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ABSTRACT
Regression testing is an expensive maintenance process
used to revalidate modified software.  Regression test
selection (RTS) techniques try to lower the cost of
regression testing by selecting and running a subset of
existing test suites.  Many such techniques have been
proposed and initial studies show that they can produce
savings.  We believe, however, that issues such as the
frequency with which testing is done have a strong effect
on the behavior of these techniques.  Therefore, we
conducted an experiment to assess the effects of test
application frequency on the costs and benefits of
regression test selection techniques.  Our results expose
essential tradeoffs that should be considered when using
these techniques over a series of software releases.
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1 INTRODUCTION

After modifying software, developers typically want to
know that unmodified code has not been adversely
affected. When such unmodified code is adversely
affected, we say that a regression error has occurred.

Developers often perform regression testing to search for
such regression errors. The simplest regression testing
strategy is to rerun all existing test suites. This method is
simple to implement, but can be unnecessarily expensive,
especially when changes affect only a small part of the
system.

Consequently, an alternative approach, regression test
selection (RTS) technique, has been proposed [e.g.,
1,2,5,6,10,14]. With this approach only a subset of test
suites are selected and rerun. Since, in general, optimal
test selection1 is impossible, the cost-benefit tradeoffs of
RTS techniques is a central concern of regression testing
research and practice.

                                                          
1 i.e., selecting exactly the fault revealing tests.

A common way to study this problem has been to find or
create base and modified versions of a system and
accompanying test suites. Next, a test selection algorithm
is run and the size and effectiveness of the selected test
suite is compared to the size and effectiveness of the
original test suite [e.g., 4,11,16,17].

One limitation of this approach is that it models
regression testing as a one-time activity rather than as the
continuous process it is. For example, software releases
often require many changes to a system with regression
testing interspersed between some number of changes
(rather than one regression test at the end of a release). In
practice, many companies integrate changes and then
regression test on a monthly, weekly, or even daily basis.

Our hypothesis is that the amount of change made
between regression testing sessions strongly affects the
costs and benefits of different regression test selection
techniques. That is, we believe that some test selection
techniques will perform less cost-effectively as the
amount of changes made between regression testing
sessions grows. This is because they will select
increasingly larger test suites and because these suites will
become increasingly less cost-effective at finding faults.

If this hypothesis is true, testing practitioners may be able
to better manage and coordinate their integration and
regression testing processes, thereby saving time and
money. Therefore we have designed and implemented an
experiment to examine this hypothesis.

In the remainder of this paper we review the relevant
literature, describe our research hypotheses, present the
design and analysis of our experiment and discuss our
conclusions and future research directions.

2 BACKGROUND AND LITERATURE REVIEW

2.1 Regression Testing
Let P be a procedure or program, let P′ be a modified
version of P and let T be a test suite for P. A typical
regression test proceeds as follows:

1 Select T′⊆  T, a set of test cases to execute on P′.

2 Test P′ with T′, establishing P′’ s correctness with
respect to T′.

3 If necessary, create T″, a set of new functional or
structural test cases for P′.
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4 Test P′ with T″, establishing P′’ s correctness with
respect to T″.

5 Create T″′, a new test suite and test history for P′,
from T, T′, and T″.

Each of these steps involves important problems.
However, we restrict our attention to step 1 - the
regression test selection problem.

2.2 Regression Test Selection Techniques
Several regression test selection techniques have been
investigated in the research literature (see [13]). Here we
briefly describe several techniques and give a
representative example of each.

2.2.1 Retest-All Technique
This method reruns all test cases in T. This method may
be used when test effectiveness is the utmost priority with
little regard for cost.

2.2.2 Random/Ad-Hoc Technique
Testers often select test cases randomly or rely on their
prior knowledge or experience. One such technique is to
randomly select a percentage of test cases from T.

2.2.3 Minimization Technique
This method (e.g., [3, 6]) aims to select a minimal set of
test cases from T that covers all modified elements of P′.
One such technique selects at least one test case in T that
exercises every program statement added or modified to
create P′.

2.2.4 Safe Techniques
These techniques (e.g., [2,14]) select, under certain
conditions, every test case in T that covers changed
program entities in P′. One such technique selects every
test case in T that exercises at least one statement that was
added or modified to create P,′ or that has been deleted
from P.

2.3 Cost and Benefit Model
Leung and White [8] present a simple model of the costs
and benefits of RTS strategies. Costs are divided into two
types: direct and indirect. Indirect costs include
management overhead, database maintenance, and tool
development. Direct costs include test selection, test
execution, and results analysis. Savings are simply the
costs avoided by not running unselected test cases.

Let T′ be the subset of T selected by a certain regression
test selection strategy M for program P, and let |T′| denote
the cardinality of T′. Let s be the average cost per test case
of applying M to P to select T′, and let r be the average
cost per test case of running P on a test case in T and
checking its result. Leung and White argue that for RTS
to be cost-effective the inequality: s|T′| < r(|T| - |T′|) must
hold. That is, the analysis required to select T′ should cost
less than running the unselected test cases, T – T′.

One limitation of this model is that it overlooks the cost
of undetected faults. Since a primary purpose of testing is
to detect faults, it is important to understand whether, and
to what extent, test selection reduces fault detection
effectiveness.

2.4 Previous Empir ical Studies
Initially, cost-effectiveness, as defined by Leung and
White, was the central focus of regression test selection
studies.

Rosenblum and Weyuker [12] applied the technique
TestTube to 31 versions of the KornShell and its test
suites. For 80% of the versions, their method selected all
existing test cases. They note that the test suite is
relatively small (16 test cases), and that many of the test
cases exercise all the components of the system.

Rothermel and Harrold [14] conducted a similar study
with their technique, DejaVu, using several 100-500 line
programs and a larger (50 KLOC) program. The savings
averaged 45% for small and medium sized programs, and
95% for the larger program.

These two studies seem to indicate that in some cases,
regression test selection can be cost-effective. Later
studies, therefore, begin to compare different methods.

Rosenblum and Rothermel [11] compared the
performance of TestTube and DejaVu in terms of test
selection. The two techniques often performed similarly,
but in some cases DejaVu substantially outperformed
TestTube. The study did not compare other techniques
nor consider fault detection.

Graves et al. [4] examined the relative costs and benefits
of several regression test selection techniques. They
examined five techniques: minimization, safe, dataflow,
random, and retest-all, focusing on their abilities to
reduce test suite size and to detect faults. The researchers
drew the following overall conclusions from the study:

•  The safe method detected all faults while on the
average selecting 68% of the test cases. Sometimes,
however, all test cases were selected.

•  The safe and dataflow techniques had nearly identical
performance. They typically detected the same faults
while selecting the same numbers of test cases.

•  On average, random test suites could be nearly as
effective as safe.

•  Minimization yielded the smallest and the least
effective test suites. For example, small random
suites (with 5 or so test cases) were equally effective
at finding faults, but required no analysis.

2.5 Open Questions
In this research, we consider three facets of RTS:
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(1) the test selection technique,

(2) the application policy - the conditions that trigger
regression testing: periodic execution (daily, weekly,
or monthly), or rule-based execution (after all
changes, after changing critical components, or at
final release), and

(3) the exploitation of process memory - when regression
testing is done frequently, information taken from
previous regression testing sessions may be used to
guide activities in a current testing session.

Most previous studies have focused on the first facet
while ignoring the second and third. Yet, these latter
facets are important because they may greatly affect the
practical costs and benefits of regression test selection.

Therefore, in this paper we investigate one aspect of test
application policies: how the amount of change made to a
system between regression testing sessions affects the
costs and benefits of different regression test selection
techniques. In particular, for different regression test
selection techniques we want to know, how, as the
amount of change grows, do test suite reduction and fault
detection ability change? What tradeoffs exist between
reduction and fault detection? And when is one technique
more cost-effective than another?

3 THE EXPERIMENT

3.1 Hypotheses
H1: Test selection ratios change as test application
frequency changes.

H2: Test effectiveness ratios change as test application
frequency changes.

3.2 Measures
To investigate our hypotheses we need to measure the
costs and benefits of each test selection method. To do
this we constructed two models: one for calculating
savings in terms of test suite size reduction, and another
for calculating costs in terms of fault detection
effectiveness. We restrict our attention to these costs and
benefits, but there are many other costs and benefits these
models do not capture. Some other costs and benefits are
mentioned in Section 5.

3.2.1 Measuring Savings
Reducing test suite size saves time because we run fewer
test cases, examine fewer test results, and manage less test
data. These savings are proportional to the reduction in
test suite size. Thus, we measure savings in test selection
ratio, as given by |T′|/|T|.

This approach makes several simplifying assumptions. It
assumes that the cost of all test cases is uniform and all
the constituent costs can be expressed in equivalent units
(e.g., we don’ t differentiate between CPU time and
human effort). It also does not measure the savings that

may result from reusing analyses done during early
testing sessions during later testing sessions.

3.2.2 Measuring Costs
We considered two types of costs. The first comes from
the analysis needed to select test cases. The second may
come when the selected test cases do not detect faults that
could have been detected by the original test set. Our cost
model focuses on the latter cost. Thus we assume that
regression test selection is cost-effective under the
definition given by Leung and White (see Section 2.3).

To determine whether test selection reduces fault
detection effectiveness we would like to know which test
cases reveal which faults in P′. However there is no
simple way to determine this because when a test fails on
a program that contains multiple faults it is not always
obvious exactly which fault(s) caused the failure. Thus we
considered three estimators.

Estimator  1 - On a per-test-suite basis. One way to
measure test effectiveness is to classify the selected test
suite into one of three cases: (1) no test case in T detects
faults, and thus, no test case in T′ detects faults; (2) some
test cases in both T and T′ detect faults; or (3) some test
cases in T detect faults, but no test case in T′ detects
faults. Cases 1 and 2 indicate test selection that does not
reduce fault detection, and case 3 captures the situation in
which test selection compromises fault detection.

This method is imprecise because all faults in P′ are
treated as a single fault. The main advantage of this
method is that it is inexpensive to implement.

Estimator  2 - On a per-test-case basis. Another
approach is to identify those test cases in T that detect
faults in P′ but that are not included in T′. The number of
test cases in T that detect faults in P then normalizes this
quantity.

This approach is also imprecise because it assumes that
every fault revealing test case reveals a different fault.
When multiple test cases reveal the same fault, duplicated
test cases could be discarded without sacrificing fault
detection effectiveness. This measure penalizes such a
decision.

Estimator  3 - On a per-fault basis. This approach tries
to identify all test cases that might “ theoretically”  reveal
each fault. A test t that detects a fault f must satisfy three
conditions: (1) t must traverse the program point
containing f in P′, (2) immediately after t traverses the
program point containing f in P′, key program state must
be perturbed (3) the output of P′ for test case t must be
different from that of P run on test case t.

Using this information, one can determine which faults
may be detected by each test case. This method is the
most precise one, but because it requires hand-
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instrumentation it is also the most expensive.

For this study, we used this third approach and we
implemented it as follows.

To detect the first condition we instrumented every
program modification point in P′ to determine whether t
traversed the program point containing f.

To detect the second condition we further instrumented
the programs, creating two blocks – one with the faulty
code and one without. We captured the state of all global
and in-scope local variables immediately before the
change, then executed both blocks, and then compared
their states upon exit. If these states differed then t
satisfied the second condition.

To detect the third condition we compared the output of P
and P′ to identify whether they produced different outputs
for test case t.

After doing this analysis for each test in T, we count the
number of faults for which there exists at least one fault-
revealing test case in T. This number is called NFdet. Next,
we examine T′ - again counting the number of faults for
which there exists at least one fault-revealing test case.
We call this number NFdet′.  Finally, we designate the
total number of faults in P′ as NF.

We use these numbers to calculate two measures of
effectiveness. One is relative effectiveness, which we
define as NFdet′/NFdet and the other is absolute
effectiveness, which we define as NFdet′/NF.

3.3 Exper imental Instrumentation
3.3.1 Programs
For our study, we obtained eight C programs with a
number of modified versions and test suites for each
program. The subjects come from two sources. One is a
group of seven C programs collected and constructed
initially by Hutchins et al. [7] for use in experiments with
dataflow- and control-flow-based test adequacy criteria.
The other, Space, is an interpreter for an array definition
language (ADL) used within a large aerospace
application. We slightly modified some of the programs
and versions in order to use them with our tools. Table 1
describes the subjects, showing the number of functions,
lines of code, distinct versions, test pool size, and the size
of the average test suite. We describe these and other data
in the following paragraphs.

Siemens Programs: Seven of our subject programs come
from a previous experiment done by Hutchins et al. [7].
These programs are written in C, and range in size from 7
to 21 functions and from 138 to 516 lines of code.

For each of these programs Hutchins et al. created a pool
of black-box test cases [7] using the category partition
method and Siemens Test Specification Language tool
[9]. They then augmented this set with manually created

white-box test cases to ensure that each exercisable
statement, edge, and definition-use pair in the base
program or its control flow graph was exercised by at
least 30 test cases.

Hutchins et al. also created faulty versions of each
program by modifying code in the base version; in most
cases they modified a single line of code, and in a few
cases they modified between 2 and 5 lines of code. Their
goal was to introduce faults that were as “realistic”  as
possible, based on their experience with real programs.

Ten people performed the fault seeding, working “mostly
without knowledge of each other’s work”  [7, p. 196]. To
obtain meaningful results, the researchers retained only
faults that were detectable by at least 3 and at most 350
test cases in the associated test pool.

Space Program: The space system is an interpreter for
an array definition language (ADL). The program reads a
file that contains several ADL statements, and checks the
contents of the file for adherence to the ADL grammar,
and to specific consistency rules. If the ADL file is
correct, Space outputs an array data file containing a list
of array elements, positions, and excitations; otherwise
the program outputs error messages.

Space has 33 versions, each containing a single fault that
was discovered either during the program’s development
or later by the authors of this study.

The test pool was constructed in two phases. First we
obtained a pool of 10,000 randomly generated test cases
created by Vokolos and Frankl [17]. Then we added new
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replace 21 516 12 5542 398

printtokens 18 402 7 4130 318

printtokens2 19 483 9 4115 389

schedule 18 299 7 2650 225

schedule2 16 297 8 2710 234

tcas 9 138 12 1608 83

totinfo 7 346 12 1054 199

space 136 6218 10 13585 4361

Table 1: Exper imental Subjects
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test cases until every dynamically executable edge in the
program’s control flow graph was exercised by at least 30
test cases. This process yielded a test pool of 13,585 test
cases.

3.3.2 Versions
In this experiment we needed programs with varying
numbers of modifications. We generated these modified
versions in the following way. Each subject program
initially consisted of a correct base version and a number
of modified versions, each containing exactly one fault.
We call these 1st-order versions. We selected these
versions because the faults they contain are “mutually
independent.”  That is, any number of these faults can be
merged into the base program without interfering with
each other. For example, if fault f1 is caused by changing
a single line and fault f2 is caused by deleting the same
line, then these modifications interfere with each other.
Table 1 shows the number of 1st-order versions for each
subject program, ranging from 7 to 12.

We then created higher-order versions by combining
appropriate 1st-order versions. For example, in order to
create an nth-order version, we combined n unique 1st-
order versions. We did this for every subject program
until we had created all possible kth-order versions, where
k was the minimum of 10 or the number of 1st-order
versions available for that program. As an example, the
t cas program had 12 1st-order versions. Therefore, we
constructed 12 1st-order versions, 66 2nd-order versions,
and so on up to 66 10th-order versions, for a total of 4082
versions. We did make an exception, however, for the
Space program. Since its test suites are much larger than

those of the Siemens programs - they take 10-100 times
longer to run – we limited the number of 1st-order versions
for the Space program to 10.

In this way we model the situation in which regression
testing is done on systems with varying amounts of
modifications since the previous regression testing
session.

3.3.3 Test cases, Test Pools, and Test Suites
We used test pools to obtain two types of test suites for
each program: edge-coverage-based and non-coverage-
based. To create edge-coverage-based test suites, we used
the test pool for the base program, and test coverage
information that we gathered from the test cases, to
generate 1000 edge-coverage-adequate test suites for each
base program.

We also generated 1000 randomly-selected test suites for
each base program. To generate the kth random test suite T
for base program P (1 ≤ k ≤ 1000), we determined, n, the
number of test cases in the kth edge-coverage-adequate
test suite for P. Next, we chose test cases at random from
the test pool for P and added them to T until it contained n
test cases. This process yielded random test suites of the
same size as the edge-coverage-adequate suites.

3.3.4 Test Selection Tools
To perform the experiments, we needed implementations
or simulations of regression test selection tools. For safe
techniques we used an implementation of Rothermel and
Harrold’s DejaVu tool [15] and we simulated another
safe technique, TestTube. For minimization, we created a

1

2

3

4

5

6

7

8

9

10

rand25

0.0 0.2 0.4 0.6 0.8 1.0

rand50 rand75

0.0 0.2 0.4 0.6 0.8 1.0

retest
1

2

3

4

5

6

7

8

9

10

min dejavu

0.0 0.2 0.4 0.6 0.8 1.0

ttube

Size of Selected Test Suite (% of Original)

T
es

tin
g 

In
te

rv
al

Figure 1: Test Selection Ratio by Testing Interval Conditioned on Test Selection Method



6

tool that selects a minimal set of test cases T′ such that T′
has at least one test that covers every node, in the control
flow graph for P, that was changed between P and P′. As
a random(n) technique we created a tool that randomly
selects n% of the test cases from the suite. Retest-all does
not require any tools.

3.4 Exper imental Design
3.4.1 Variables
The experiment manipulated four independent variables:

1. The subject program (there are 8 programs, each with
a variety of modified versions).

2. The test selection technique (one of DejaVu,
TestTube, minimization, retest-all, random(25),
random(50), random(75)).

3. Test suite composition (edge-coverage-based or
random).

4. Test interval (between the base and the modified
program, from 1 to 10 changes can be made).

For each combination of program, test interval and
technique we applied 100 edge-coverage-adequate test
suites and 100 random test suites. On each test run, with
base program P, modified version P′, technique M, and
test suite T, we measured:

1. The proportion of test cases in the selected test suite
T′ to test cases in the original test suite T.

2. The number of faults revealed by T and T′ .

From these data points we computed two dependent
variables:

1. Average selected test suite size.

2. Average fault detection effectiveness.

The experiment used a full-factorial design with 100
repeated measures. That is, for each subject program, test
interval and test suite composition criteria we selected
100 test suites from the test suite universe. For each test
suite, we then applied each test selection technique and
measured the size and fault detection effectiveness of the
selected test suites. In total, we ran and evaluated
20,004,600 test suites.

3.4.2 Threats to Validity
In this section we consider some of the potential threats to
the validity of our study.

Threats to internal validity are influences that can affect
the dependent variables without researcher’s knowledge.
They can thus affect any supposition of a causal
relationship between the independent and dependent
variables. In our study, our greatest concern is that
instrumentation effects can bias our results.
Instrumentation effects may be caused by differences in
the experimental instruments (in this case the test process
inputs: the code to be tested, the locality of the program
changes, the composition of the test suite, or the
composition of the series of versions). In this study we
used two different criteria for composing test suites: edge-
coverage-adequate and random. In order to reduce effects
due to program versions, we used all possible
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combinations of versions. However, at this time we do not
control for the structure of the subject programs, or for the
locality of program changes. To limit problems related to
this, we run our test selection algorithm on each suite and
each subject program.

Threats to external validity are conditions that limit our
ability to generalize the results of our experiment to
industrial practice. One threat to external validity
concerns the representativeness of the subject programs.
The subject programs are of small and medium size, and
larger programs may be subject to different cost-benefit
tradeoffs. Also, the Siemens programs contain seeded
faults although every effort to make them as realistic as
possible was taken. Another issue is that these faults are
roughly the same “size” . Therefore, a program with, say,
ten faults has been changed more than a program with one
fault. Industrial programs have much more complex error
patterns. Another threat to external validity for this study
is process representativeness. This arises when the testing
process we used is not representative of industrial ones.
This may endanger our results since the test suites we
utilized may be more or less comprehensive than those
that could appear in practice. Also, our experiment
mimics a corrective maintenance process where the
specification is not changed, but there could be many
other types of maintenance in which regression testing
might be used. These threats can only be addressed
through additional studies using a greater range of
software artifacts.

4 DATA AND ANALYSIS

We analyze the data in three steps. First, we compare the
ability of different RTS techniques to reduce test suite
size and still detect faults as the testing interval grows.

Second, we examine how the effectiveness of the original
test suite and thus its absolute effectiveness diminish as
the testing interval grows. Finally, we compare the cost-
benefit tradeoffs of program-analysis-based (i.e., safe and
minimization) and random methods, and discuss the
factors that may be responsible for the differences.

In this paper, we use box plots (e.g., Figure 3) to represent
data distributions. In these plots, a box represents each
distribution. The box’s width spans the central 50% of the
data and its left and right ends mark the upper and lower
quartiles. The bold dot within the box denotes the median.
The dashed vertical lines attached to the box indicate the
tails of the distribution; they extend to the standard range
of the data (1.5 times the inter-quartile range). All other
detached points are “outliers” . We also use arrays of box
plots to show data distributions that are conditioned on
one or more other variables (e.g., Figure 1).

By conditioned, we mean that data are partitioned into
subsets, such that the data in each subset have the same
value for the conditioning variables.

4.1 Size Reduction
Figure 1 shows the ability of each RTS technique to
reduce test suite size by testing interval, conditioned on
the technique itself. The random(n) methods select n% of
the test cases by construction and the retest-all method
always selects all test cases. Therefore we only consider
program-analysis-based methods here.

First, we observe that DejaVu selects a median of 63.8%
of the test suite when the testing interval is 1 (as we found
in earlier experiments [4]). However, the median selection
ratio increases rapidly as testing interval increases. For
example, DejaVu’s median test selection across all
programs and intervals was 98.1%. Our visual inspection
of the programs suggests that selection ratio is heavily
dependent on the program, and the type and location of
faults. For example, DejaVu’s selection ratios range from
2.2% to 98.1% for program pr i nt t okens when the
interval is 1.

Next, we see that TestTube selects a median of 92.2% of
the test suite when the testing interval is 1. As the testing
interval increases, selection ratios increase to 99.3%.

Minimization selects a median of 0.4% of the test suite
for interval 1, to a median of 2.0% for interval 10. This
increase is less than one new test case for each added
change. For example, for program t ot i nf o, a median of
4.2 test cases is selected when testing interval is 10 and 1
test case is selected when testing interval is 1.

4.2 Relative Effectiveness
Figure 2 shows the relative effectiveness of selected test
suites by testing interval, conditioned on technique.

Safe methods, by virtue of their being “safe” , guarantee
that all “detectable”  faults will be detected (given certain
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assumptions outlined in [2,14]). That is, their
effectiveness is the same as that of retest-all. Therefore, in
this section we will concentrate on the random and
minimization methods.

For random methods, the median relative effectiveness is
always over 80% when the testing interval is 1. As testing
interval increases, relative effectiveness also increases.
For example, the median effectiveness of random(25) is
95.4%. Another thing to note is that, on average,
random(50) and random(75) are nearly as effective as
retest-all – with median relative effectiveness of 99.3%
and 100%, respectively.

Minimization has a median relative effectiveness of
13.5% at interval 1. However, effectiveness climbs
rapidly as the interval increases – with a median relative
effectiveness of 59.9% at interval 10.

4.3 Effectiveness of T
During our study, we hypothesized that a test suite that
revealed a fault f in P′ when f was the only fault in P′
might no longer reveal the same fault when f is mixed
with other faults. One possible reason is that failures can
be “disguised”  by interacting faults. Another may be that
some faults may change a program’s control flow,
causing other faults to go unexecuted. If this happens,
then increasing the testing interval may negatively affect
not only the fault-detection effectiveness of test selection
techniques, but of retest-all as well.

We evaluated this hypothesis by running instrumented P′
on the original suite T. We then counted the number of
faults in P′ that were “detectable”  by T. (See Section 3.2.2
for the conditions under which we consider a fault to be
detectable.)

Figure 3 shows the ratio of detectable faults to testing
interval for retest-all run on every combination of test
suite, subject program, and interval. By construction, we
know that the fault in each 1st-order version is detectable
by some test cases in the test “pool”  associated with that
program. We also see that the median effectiveness of
retest-all is 1 when the testing interval is 1. However there
are several outliers, indicating that some test “suites”  do
not detect particular faults.

As testing interval increases, the percentage of detectable
faults drops steadily, with a median of 88.9% when the
testing interval is 10. However, since most of the higher-
order (after 8th-order) versions come from three subject
programs (t cas, t ot i nf o, and r epl ace), the behavior
after interval 8 needs to be interpreted with caution.
Nevertheless, the data are consistent with our hypothesis
that fault detection effectiveness decreases as the number
of faults increases. Therefore, we also investigated the
absolute effectiveness of selected test suites.

4.4 Absolute Effectiveness
Figure 4 shows the absolute effectiveness of selected
suites by test interval, conditioned on technique.

Safe techniques always have a relative effectiveness of

1

2

3

4

5

6

7

8

9

10

rand25

0.0 0.2 0.4 0.6 0.8 1.0

rand50 rand75

0.0 0.2 0.4 0.6 0.8 1.0

retest
1

2

3

4

5

6

7

8

9

10

min dejavu

0.0 0.2 0.4 0.6 0.8 1.0

ttube

Absolute Effectiveness of Selected Test Suite (% of Total Defects)

T
es

tin
g 

In
te

rv
al

Figure 4: Absolute Effectiveness by Testing Interval Conditioned on Test Selection Method
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100%. However, their absolute effectiveness drops as
interval increases. Random techniques show a similar
pattern. In contrast the median absolute effectiveness of
minimization still increases as the testing interval grows.

4.5 Cost-Benefit Tradeoffs
When we consider both the costs and the benefits of the
different test selection techniques we find several
interesting patterns.

Overall, DejaVu selected 98% of the test cases while
finding 93.6% of the existing faults. But it was most cost-
effective when the testing interval was small (63.8% of
test cases were selected). TestTube also performed best
under these circumstances although the difference is not
as great. These techniques may also be cost-effective
when the cost of missing faults is very high or when the
cost of running test cases is very high. For example, for
some safety-critical systems the cost of missing a fault
may be so high that non-safe RTS techniques cannot be
used.

Across all observations, minimization selected 1.7% of
the test cases and found 44% of the faults. It was most
cost-effective when the interval was large – at interval 10
it selected 2.0% of the test cases while identifying 52.8%
of the faults. Minimization might therefore be
recommended when the cost of running test cases is very
high and the cost of missing faults is not too high.

All random techniques had high effectiveness at low
testing intervals and increasing effectiveness as testing
interval increased. As testing interval increased,
differences between different methods decreased. Thus, if
the cost of missing faults is not too high, then a small
random technique, random(25), will be the most cost-
effective when the testing interval is high.

5 CONCLUDING REMARKS

We have presented the initial results of an empirical study
of regression test application frequency. We investigated
some of the costs and benefits of several RTS techniques
when the number of changes between the base and
subsequent versions of a program increases. Our results
highlight several differences among RTS techniques with
respect to test application frequency. They also illustrate
some tradeoffs and provide an infrastructure for further
research.

As we discussed earlier, this study has several limits to its
validity. Particularly, several threats to external validity
limit our ability to generalize our results. These threats
can only be addressed by extensive experiments with a
wider variety of programs, test suites, series of versions,
type of faults, etc. Keeping this in mind, we drew the
following conclusions.

•  Our experimental results strongly support our
hypotheses that the size and fault detection

effectiveness of test suites chosen by selective retest
techniques changes as the frequency of regression
testing changes.

•  As testing interval increases so does the percentage
of faults that are undetectable by the original test
suite. This affects the performance of all RTS
techniques we studied.

•  Safe techniques selected the same or fewer test cases
as retest-all did while having the same effectiveness.
Therefore, they are preferable to retest-all as long as
their analysis costs are less than the cost of running
the unselected test cases. We saw, however, that as
the testing interval grew, almost all test cases were
selected. In this case, safe methods may not be
preferable to retest-all.

Nevertheless, our analysis showed that the
performance of safe techniques depended heavily on
the structure of the program, the location of faults
and the composition of the test suites. For instance,
test cases for the program schedul e2 are constructed
in such a way that each test exercises large portions
of the code. Consequently, changes, no matter how
small, tend to involve all test cases in the test suite.
Test cases that exercise independent portions of the
system might not exhibit such behavior and thus
might be more amenable to safe test selection.
Research that successfully merges the RTS
techniques with test suite construction is likely to
have a large effect on the use of safe techniques in
practice.

•  Random techniques are surprisingly cheap and
effective. Interestingly, as the testing interval
increases their median effectiveness approaches that
of retest-all with less variation between runs. That is:
at small testing intervals effectiveness ranges from
very high to very low. However, as the testing
interval increases, this range gets much smaller.
Thus, a user of random techniques might be more
confident of their effectiveness in the latter situation.

•  The difference in performance between minimization
at low testing intervals and minimization at high
testing intervals was remarkable. At low testing
intervals minimization selected one or two test cases
and was only 15% as effective as retest-all. However,
at a testing interval of 10, it selected only four or five
test cases, while having about 60% of the
effectiveness of retest-all.

Thus, although this approach will miss some faults,
from a cost-benefit perspective it presents an
interesting option. Also, in our study minimization
picks exactly one test case through a change. It would
be interesting to ask what would happen if it instead
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picked two, three or more.

•  As testing intervals increase, complex fault
interactions can make it harder to detect some faults.
This is somewhat obvious. More to the point,
however, is that as the testing interval increases,
information about a base program P, and test set T,
will become less predictive of the state of P′. For
example, a test set that was edge-coverage-adequate
on program P, might have very different coverage of
program P′.

We are continuing this family of experiments. We plan to
(1) improve our cost models to include factors such as
testing overhead and to better handle analysis cost, (2)
extend our experiment to larger programs with a wider
variety of naturally-occurring faults and (3) explore
techniques that incorporate previous testing history.
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