally as a set {(O1, S1),
(O2, S2) … (On, Sn)}, where each Oi is a config-
uration option and each Si is its value, drawn
from the allowable settings. Not all configura-
tions make sense in practice (for example, fea-
ture X might not be supported on operating sys-
tem Y), so Skoll DCQA also includes inter-option
constraints that limit the setting of one option
based on the setting of another.

To navigate the remaining valid configura-
tions in the space, Skoll uses an intelligent steer-
ing agent that assigns subtasks to clients as they
become available. The ISA considers four major
factors when making such assignments:

■ The configuration model, which charac-
terizes the subtasks that can be assigned
legally

■ The summarized results of previously
completed subtasks

■ A set of global process goals that define
general policies for allocating subtasks,
such as testing recently changed features
more than unchanged ones
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A good strategy for tackling any large problem is first to identify and an-
alyze a smaller subset of that problem, ideally one that’s still large enough
to apply to a range of interesting systems. QoS-intensive systems provide
just such a solid starting point in the form of dozens to hundreds of software
configuration settings in the operating system, middleware, application,
compiler, and runtime software of each platform in a distributed system. Fo-
cusing on configuration settings limits the problem’s total complexity yet still
encompasses a large and interesting set of platform configurations.

An especially useful way to visualize the full range of settings possible in
a distributed system is as a multidimensional software configuration space.
Each possible total combination of settings on a network platform becomes
a single unique point within this space, with the space as a whole encom-
passing every possible combination of settings. Points that lie close together
in this space represent combinations of settings that differ from each other
only by one or two individual settings. The total size of the software configu-
ration space depends on the number of settings available for change. If only
a small number of settings are treated “in play,” the resulting subset soft-
ware configuration space might have no more than a few tens of unique
points within it. However, if every setting available on a typical realistic net-
work platform is put into play, the resulting full software configuration space
is typically very large indeed, containing millions or more of unique points.

We can now understand QoS requirements as criteria for determining an
“acceptable performance” subset of the overall software configuration space.
PSA requirements further limit this QoS subspace to exclude “quick fix” solu-
tions—that is, solutions that might meet QoS constraints in the short term but
only at the cost of significantly degrading one or more longer-term PSA
properties such as adaptability, portability, scalability, or maintainability.

While the vast size of the full software configuration space ensures the pres-
ence of solutions that are both adaptable and portable, it also places enormous
demands on developers who must ensure that all their design decisions keep
the system within the boundaries of the QoS- and PSA-compliant subspaces. In
particular, our experience has shown that PSA requirements for reliability,
portability, and efficiency can’t be reliably assured without first performing
an extensive QA analysis of how system requirements interact with operating
environments.1 This is equivalent to mapping out the impact of QoS and PSA
requirements over a large subset of the full software configuration space.

Software Configuration Spaces



■ Clients’ characteristics and participation
level preferences, as described in a template
provided by clients

Once the ISA has selected a configuration
that meets all the factors relevant to a newly
available client, it creates a job configuration
that includes all the code artifacts, configuration
parameters, build instructions, and QA-specific
code (such as developer-supplied regression and
performance tests) associated with that subtask.
The job configuration is then sent to the Skoll
client, which executes it and returns the results
to the ISA for collection and analysis.

A notable feature of this process is that by
looking at the results returned from many
clients, the ISA can learn and adapt the over-
all Skoll DCQA process to make it more effi-
cient. For example, the ISA can identify con-
figurations that repeatedly fail to meet PSAs,
thereby enabling developers to concentrate
their efforts on fixing these problems. Con-
versely, once problem configurations have
been characterized, the ISA can refocus efforts
on other previously unexplored parts of the
configuration space that might provide better
PSA support.

To help developers implement specific Skoll
DCQA processes, the Skoll DCQA environ-

ment provides a variety of model-driven tools,
such as the BGML. This modeling tool lets de-
velopers model interaction scenarios visually,
generate test code, reuse QA subtasks across
configurations, generate scripts to control sub-
task distribution and execution by clients,
monitor performance and functional behav-
iors, and evaluate software attributes includ-
ing correctness, throughput, latency, and jitter.

Skoll DCQA includes a variety of analysis
tools that help developers interpret and lever-
age its often-complex global process results.
One such tool provides classification tree
analysis,6 which creates tree-based models
that predict object class assignment based on
the values of a subset of object features. CTA
is used to diagnose which options and option
settings are most likely causing specific PSA
test failures, thus helping developers identify
root causes of PSA failures quickly.

Evaluating Skoll DCQA
To evaluate the effectiveness of the Skoll

DCQA process at navigating software configu-
ration spaces, we applied it in three different con-
texts described next: support of the ACE+TAO
code base, an avionics application of ACE+TAO,
and early work on the problem of churn-induced
degradation of distributed code bases.
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Applying Skoll DCQA to ACE+TAO
In this application, we used Skoll DCQA to

analyze and support the popular ACE+TAO
middleware suite (www.dre.vanderbilt.edu/
Download.html). ACE+TAO provided a good
high-end test of the Skoll DCQA process, be-
cause it includes about two million lines of con-
tinuously evolving C++ frameworks, functional
regression tests, and performance benchmarks,
packaged in about 4,500 files and receiving an
average of over 300 code updates per week. We
focused primarily on QoS and PSA require-
ments affecting latency, throughput, and cor-
rectness. Subtasks assigned to the clients in-
cluded activities such as compiling the system,
running regression tests in a particular system
configuration, and evaluating system response
times under different input workloads.

From this exercise (described in detail else-
where2), we identified three main benefits of
using Skoll DCQA:

■ Detecting and pinpointing software porta-
bility and availability problems

■ Identifying the subsets of options that had
the most impact on specific PSAs

■ Understanding the effects of system
changes on PSAs, enabling developers to
ensure continued support with an accept-
able level of effort

Because the ACE+TAO evaluation was the
most controlled of the three we conducted, we
were able to use it to try out scenarios, starting
with small subset configuration spaces and
working toward larger ones. For simplicity and
easy comparison of results, we ran all these
scenarios on a single operating system (Linux
2.4.9-3) using a single compiler (gcc 2.96);
since then, we’ve run other studies across mul-
tiple operating systems and compilers.

Scenario 1: Clean compilation. This scenario
assessed whether each ACE+TAO feature
combination compiled without error. We se-
lected 10 binary-valued compile-time options
that control build-time inclusion of features,
such as asynchronous messaging, use of soft-
ware interceptors, and user-specified messag-
ing policies (a detailed explanation of the
many ACE+TAO configuration options are
available at www.dre.vanderbilt.edu/TAO/
docs). We also identified seven inter-option
constraints that take forms similar to “if op-

tion A is enabled, then option B must be dis-
abled.” This relatively small subset configura-
tion space had 89 valid configurations.

By executing the Skoll DCQA process on
this subset configuration space, we determined
that 60 of the 89 valid configurations didn’t
even build—a result that was quite a surprise
to the ACE+TAO developers. By using CTA
on the results from client workstations, we
were also able to identify a previously undis-
covered bug. This bug centered on a particular
line in the TAO source code, and it occurred in
eight configurations that all had a specific pair
of option settings.

Even though we intentionally kept the se-
lected configuration space small for testing pur-
poses, it was still large enough to contain sig-
nificant problems that the maintainers of the
ACE+TAO code base hadn’t yet identified.
Identifying these problem areas in the configu-
ration space helped improve both QoS and PSA
support by steering users toward safer regions
in the configuration space and by showing
ACE+TAO developers what needed to be fixed.

Scenario 2: Testing with default runtime options.
This scenario assessed portability and correct-
ness PSAs of ACE+TAO by executing regression
tests on each compile-time configuration using
the default runtime options (that is, the configu-
ration that new users encounter upon installa-
tion). We used the 96 regression tests that are
distributed with ACE+TAO, each containing its
own test oracle that reported success or failure
on exit. We expanded the configuration model
to include options that captured low-level oper-
ating system and compiler information—for
example, indicating the use of static versus dy-
namic libraries, multithreading versus sin-
glethreading, and inlining versus non-inlining.
We also added test-specific options to the con-
figuration space because some ACE+TAO tests
can only run in particular configurations, such
as when multithreading is enabled.

We added one test-specific option per test,
called run (Ti), which indicates whether test Ti

will run in a given compile-time configuration.
We also defined constraints over these op-
tions; for example, some tests can run only on
configurations that have more than Minimum
CORBA features. After making these changes,
the space had 14 compile-time options with 12
constraints and an additional 120 test-specific
constraints.

We focused
primarily on
QoS and PSA

requirements
affecting
latency,

throughput, and
correctness.
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After resolving the constraints, we compiled
2,077 individual tests, of which 98 did not com-
pile. Of the 1,979 tests that did compile, 152
failed, while 1,827 passed. This process took
about 52 hours of computer time on the Skoll
grid that was available for the experiments.

Subsequent analysis using classification
trees showed that in several cases tests failed
for the same reason in the same configurations.
For example, the analysis showed that test
compilation always failed at a given file for the
following option settings: CORBA_MSG = 1,
POLLER = 0, and CALLBACK = 0. This compi-
lation error stemmed from a previously undis-
covered bug that occurred because certain
TAO files assumed these settings were invalid
and thus couldn’t occur. Using our model-
driven DCQA environment and process, we
were able to determine whether the current
version of ACE+TAO successfully completed
all regression tests in its default configuration.

Scenario 3: Regression testing with configur-
able runtime options. This scenario assessed
the functional correctness of ACE+TAO by
executing the ACE+TAO regression tests over
all settings of their runtime options, such as
when to flush cached connections or what
concurrency strategies TAO should support.
This was the largest scenario in terms of con-
figuration space. We modified the configura-
tion model to reflect six runtime configuration
options. Overall, there were 648 different
combinations of CORBA runtime policies.

After making these changes, the compile-
time option space had 14 options and 12 con-
straints; there were 120 test-specific con-
straints, and six new runtime options with no
new constraints. Thus, the configuration space
for this scenario grew to 18,792 valid config-
urations. At roughly 30 minutes per test suite,
the entire test process involved around 9,400
hours of computer time on the Skoll grid.

Several tests failed in this scenario, al-
though they hadn’t failed in Scenario 2 when
they were run with default runtime options.
These problems were often located in feature-
specific code. Interestingly, some tests failed
on every single configuration, including the
default configuration tested earlier, despite
succeeding in Scenario 2. Bugs in option set-
ting and processing code were often the
sources of these problems. ACE+TAO devel-
opers were intrigued by these findings because

in practice they rely heavily on user testing at
installation time (Scenario 2) to verify proper
installation and provide feedback on system
correctness. Our feasibility study raises ques-
tions about the adequacy of that approach.

Another group of tests had particularly in-
teresting failure patterns. Three tests failed be-
tween 2,500 and 4,400 times (out of 18,792
executions). Using CTA, we automatically dis-
covered that the failures occurred only when
ORBCollocation = NO was selected (that
is, no other option influenced these failures).
This option lets objects in the same address
space communicate directly, saving marshal-
ing, demarshaling, and protocol-processing
overhead. The fact that these tests worked
when objects communicated directly but failed
when they talked over the network suggested a
problem related to message passing. In fact,
further scrutiny revealed the problem’s source
was a bug in the ACE+TAO routines for mar-
shaling and demarshaling object references.
Our DCQA process thus helped us not only to
systematically evaluate the functional correct-
ness PSA across many different runtime config-
urations but also to leverage that information
to help pinpoint the causes of specific failures.

Applying Skoll DCQA to avionics
Figure 2 gives a high-level overview of how

we used Skoll DCQA to analyze and support
PSAs for one part of an avionics mission com-
puting system based on Boeing’s Bold Stroke
software archtecture.7 This system was devel-
oped using the same ACE+TAO middleware
described in the first example. This scenario’s

N o v e m b e r / D e c e m b e r  2 0 0 4 I E E E  S O F T W A R E 7

Model

Code
generators Artifacts

Asynchronous communication

Interface
definition

files

Script
file

Source
files

Skoll

Target
machine

Internet

Avionics
scenario

Timer
40 Hz

1

2

4

3

GPS
Navigation

display

Synchronous communication

Figure 2. Using Skoll
DCQA on an avionics
system.



goal was to leverage the generative capabilities
of our BGML tool5 and integrate it with Skoll
DCQA. There were four major steps in apply-
ing Skoll DCQA to the avionics system.

Step 1: Define the application scenario. Using
the Generic Modeling Environment model-
driven tool suite (www.isis.vanderbilt.edu/
Projects/gme), developers created BGML mod-
els of both the avionics software system and
the PSA-specific evaluation activities that are
needed to ensure acceptable operational be-
havior. The models detailed system configura-
tion options and interoption constraints, and
also captured PSA-specific information such as
the metrics calculated in benchmarking experi-
ments, the number and execution frequency of
low-level profiling probes, and which event
patterns should be filtered out or logged by the
system. For example, in the avionics mission
computing scenario, we used a three-compo-
nent, basic single-processor scenario (known
as the BasicSP scenario) that receives global-
position updates from a GPS device and then
displays them on a user interface in real time.

Step 2: Create benchmarks using BGML. In the
BasicSP scenario, the GPS component serves
as the source for multiple components requir-
ing position updates at regular intervals. This
component’s concurrency mechanism should
therefore be tuned to serve multiple requests
simultaneously. Moreover, requiring that the
desired data request and display frequencies
are fixed at 40 Hz is captured in the models.
The BGML model interpreter processes these
models to generate the lower-level XML-based
configuration files, the required benchmarking
code (such as IDL files and required header
and source files), and necessary script files for
executing the Skoll DCQA process. This step
reduces accidental complexities associated
with tedious and errorprone handcrafting of
source code for a potentially large set of con-
figurations. The configuration file is input to
the Skoll ISA, which schedules the subtasks to
execute as Skoll clients become available.

Step 3: Register and download clients. Remote
users register with the Skoll infrastructure and
obtain the Skoll client software and configura-
tion template that the BGML model interpreter
generated. Clients can run periodically at user-
specified times, continuously, or on demand.

Step 4: Execute DCQA process. As each client
request arrives, the ISA examines its internal
rule base and Skoll databases, selects a valid
configuration, packages the job configuration,
and sends it to the client. The client executes it
and returns the results to the Skoll server, which
updates its databases and executes any adapta-
tion strategies triggered by the new results.

Generating the required source and config-
uration files from higher-level models removed
the need to handcraft these files. Moreover,
the generated code was syntactically and se-
mantically correct, thus eliminating common
sources of errors. The Skoll DCQA process
just described illustrates how DCQA capabili-
ties can address both performance-related
PSAs and functional-correctness PSAs.

Applying Skoll DCQA to change-induced 
performance degradation

Given its successes in the first two studies
described earlier, we were interested in
whether we could also apply Skoll DCQA to
the problem of ensuring consistent perform-
ance in an environment of rapid code change,
which can lead to performance degradation
over time. We call the strategy we used main
effects screening, which is based on the fol-
lowing three steps.

Step 1: Generate a formal model of the most
relevant effects. This formal model is based
on the Skoll DCQA system configuration
model and uses screening designs8 to help re-
veal low-order effects—that is, small changes
to single, paired, or tripled option settings that
have seemingly disproportionate effects on
performance. We call the most influential of
these option settings main effects. This tech-
nique works when the relationships between
such settings and performance remain reason-
ably linear.

Step 2: Execute the resulting model on the
DCQA grid. Each task involves running and
measuring benchmarks on a single configura-
tion dictated by the experimental model de-
vised in Step 1. As before, we used the model-
driven BGML tool to simplify benchmark
creation, execution, and analysis.

Step 3: Collect and analyze the data to identify
main effects. By first centralizing and then it-
eratively redistributing the lessons learned pro-
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vided by a wide range of participating devel-
opers, it becomes possible over time to form an
improved consensus on the main effects’ set-
tings and their thresholds. We’ve found that
periodically monitoring just these main effects
gives an inexpensive and rapid way to detect
performance degradations across the configu-
ration space.

T he results from our Skoll DCQA stud-
ies have been encouraging. They’ve
demonstrated the approach’s value at

finding and characterizing “dangerous” re-
gions in configuration spaces, which in turn
helps developers ensure that important prop-
erties can be preserved as their code base ex-
pands over time. We aren’t the only group
that has addressed this need via DCQA
processes,1,2,9,10 but much more remains to be
done. One important challenge is to increase the
overall level of automation in DCQA processes.
Specifying DCQA processes, for example, is cur-
rently a more labor-intensive process than we’d
like. Another problem is applying DCQA

processes to PSA properties such as usability
and maintainability that aren’t easily meas-
ured by automated means, and so again re-
quire labor-intensive human intervention.
Other unresolved challenges and risks include
how best to structure DCQA processes, what
types of QA tasks can be distributed effec-
tively, and how the costs and benefits of
DCQA processes compare to conventional in-
house QA processes.

To address these issues, we’re working with
other researchers in the Remote Analysis and
Measurement of Software Systems community
(http://measure.cc.gt.atl.ga.us/ramss) to develop
tools, services, and algorithms needed to pro-
totype and test DCQA processes. Scaling is an
interesting issue; in general, we expect Skoll
DCQA’s quality to improve as the number of
participating clients and users increases. This
positive scaling effect is reminiscent of the scal-
ing phenomenon that Terry Bollinger postulates
(Software Cooperatives: Infrastructure in the
Internet Era, www.terrybollinger.com/swcoops/
swcoops) is behind the recent rapid economic
growth in the use of open source development.



Despite such challenges, the overall Skoll
DCQA approach of using iterative, model-co-
ordinated, highly distributed evaluations of
software properties holds considerable promise
for better understanding, characterizing, and
improving distributed systems. We look for-
ward to helping this field evolve over the next
few years and evaluating the degree to which
such methods end up supporting and validat-
ing important properties that must be made
persistent over time to be fully usable.
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