Distributed Performance Testing using Statistical Modeling

Alan F. Karr
National Institute for Statistical Sciences (NISS)
PO Box 14006
Research Triangle Park, NC 27709—4006

karr@niss.org

ABSTRACT

This article briefly presents some of our recent research in
distributed continuous performance analysis. In general this
work pushes substantial parts of performance analysis out of
developer laboratories and onto remote, end-user machines.

To do this effectively we have found it useful to recast
performance analysis as a model-based experimental design
and execution problem.

Our experience suggests that this approach has merit, but
that much future work remains to be done. We therefore
discuss some of the limitations of our current efforts and
describe some plans for future work.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms

Experimentation, Measurement, Performance, Statistical Mod-

eling

Keywords

Distributed continuous quality assurance

1. PROJECT DESCRIPTION

Emerging trends and challenges. Software developers
and users spend a great deal of time measuring, modeling,
and analyzing the systems the build and use. Typically these
investigations are performed in-house—by a small group of
experts, on their own computing platforms, using input work-
loads they have generated. One benefit of in-house QA is
that programs can be analyzed at a fine level of detail since
QA teams have extensive knowledge and unrestricted ac-
cess to the software. The shortcomings of in-house efforts,
however, are well-known and severe. They include (1) in-
creased cost and schedule; and (2) misleading results when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE Workshop

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Adam A. Porter
University of Maryland
College Park, MD 27042

aporter@cs.umd.edu

the test-cases and input workload differs from actual inputs
and workloads, or when the developer systems and execution
environments differ from fielded ones.

We expect these shortcomings to worsen considerably in
the future as software is increasingly subjected to the fol-
lowing trends:

1. Demand for user-specific customization. To serve
a broad and diverse user community and to amortize de-
velopment costs across it, software is increasingly designed
be customizable for particular run-time contexts and appli-
cation requirements. General-purpose, one-size-fits-all soft-
ware solutions often have unacceptable performance.

2. Severe cost and time-to-market pressures. Global
competition and market deregulation are shrinking budgets
for the development and analysis of software in-house. In ad-
dition, customers are demanding that software be frequently
and rapidly updated to add functionality, fix bugs and patch
security flaws. As a result, developers must assess the conse-
quences of development decisions and hunt down problems
in ever shortening amounts of time.

3. Distributed and evolution-oriented development
processes. Today’s global IT economy, multi-tier architec-
tures and component-based development techniques often
involve developers distributed across geographical locations,
time zones, and business organizations. (This is true for
both open source and commercial projects.) This approach
reduces cycle time by letting developers work in parallel,
with minimal direct inter-developer coordination. At the
same time though it can increase software churn rates and
obscure system-wide constraints, assumptions and interac-
tions. All this in turn increases the need to detect, diagnose,
and fix faulty changes quickly. The same situation occurs in
evolution-oriented processes, where many small increments
are routinely added to the base system.

These accelerating trends present many challenges to de-
velopers. One of the biggest is the ezploding system configu-
ration space. Software that runs on many hardware and OS
platforms and supports very different feature sets and work-
load profiles can have up to thousands of compile- and/or
run-time configuration options. For example, SQL Server
7.0 has 47 configuration options, Oracle 9 has 211 initializa-
tion parameters, the ACE4+TAO CORBA implementation
has over 500 configuration options, and a recent Linux kernel
has nearly 5000. While not all options are independent—
they often constraint one another —this nevertheless leads
to a great many system configurations, each of which has its
own performance characteristics.

When growing configuration spaces are coupled with shrink-

ing software development resources, it becomes infeasible to
handle all performance analysis in-house. One reason is in-
dividual developers lack access to all the heterogeneous hard-
ware, OS, and compiler platforms on which their software
will run. Even with access to resources, it simply takes too
long to get useful feedback. The end result is that develop-
ers must often release software whose performance in many
configurations is unknown.

Moreover, distributed development teams exacerbate these
trends because it becomes hard to maintain a system-wide
perspective. As a result, design and optimization decisions
are made without precise knowledge of their consequences in
fielded systems.

These trends and their resulting challenges create an en-
vironment in which performance analyses done in-house do
not match in-the-field behavior. We contend that techniques
and tools needed to bridge this gap effectively will save sub-
stantial time, effort, and resources throughout the software
industry.

To address these problems we are developing tools and
techniques for Distributed, Continuous Quality Assurance
(DCQA). In particular we are focusing on DCQA processes
that conduct performance analyses around-the-world and
around-the-clock, leveraging fielded resources during local,
off-peak hours. To support this effort we are devising and/or
redesigning performance analyses so they are (1) highly dis-
tributed and lightweight from the perspective of individual
participants; (2) incremental and adaptive, changing their
behavior over time based on earlier results, time constraints
and resource availability; and (3) robust to differences in end
user resources, such as processor speeds, memory availabil-
ity, transient workloads and network traffic.

To accomplish these steps effectively, we depend on mod-
els to help solve the following technical challenges:
Process management. We are developing the tool infras-
tructure necessary to conduct distributed analyses on pro-
duction user programs. This infrastructure includes mecha-
nisms for deploying fielded instances, executing and measur-
ing each instance’s performance, acquiring data from them,
and storing and analyzing the data. It also involves plac-
ing hooks in individual systems and modifying development
tools, such as configuration management and bug-tracking
systems.

Distributed compositional analysis techniques. Since
each user provides only a small amount of the total data,
traditional analysis that is localized to an individual user
machine will not work. We are therefore developing new dy-
namic analysis techniques that decompose the analysis into
smaller steps and use state-of-the-art statistical techniques
to distribute the steps among multiple users and then to fuse
each user’s results into an accurate solution to the original
problem.

Distributed data management. Initially, our approach
has distributed performance measurement tasks across a
grid of computing resources. The data are returned to cen-
tral collection sites and analyzed there. This approach will
have problems scaling to very large number of participants.
To deal with these issues, we are redeveloping the infrastruc-
ture and analysis techniques so that not only measurement,
but data management and analysis are also distributed.
Scenario implementation and empirical evaluation.
To help explore these ideas we are developing specific usage
scenarios—applications that depend on performance mea-

surement to achieve some developer or user goal. We are
also evaluating how well our approach supports these appli-
cations to better understand the limits of our approach.

2. PRELIMINARY INVESTIGATIONS
2.1 The Skoll DCQA Environment

As explained earlier, we are exploring distributed contin-
wous quality assurance processes. DCQA processes work by
dividing high level QA tasks, such as running a regression
test suite, into multiple subtasks, such as running a subset
of the regression test suite on a particular system configura-
tion. These subtasks are then intelligently and continuously
distributed to—and executed by—heterogeneous computing
resources contributed largely by end-users and distributed
development teams. The results of these evaluations are re-
turned to servers at central collection sites, where they are
fused together to guide subsequent iterations of the DCQA
processes.

To support this effort we have developed Skoll, a pro-
totype DCQA environment described at www.cs.umd.edu/
projects/skoll. Currently Skoll includes languages for
modeling system configurations and their constraints, al-
gorithms for scheduling and remotely executing tasks, and
planning technology that analyzes subtask results and adapts
the DCQA process in real time.

The cornerstone of Skoll is its formal model of a DCQA
process’s system configuration space, which captures differ-
ent control parameters, called options, and their allowable
settings. Since in practice not all combinations of options
make sense (for instance, feature X may not be supported
on operating system Y), we define inter-option constraints
that limit the setting of one option based on the settings of
others. A walid configuration is one that violates no inter-
option constraints. Skoll uses this configuration space model
to help plan global QA processes, adapt these processes dy-
namically, and aid in analyzing and interpreting results from
various types of functional and performance regression tests.

Since the configuration spaces of DCQA processes can be
quite large, Skoll has an Intelligent Steering Agent (ISA)
that uses planning techniques to control DCQA processes
by deciding which valid configuration to allocate to each in-
coming Skoll client request. When a client is available, the
ISA decides which subtask to assign it by considering many
factors, including (1) the system configuration model, which
characterizes the subtasks that can legally be assigned, (2)
the results of previous subtasks, which capture what tasks
have already been done and whether the results were suc-
cessful, (3) global process goals, such as testing popular con-
figurations more than rarely used ones or testing recently
changed features more heavily than unchanged features, and
(4) client characteristics and preferences: for example, the
selected configuration must be compatible with the OS run-
ning on the client machine or configurations must run with
user-level—rather than superuser-level— protection modes.

After a valid configuration is chosen, the ISA packages the
corresponding QA subtask into a job configuration, which
consists of the code artifacts, configuration parameters, build
instructions, and QA-specific code (for example, developer-
supplied regression or performance tests) associated with a
software project. Each job configuration is then sent to a
Skoll client, which executes the job configuration and re-
turns the results to the ISA. The ISA can learn from the

results and adapt the process: if some configurations fail to
work properly, developers may either want to pinpoint the
source of the problems or, alternatively, to refocus on other
unexplored parts of the configuration space. To control the
ISA, Skoll DCQA process designers can develop customized
adaptation strategies that monitor the global process state,
analyze it, and use the information to modify future subtask
assignments in ways that improve process performance.

Since DCQA processes can be complex, Skoll users often
need help to interpret and leverage process results. Skoll
therefore supports a variety of pluggable analysis tools, such
as classification tree analysis (CTA) [1]. In previous work [10,
16], for example, we used CTA to diagnose options and set-
tings that were the likely causes of specific test failures. In
more recent work we developed statistical tools to design
and analyze formal experiments.

2.2 A Sample DCQA Process for Performance-
Oriented Regression Testing

As software systems change, developers often run regres-
sion tests to detect unintended functional side effects. Much
less attention has been directed to unintended side effects
on performance. To detect performance problems, develop-
ers often run benchmarking regression tests. As described
in Section 1, however, in-house QA efforts cannot deal with
enormous system configuration spaces, especially where time
and resource constraints, and often high change frequencies,
severely limit the number of configurations that can be ex-
amined. For example, our earlier experience with applying
Skoll to the ACE+TAQO middleware found that only a small
number of default configurations are benchmarked routinely
by the core ACE+TAO development team, who thus get
an extremely limited view of their middleware’s Quality of
Service (QoS). Problems not readily seen in these default
configurations therefore often escape detection until systems
based on ACE+TAO are fielded by end users.

To address these problems, we used the Skoll environ-
ment to develop and implement a new hybrid DCQA pro-
cess called main effects screening (See Yilmaz et al. [3] for
a more detailed discussion).

2.2.1 Main Effects Screening Process

Main effects screening is a technique for rapidly detecting
performance degradation across a large configuration space
as a result of system changes. Our approach relies on a
class of experimental designs called screening designs [15],
which are highly economical and can reveal important low-
order effects, such as individual options and pairs or triples
of options that strongly affect performance. We call these
most influential option settings “main effects.”

At a high level, main effects screening involves the follow-
ing steps: (1) compute a formal experimental design based
on the system’s configuration model; (2) execute that ex-
perimental design across fielded computing resources in the
Skoll DCQA grid by running and measuring benchmarks on
specific configurations dictated by the experimental design
devised in step 1; (3) collect, analyze and display the data,
in order to identify the main effects; (4) estimate overall
performance whenever the software changes by evaluating
all combinations of the main effects (defaulting or random-
izing all other options); and (5) continuously recalibrate the
main effects options by restarting the process. This last
step is done because the main effects can change over time,

depending on how fast the system changes.

The assumption behind this five-step process is that since
main effects options are the ones that affect performance
most, evaluating all combinations of these option settings,
which we call the “screening suite,” can reasonably estimate
performance across the entire configuration space. If this as-
sumption is true, testing the screening suite should provide
much the same information as testing the entire configura-
tion space, but at a fraction of the time and effort since it
is much smaller than the entire configuration space.

2.2.2 Feasibility Study

We evaluated this new process by applying it to a large-
scale system called ACE+TAO[13]. The study focused on
the following application scenario. Due to recent changes
made to the message queuing strategy, the developers of
ACE+TAO+CIAQ were concerned with measuring two per-
formance criteria: (1) the latency for each request and (2) to-
tal message throughput (events/second) between the ACE+-
TAO+CIAO client and server. For this version of ACE+-
TAO+CIAO, the developers identified 14 binary run-time
options they felt affected latency and throughput. Thus,
there are 2! = 16, 384 different configurations.

To evaluate our approach, we generated performance data
for all 16,384 valid configurations, which we refer to as the
“full suite” and the performance data as the “full data set.”
We then examined the effect of each option and judged
whether they had important effects on performance. Based
on this data we determined that two options were clearly
important, another three were arguably important, and the
remaining options were not important.

We then evaluated whether the remotely executed screen-
ing designs correctly identified the same important options
discovered in the full data set. To do this, we calculated
and executed three different screening designs. These de-
signs examined all 14 options using increasingly larger run
sizes (32, 64, or 128 observations). We refer to the screening
designs as Scrsa, Screa and Scriss, respectively. We deter-
mined that all screening designs correctly identified the two
important options. Scri2s also identified the three possibly
important options.

These results suggest that (1) screening designs can, in
some cases, detect important options at a small fraction of
the cost of exhaustive testing; (2) the smaller the effect, the
larger the run size needed to identify it; and (3) developers
should be cautious when dealing with options that appear
to have an important, but relatively small effect, as they
may actually be seeing normal variation: Scrzs and Scres
both have examples of this.

Next, we evaluated whether benchmarking all the combi-
nations of the most important options can be used to es-
timate performance quickly across the entire configuration
space. The estimates are generated by examining all com-
binations of the most important options, while randomizing
the settings of the unimportant options. Based on this data
we determined that the distributions of performance for the
five most important and two most important options screen-
ing suites closely track the overall performance data. This
data suggests that the screening suites computed at step 4
of the main effects screening process can be used to estimate
overall performance in-house at extremely low time/effort,
(running 4 benchmarks takes 40 seconds, running 32 takes
5 minutes, running 16,384 takes two days).

Screening 2 Options (4 cfgs) Over a Time Period

160 | -

140 —

120 | . -

latency

100 +

2003.12.20 }—D:‘#
M

2003.12.21 o

fo--

2003.12.10 - F I:l:H

F

3

),444
wosrer 4 [[

b~

80 -

2003.12.09 4
2003.12.11

2003.12.12 o
2003.12.13 o
2003.12.14 o
2003.12.15 4
2003.12.16
2003.12.18
2003.12.19

Figure 1: Performance estimates across time.

Finally, we evaluated the primary goal of the main effects
screening which is to quickly detect performance degrada-
tions in evolving systems. To better understand this issue,
we measured latency on the top-2 screening suite, once a
day, using CVS snapshots of ACE4+TAO+CIAO.

Figure 1 depicts the data distributions for the top-2 screen-
ing suites broken down by date (higher latency measures are
worse). We see that the distributions were stable the first
two days, crept up somewhat for 3 days and then shot up the
4'" day (12/14/03). They were brought back under control
for several more days, but then moved up again on the last
day. Developer records and problem reports indicate that
problems were noticed on 12/14/03, but not before then.

Another interesting finding was that the limited testing
done by ACE+TAO+CIAO developers measured a perfor-
mance drop of only around 5% on 12/14/03. In contrast,
our screening process showed a much more dramatic drop of
nearly 50%. Further analysis by system developers indicated
that their unsystematic testing failed to evaluate configura-
tions where the degradation was much more pronounced.

3. SOME TECHNICAL CHALLENGES

Despite our initial successes, much work remains to be
done. In particular, we must improve our modeling ap-
proaches and execution infrastructure, develop new applica-
tions, and better handle practical issues caused by platform
heterogeneity and other unobservable factors.

Modeling the QA subtask space: We formally represent
those aspects of the QA subtasks and underlying software
that will be varied under control of the DCQA process. This
includes not only process and software configuration param-
eters, but also the constraints among them. Currently, we
use a “flat” representation in which all options are assumed
to interact. We intend to explore hierarchical models and
multiple-component models where we know a priori that
groups of options don’t interact. We will also explore tech-
niques for learning whether options interact.

Modeling unobservables: Many characteristics of Skoll
client machines are not part of the data transmitted to the
server. Reasons range from privacy to impossibility of mea-

surement. Examples may include processor speed, memory,
library versions and what other programs are running at
the same time. Statistical modeling is necessary in order to
represent the effects of unobservables.

Scaling: Some unobservables may modeled as scaling fac-
tors on performance, which allows collection of data about
them. See the discussion of Calibration below.
Space-filling experimental designs: Space-filling designs
have been used successfully for analysis of large-scale com-
puter models [12], where the high dimensionality of input
spaces is a significant issue. They should be applicable as
well to high-dimensional configuration spaces, but will re-
quire adaptation in order to deal with constraints.
Sequential and adaptive experimental designs: For
scenarios such as those discussed below, adaptive explo-
ration of the configuration space may be particularly effec-
tive. One strategy, used by NISS in other settings, is proceed
sequentially, beginning with a space-filling design to ensure
coverage, and following up with other designs targeted at
regions in the configuration space “where the action is.”
Borrowing strength: Since QA tasks are assigned to re-
mote machines, volunteered by end users, it is difficult to
predict the availability of resources. Moreover, some vol-
unteer may wish to maintain some control of how their re-
sources will be used; for example limiting which version of a
system can undergo QA on their resources. In such cases, it
is impossible to pre-compute QA subtask schedules. There-
fore, we have to develop scheduling techniques that adapt
based on a variety of factors including resource availability.
Distributed data management. Currently, all perfor-
mance data are returned to central collection sites for anal-
ysis. We foresee scalability problems and are therefore in-
vestigating more distributed approaches (inspired by peer-
to-peer algorithms) in which control and data storage are
distributed to end users machines.

4. PLANNED APPLICATION SCENARIOS

We plan to drive our research by focusing on three sce-
narios. The purpose of each scenario is to reliably choose
settings, or ranges of settings, for configuration options to
achieve a particular software engineering goal. At a high
level these goals include: (1) performance-oriented regres-
sion test selection—determining whether a recent change
has caused an unintended performance degradation; (2) per-
formance optimization and variability reduction—determi-
ning option settings that maximize performance or minimize
performance variability; and (3) requirements satisfaction—
determining a range of option settings over which several
performance criteria can be simultaneously satisfied.

4.1 Scenario 1: Performance-oriented Regres-
sion Testing

As we mentioned earlier, when developers change software
they need to ensure that performance is not degraded. The
size of the configuration space precludes benchmarking all
configurations. We are iteratively extending our earlier work
to handle a set of practical concerns that so far have been
ignored.

We will allow multiple hardware and OS platforms, not
just one. We will model and account for unobservable machine-
specific differences that our current approach cannot handle.
In practice these unobservable characteristics would be fac-
tors such as processor speeds, memory size, other applica-

tions and network traffic.

We will modify the approach to use space-filling design
techniques and later adaptive designs as well to allow for
faster feedback. This is important when individual QA sub-
tasks are computationally expensive (Downloading ACE+TAO
from CVS, fully building it, compiling and executing all tests
can take 6-8 hours on a typical developer’s workstation.) or
when developers have severe time to respond requirements
(for example, when a system release date is approaching and
many bugs fixes are being done.)

To formulate the approach in more detail, let

e C = configuration space (which is big, involves con-
straints, ...)

e O = space of observables for instances (example: OS)

e O = generic space of unobservables (example: baseline
speed or load, memory)

e P = performance measure. Assume that larger values
are better, so P could be (1 / running time).

All of C, O, © are high-dimensional.
The basic statistical model is for P; = measured perfor-
mance for instance i:

P; = f(C4,04,60;) + &4, 1)
where

e (C; € C = configuration for instance 4

e O; € O = observables for instance ¢, treated as a
known constant

e 0, € O = unobservables for instance i, treated as a
random variable

® ¢; = measurement error.

This is a nonparametric random effects model. The goal is
to estimate f, which relates performance to configuration,
observables and unobservables. Statistical technology for
such models is available, but will require adaptation to deal
with the dimensionality and size of C, O and O.

As an entry point and proof of concept, we will

1. Start with a space-filling design (for example, a Latin
hypercube) in C. This will be challenging because
most methods for producing space-filling designs as-
sume that C is a product space.

2. Using the space-filling design, estimate the model (1)
using Bayesian techniques for random effects models.
This step produces an estimator f. It is challenging
because of the high dimensionality of C, O and © and
the relative paucity of data.

Other challenges include:

Selection of performance measures: How many measures,

and which ones, are needed in a particular setting?

Calibration, which is one way of obtaining information
about the unobservables O;. Suppose that P is run-
ning time and one component of each 6; is baseline
speed/load. Suppose that prior to running the “real
software” we run a piece of benchmark software, and
record the running time of each. Then the scaled per-
formance measure

Running time of real software

(2)

- Running time of benchmark software

may remove the need for an unobservable represent-
ing speed/load. This measure changes the direction of
performance, but that can be fixed. The point is that
scaling could decrease the dependence of the model on
unobservables.

Model validation: How do we assess how well our method
works? Standard techniques, such as cross-validation,
may require too much data.

A more challenging version—but necessary because of size
and complexity of C—is to make the entire approach adap-
tive, selecting the C; based on results of previous tests. Is-
sues include:

e How to do the selection. NISS has worked on how to
use space-filling designs to guide more detailed sequen-
tial search. These may be too complex, partly because
fitting the model for every new data point may be too
inefficient. A less daunting alternative is to think of
dividing a big (space-filling or other) design into say
20 parts, execute one, fit the model, choose which to
execute next, Especially if the full design is infea-
sible, this is interesting because it lets the data help
determine which parts of the full design are actually
done.

e Some C; are now random, because they depend on
previous data. This complicates the analysis.

o “Weird” configurations are actually a problem through-
out. Should designs allow configurations that satisfy
constraints but would never be used in reality?

4.2 Scenario 2: Optimization and Variability
Control

In this scenario we envision developers who are building
their system on top of one or more components. We assume
that the underlying components must be customized to sup-
port the requirements of the overall application. The system
developers need help in deciding how to do this.

In this scenario, component developers will provide multi-
ple benchmarks (input drivers with different workload char-
acteristics) which will be run as part of a DCQA process.
The results of these runs will populate a large performance
database.

Users will select which of the benchmarks resemble their
application requirements and indicate which options are fixed
by their application and which are free.

We will investigate techniques for both optimizing mean
performance and for controlling variability. The goal is to
find the configuration that optimizes performance for a given
set Op of observables. If f were known, this would require
solving an optimization problem, two forms of which are:
Average case performance: If performance averaged over
values of the unobservables is of principal interest, then the
optimization problem is

C*(0o) = arg(rjnax/f(C, 0o, 8)p(6)d6, (3)

where « is some performance threshold and p some density—
in particular, the posterior distribution of § from the Bayesian
analysis.

There are a numerous computational challenges here, in-
cluding the numerical integration, difficulties in calculating
p, and the complexity of C' and O.

Worst case performance: If worst case performance over
all values of the unobservables is the criterion, then the op-
timization problem is

C*(0o) = arg max min F(C,0,,9). (4)
c

4.3 Scenario 3: Multi-Objective Constraint
Satisfaction

In this scenario developers of a component-based applica-
tion want to quickly find configurations that fail to satisfy
a set of performance requirements or, alternatively, find a
set of conforming configurations. We will assume that each
component developer publishes its configuration model.

The focus here is on configurations with bad performance,
which is relevant if, for example, the software must meet
performance requirements such as speed or memory foot-
print. Let B* be the set of (configuration, observable) pairs
with bad performance. Two possible definitions (Recall that
higher P is better performance.) are:

Average performance: If performance averaged over val-
ues of the unobservables is of principal interest, then

5 ={©o0): [rcomom<al, @

where « is some performance threshold and p some density—
in particular, the posterior distribution of § from the Bayesian
analysis.

There are the same computation challenges here as for
Scenario 2.
Worst case performance: If worst case performance over
all values of the unobservables is the criterion, then

B* = {(C, 0) s min £(C, 0,8) < a}. (6)

The approach will be to estimate the set B*, and figure
out what is driving its structure. The principal steps are:

1. Construct estimator Aé* of B*. The naive way to do
this is to substitute f for f in (5) or (6). Even with

—

this, characterizing uncertainties in B* is a challenge.
More sophisticated approaches use “better” estimators
B*.

2. Use f and B* to understand (configuration, observ-
able) effects on performance. For example, run a clas-

sifier with membership in B* treated as a binary re-
sponse.

5. RELATED WORK

Our proposed work is related to and draws on existing
research in several areas including applying DOE to soft-
ware engineering, feedback-based optimization techniques,
and large-scale testbed environments.

Applying DOE to software engineering. As far as
we can tell, no one has used screening designs for software
performance assessment. The use of design of experiments
(DoE) theory within software engineering has mostly been
limited to interaction testing, largely to compute and some-
times generate minimal test suites that cover all combina-
tions of specified program inputs. Some examples of this
work include Dalal et al. [5], Burr et al. [2], Dunietz et al. [6],
and Kuhn et al [8]. Yilmaz et al. [16] used covering arrays

as a configuration space sampling technique to support the
characterization of failure-inducing option settings.
Program optimization. Off-line analysis has been applied
to program analysis to improve compiler-generated code.
For example, the ATLAS [7] numerical algebra library uses
an empirical optimization engine to decide the values of op-
timization parameters by generating different program ver-
sions that are run on various hardware/OS platforms. The
output from these runs are used to select parameter values
that provide the best performance. Mathematical models
are also used to estimate optimization parameters based on
the underlying architecture, though empirical data is not fed
into the models to refine it.

On-line analysis, where feedback control is used to dynam-
ically adapt QoS measures. An example of online analysis is
the ControlWare middleware [17], which uses feedback con-
trol theory by analyzing the architecture and modeling it as
a feedback control loop. Actuators and sensors then monitor
the system and affect server resource allocation. Real-time
scheduling based on feedback loops has also been applied to
Real-time CORBA middleware [9] to automatically adjust
the rate of remote operation invocation transparently to an
application.

Hybrid analysis combines aspects of off-line and on-line
analysis. For example, the continuous compilation strat-
egy [4] constantly monitors and improves application code
using code optimization techniques.

These optimizations are applied in four phases, includ-

ing (1) static analysis, in which information from training
runs is used to estimate and predict optimization plans; (2)
dynamic optimization, in which monitors apply code trans-
formations at run-time to adapt program behavior; (3) off-
line adaptation, in which optimization plans are actually im-
proved using actual execution; and (4) recompilation, where
the optimization plans are regenerated.
Large-scale benchmarking testbeds. EMULab [14] is
a testbed at the University of Utah that provides an envi-
ronment for experimental evaluation of networked systems.
EMULab provides tools that researchers can use to con-
figure the topology of their experiments, by modeling the
underlying OS, hardware, and communication links. This
topology is then mapped [11] to ~250 physical nodes that
can be accessed via the Internet. The EMULab tools can
generate script files that use the Network Simulator (NS)
(http://www.isi.edu/nsnam/ns/) syntax and semantics to
run the experiment.

The Skoll infrastructure provides a superset of EMULab
that is not limited by resources of a single testbed, but in-
stead can leverage the large amounts of end-user computer
resources in the Skoll grid. Moreover, the BGML model
interpreters can generate NS scripts to integrate our bench-
marks with experiments in EMULab.

Skoll can enhance conventional hybrid analysis by tabulat-
ing platform-specific and platform-independent information
separately using the Skoll framework. In particular, Skoll
does not incur the overhead of system monitoring since be-
havior does not change at run-time. New platform-specific
information obtained can be fed back into the models to
optimize QoS measures.

6. ACKNOWLEDGMENTS

This material is based on work supported by the US Na-
tional Science Foundation under NSF grants CCR-~0312859,

CCR-0205265, CCR-0098158, CCF-0205118 and CCF-0447864.

as well as funding from BBN Technologies, Lockheed Mar-
tin, Raytheon, and Siemens.

7.
[1]

[2]

[4

[llum)

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

REFERENCES

L. Breiman, J. Freidman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth,
Monterey, CA, 1984.

K. Burr and W. Young. Combinatorial test
techniques: Table-based automation, test generation
and code coverage. In Proc. of the Intl. Conf. on
Software Testing Analysis & Review, 1998.

Cemal Yilmaz, Arvind Krishna, Atif Memon, Adam
Porter, Douglas Schmidt, and Aniruddha Gokhale.
Main effects screening: A distributed continuous
quality assurance process for monitoring performance
degradation in evolving software systems. In
International Conference on Software Engineering, St.
Louis, MO, May 2005. IEEE/ACM.

B. Childers, J. Davidson, and M. Soffa. Continuous
Compilation: A New Approach to Aggressive and
Adaptive Code Transformation. In Proceedings of the
International Parallel and Distributed Processing
Symposium, Apr. 2003.

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In Proc. of the Intl.
Conf. on Software Engineering, (ICSE), pages
285-294, 1999.

I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.
Mallows, and A. Iannino. Applying design of
experiments to software testing. In Proc. of the Intl.
Conf. on Software Engineering, (ICSE ’97), pages
205-215, 1997.

Kamen Yotov and Xiaoming Li and Gan Ren et.al. A
Comparison of Empirical and Model-driven
Optimization. In Proceedings of ACM SIGPLAN
conference on Programming Language Design and
Implementation, June 2003.

D. Kuhn and M. Reilly. An investigation of the
applicability of design of experiments to software
testing. Proc. 27th Annual NASA Goddard/IEEE
Software Engineering Workshop, pages 91-95, 2002.
C. Lu, J. A. Stankovic, G. Tao, and S. H. Son.
Feedback Control Real-Time Scheduling: Framework,
Modeling, and Algorithms. Real-Time Systems
Journal, 23(1/2):85-126, July 2002.

A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed
Continuous Quality Assurance. In Proceedings of the
26th IEEE/ACM International Conference on
Software Engineering, Edinburgh, Scotland, May
2004. IEEE/ACM.

Robert Ricci and Chris Alfred and Jay Lepreau. A
Solver for the Network Testbed Mapping Problem.
SIGCOMM Computer Communications Review,
33(2):30—44, Apr. 2003.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P.
Wynn. Design and analysis of computer experiments.
Statistical Science, 4:409-435, 1989.

D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang,
and C. Gill. TAO: A Pattern-Oriented Object Request

[14]

[15]

[16]

[17]

Broker for Distributed Real-time and Embedded
Systems. IEEE Distributed Systems Online, 3(2), Feb.
2002.

B. White and J. L. et al. An Integrated Experimental
Environment for Distributed Systems and Networks.
In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation, pages 255—270,
Boston, MA, Dec. 2002. USENIX Association.

C. F. J. Wu and M. Hamada. Ezperiments: Planning,
Analysis, and Parameter Design Optimization. Wiley,
2000.

C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterizations in complex
configuration space. In Proceedings of the ACM
SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), 2004.

R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic.
Controlware: A Middleware Architecture for Feedback
Control of Software Performance. In Proceedings of the
International Conference on Distributed Systems 2002,
July 2002.

