Covering Arrays for Efficient Fault Characterization in
Complex Configuration Spaces

Cemal Yilmaz Myra Cohen Adam Porter
University of Maryland University of Auckland University of Maryland

cyilmaz@cs.umd.edu myra@cs.auckland.ac.nz aporter@cs.umd.edu

Abstract dividing QA processes into multiple subtasks which are tinésl-
ligently distributed to client machines around the worlde@uted
by them, and their results returned to central collectitessivhere
they are fused together to complete the overall QA process.

One QA task implemented in Skoll was to determine which spe-

Testing systems with large configurations spaces that ehaftgn
is a challenging problem. The cost and complexity of QA edpk
because often there isn’t just one system, but a multitudelafed
systems. Bugs may appear in certain configurations, butrathi 5 < i . e o
ers. _cmc options and_optlon settings _caL!sed specific fallureman_]-
The Skoll system and process has been developed to test thengSt' We call t_hlsfault charactt_erlzatlon Fa_ult chgracterlzgtlon
types of systems through distributed, continuous quatisueance, IS done by testing numerous different cqnﬁguratlons aqd|rge
leveraging user resources around-the-world, arounditik. It the re_SL_"ts to a classmcatlon tr_ee analysis. The putpl_nm;)del
has been shown to be effective in automatically charadterizon- descnbmg_ the options and settmg_s that best p_redlctrianEor ex-
figurations in which failures manifest. The derived infotioa ample, using S!(O” on a CORBA |mp!ementat|on we fqund that if
helps developers quickly narrow down the cause of failureghv the executable_ls running on Linux, with C_:orba Me§sag|ngf_érlp
then improves turn around time for fixes. However, this métho enabled, but with Asynchronous Messaging optimizatioalslisd,

does not scale well. It requires one to exhaustively tedt ean- then socket cho_nr_wefctlons_tlmeou:]. s devel ho th
figuration in the configuration space. We gave this information to the system’s developers who then

In this paper we examine an alternative approach. We use aqqickly pinpointed_ the failure’s cause. Furthe_r analybiseed that
mathematical object called a covering array to obtain irelbt this problem had in fact b(_een observed previously by seveses,
small test schedules with certain coverage properties thieeen- but that the developers s_lmply ha_dn’t been able to tr_ack diben
tire configuration space. We empirically assess the effeasing problem. Skoll's automatically derived fault charactgtmn, how-
covering array derived test schedules on the resulting éharac- Ve 9reatly narrowed down the search space, making tiedagev

terizations and provide guidelines to practitioners fairthise. ers’ job much easier.
P 9 P While we were pleased with this outcome, the fundamentahdow

side of this approach was that we have to test the entire aoafig

1. INTRODUCTION tion space. In the example cited above, for instance, thanme
Many modern software systems must be customized to specificthat nearly 19,000 times, remote clients downloaded, coreiy

run-time contexts and application requirements. To supgach and compiled the 1M+ lines of code system, and then executed a

customization, these systems provide numerous user-coafilg battery of tests. For each client this took about 6—-8 houssthEr-

options. For example, some web serverg)(Apache), object re- more, this was only a small subset of the system’s entire gonfi

quest brokersd.g, TAO), and database®.g, Oracle) can have ration space. The actual space is much bigger. Clearly, soone

dozens, even hundreds, of options. While this flexibilitymotes efficient process will be necessary in general.

customization, it creates many potential system configunat each This paper proposes and evaluates an alternative stralégy.

of which may need extensive QA to validate. We call this peabl ~ idea is to systematically sample the configuration space oty

software configuration space explosion the selected configurations, and conduct fault charaetéiz on

To address this issue we have developed Skoll [11]-a distib ~ the resulting data. The sampling approach we use is baseal-on ¢
continuous QA process supported by automated tools whiehi-le culating a mathematical object called a covering array ¢€here
ages the extensive computing resources of worldwide user co described in more detail in Section 2.1). Our experimergsiiits
munities in order to efficiently, incrementally and oppaistically show that this approach is nearly as accurate as that basext on
improve software quality and to provide greater insighbittte haustive data, but is much cheaper (provides 50-99% remhscin
behavior and performance of fielded systems. Skoll doesbthis the number of configurations to be tested).

The remainder of this paper is organized as follows: Se@ion
briefly explains the mathematical tools we used in this papec-
tion 3 describes the fault characterization process; Gedide-

Permission to make digital or hard copies of all or part o twork for scribes the studies we conducted; Section 5 provides pahetil-
personal or classroom use is granted without fee providatidbpies are vice to users of this approach; Section 6 compares covermags
not made or distributed for profit or commercial advantage that copies to random selection; and Section 7 presents concluding rksma
bear this notice and the full citation on the first page. Toyooiherwise, to and possible directions for future work.

republish, to post on servers or to redistribute to listguies prior specific

permission and/or a fee.

ISSTA'04July 11-14, 2004, Boston, Massachusetts, USA.

Copyright 2004 ACM 1-58113-820-2/04/0007$5.00. 2. BACKGROUND

In this paper we propose a 3-step process for charactefaiitg.
First we systematically sample a system’s entire configpmaipace
using a mathematical object called a covering array as &uptus
using the entire configuration space as we did in [11]. Next we
use Skoll to distribute and test individual configuratiohsesnote
user sites and relay the results to a central server. Fjnedl\clas-
sify the test results and provide the resulting model to yis¢esn’s
developers.

In this section we provide some background information es¢h
three steps.

2.1 Covering Arrays

The software systems we consider in this research havengptio
each of which takes its value from a set of valid settings. @ain
goal is to identify and characterize failures that are cdusespe-
cific combinations of options settings. Therefore, it is anpnt
that we maximize the “coverage” of option setting combioiasi
However, we also want to do this at some reasonably low cost.
Consequently, we also want to minimize the total number of co
figurations tested.

Our approach to doing this is to computgvay coverage using
a combinatorial object called @vering array A covering array,
CA(N;t, k,v),isanN x k array onv symbols with the property
that any N x t sub-array contains all ordereesets of sizev at
least once [4]. For instance, when= 2 we can arbitrarily select
any 2 columns from the covering array to form a new sub-array.
We can now choose any ordered pair from thealues with the
guarantee that it will be found in at least one row of this antay.

In the Skoll system, each of the configuration options is arool
of the covering array. Each option setting is mapped to orleef
values for that column. This gives us a covering array ddrtest
schedule oCA test scheduleThestrengthof the array is denoted
by t.

simulated annealing method, the cost function is the nuroben-
coveredt-sets remaining, i.e. a covering array has a cost olVe
begin with an unknownV for a particular set of parameters, re-
peating the annealing process many times, using a binargtsea
strategy to find the smallesf which gives us a solution [6].

Covering arrays have been used most frequently to test input
combinations of programs. Mandl [10] first used orthogomal a
rays, a special type of covering array in which ialiets occuex-
actly once, to test enumerated types in ADA compiler software.
This idea was extended by Brownlg al. [2] who developed the
orthogonal array testing system (OATS). They provided eicedi
results to suggest that the use of orthogonal arrays istiefein
fault detection and provides good code coverage. DCelal. [7]
argue that the testing of all pairwise interactions in awafe sys-
tem finds a large percentage of the existing faults. In funerk,

Burr et al, Dunietzet al. and Kuhnet al. provide more empiri-

cal results to show that this type of test coverage is effed8, 8,

9]. These studies focus on finding unknown faults in alreadted
systems and equate covering arrays with code coverageceri

8].
Our approach is different in that we apply covering arrays/
tem configuration options and we assess their effectiveiness
vealing option-related failures and finding failure inchgbptions.

2.2 Skoll

Skoll [11] is a distributed continuous QA process suppotigd
automated tools which leverages the extensive computsayrees
of worldwide user communities in order to efficiently, incren-
tally and opportunistically improve software quality andirovide
greater insight into the behavior and performance of fielsiesd
tems. Skoll does this by dividing global QA processes intdtiple
subtasks which are then intelligently distributed to die@chines
around the world and executed. The results are returnedath Sk

Since many software systems do not have the same number ofserver where they are fused together to complete the ov@rall

option settings for each option we can usmixed levelcovering
array to model such systems. AMC A(N; ¢, k, (v1,v2, ...v%)), IS
an N x k array ons symbols, wheres = Zle v;. In this array
each column (1 <14 < k) contains elements from a st with

|Si| = vi. The rows of everyV x ¢ sub-array cover all—tuples

of values from the columns at least once. We can use a shorthand
notation to describe our covering array by combininig that are

the same and representing this number as a superscriptx&or e
ple if we have 4’s each with 3 levels, we can write tH8$. In this
manner am/C A(N; t, k, (viv2...vx)) can also be written as an
MCA(N;t, (st sh?...s8r)) wherek = >°7_, ps. In this paper,

we restrict ourselves to mixed level covering arrays. Tioeeswe

will use the general terroovering arrayto refer to these from now
on.

Covering arrays have the property that eadhple is usedat
leastonce, which means they can be arbitrarily large. One of our
goals, in building these, must be to minimixe

There are many mathematical @igebraicmethods that can be
used to construct covering arrays [4, 12]. However, thelalge
methods are restricted to specific parameter sizes foandv and
often require in depth mathematical knowledge to implemémt
stead a variety of computational methods exists that carsée 10
find covering arrays with a smalV for a given set of parameters.
In [6] several greedy algorithms are compared with hewarggarch
such as simulated annealing and hill climbing. Simulatetkait
ing gives a consistently smaN whent = 2 ort = 3. Therefore,
we chose this as our construction method. Simulated amggeisla
standard combinatorial optimization technique (see [6jafonore
thorough discussion of this algorithm). In our implmentatcof

process. Figure 1 summarizes the Skoll process (refer fof¢pt1
further details).

A corner stone of Skoll is a formal model of a QA process’ con-
figuration space calledonfiguration model The model captures
configuration options and their settings as well as the caimss
on them. An Intelligent Steering Agent (ISA) located at th®I6
server uses this information in planning the global QA pssgéor
adapting the process dynamically, and to aid in interpgetie re-
sults. ISA is implemented using planning technology antizes
various constraint solving, scheduling and planning aigors.

In this paper, we create covering arrays for a configuratiodeh
and use Skoll to distribute and test individual configuradiat re-
mote user sites and collect the results at a central seroea given
configuration, each client downloads the software undetystom
a central code repository, configures and compiles it, rurettary
of tests, and sends the results back to the server.

2.3 Classification Trees

Once we have obtained the test results, we use a classificatio
tree analysis to model failure-inducing options (i.e., dpecific
options and their settings in which the failure manifesdslf.

Classification trees use a recursive partitioning appreabiild
a model that predicts a configuration’s class (e.g., passirfgil-
ing) in terms of the values of individual option settings.igiimodel
is tree-structured. Each node denotes an option, each egoge r
sents an option setting, and each leaf represents a clag$ of s
classes (if there are more than 2 classes).

Classification trees are constructed using data calledraie-
ing set A training set consists of configurations, each with the

Server
Site

User
Site

Developer
Site

Step2

Registration
form

Step 1
Prepare
client kit

Client kit

Model
editor

Register

Distribute Cliznt kit
W Storage

Skoll
database

Intelligent
steering

Step 7

Step5

Figure 1: Process view of Skoll.

same set of options, but with potentially different optiaitimgs
together with known class information. Based on the trajréat,
models are built as follows. First, for each option, pastitithe
training set based on the option settings. The resultintitioaris

evaluated based on how well the partition separates coafigns
of one class from those of another. Commonly, this evalnato
realized as an entropy measure [1].

The option that creates the best partition becomes the fabeo
tree. To this node we add one edge for each option settingllfzin
for each subset in the partition, we repeat the process. fidtegs
stops when no further split is possible (or desirable).

To evaluate the model, we use it to predict the class of previ-
ously unseen configurations. We call these configuratioasett
set For each configuration we begin with the option at the root
of the tree and follow the edge corresponding to the optittinge
found in the new configuration. This process continues antiaf
is encountered. The class label found at the leaf is intexgras
the predicted class for the new configuration. By comparimg t
predicted class to the actual class we estimate the accofdbg
model.

In this research, we use the classification trees to extadaté-
inducing option setting patterns. That is we extract théooyst
and option settings from the tree that characterize faitiogfig-
urations. In particular we use the Weka implementation & J4
classification tree algorithm with the default confidencetda of
0.25 [13] to obtain the models.

3. THEFAULT CHARACTERIZATION PRO-
CESS

In this research, our ultimate goal is to provide developéts
compact and accurate descriptions of failing configuradidsspaces.
Our experience shows that such information can help degedop
find the causes of failures much more quickly than they cah-wit
out this information [11]. In this section we provide moreaaike

about the fault characterization process and describe hoewvad-

uate its performance.

Config Result Config Result
ol 02 o3 ol 02 o3
MORONNNONN 4SS ERR #1
PASS ERR #1
ERR#3| 1 2 1 ERR #1
PASS 1 2 2 ERR #1
PASS 2 0 1 ERR #2
PASS ERR #2
PASS 2 0 3 ERR #2
PASS ERR #2
PASS 2 1 1 ERR #2
ERR#1|| 2 1 2 ERR #2
ERR#1|| 2 2 0 ERR #3

ERR 1 | ERR #2

ERR#3 | 2 2 2 ERR #2
ERR #1

Table 1: An example of an exhaustive suite.

0 2

| Pass| | ERR#L | ERRY

Figure 2: An example of a classification tree.

Table 1 depicts the results of exhaustively testing a systém
three configuration option®{, 02, ando3) when each has three
levels of settings(, 1, and2). There are no constraints among the
options, so there are 27 valid configurations. These reshtte
four outcomes — test PASSed, test failed with ERR#1, teldai
with ERR #2 and test failed with ERR #3.

Feeding this data to a classification tree algorithm yielis t
model shown in Figure 2. This simple model tells us that tltege
of optionol is strongly correlated with the manifestation of failures
ERR+#1 and ERR#2. That s, configurations withl == 1 fail
with ERR#1 and those witlvl == 2 fail with ERR #2.

3.1 Evaluating Fault Characterizations

Obviously, these models may not be complete and correct. In
some cases this is because:

1. the underlying problem is not related to the option sg#in
(e.g., ERR #3 occurs with all settings ©f ando2 and 2 of
the 3 settings 063), or

2. the model building approach identifies spurious, but non-
causal patterns.

This research is not concerned with non-option-relateldrizs.
We attempt to remove them from our analysis. In general cims
be done without manually verifying each and every failur@enC
sequently, we simply remove any failure from consideratioat
occurs in less than 3% of the test runs. Our rationale is tétrd
ministic failures involving up to 5 binary options should mifast
at least this many times as should non-deterministic fedimvolv-
ing fewer options, but appearing with a reasonable frequéng.
3 options with the failure manifesting 1/4 of the time).

To evaluate the accuracy of classification tree models weeise
eral standard metrics. Precision (P) and recall (R) are tidely
used metrics to assess the performance of classificatioelsdebr
a given failure clas#, they are defined as follows:

I = # of correctly predicted instances of E by the model
- total # of instances of E

recal

n = # of correctly predicted instances of E by the model
- total # of predicted instances of E by the model

Precisio

Drawing an analogy to a medical test, recall measures how wel
the test identifies infected people; Precision measuresrhany
false alarms the test raises. In general we want good rescdiuse
otherwise the models may miss relevant characteristicslarira
relevant ones. On the other hand, we want to minimize the fals
alarms because we don’t want developers to waste reSOuREEs i
tigating them.

Since neither measure predominates our evaluation we oembi
the measures using the F metric. This is defined as:

_ (b®*+1)PR
F= b2P+R
In this formula,b controls the weight of importance to be given
to precision and recallF' = P whenb = 0 andF' = R when
b = oco. Throughout this paper, we computewith b = 1, which
gives precision and recall equal importance.

3.2 Reducing Test Suite Size

While the model in Figure 2 explains the observed failures re
sonably well, it did so at the cost of exhaustively testing ton-
figuration space. This won't scale. Interestingly, we getshme
tree model using only the shaded configurations in Table IreMo
over, this reduced suite is only one-third the size of theaastive
suite. We selected these configurations because they ttovast2-
way covering array of the configuration space. That is, atiyiae
combinations of the options appear in the shaded configusti
If these results hold in practice, it would greatly reduce tost
of fault characterization, without compromising its acmy. We
evaluate this conjecture throughout the rest of this paper.

4. EXPERIMENTS

In this Section we describe several studies of our faultatyar
terization approach. We applied this process to an operesou
CORBA middleware implementation called ACE+TAO.

ACE+TAO is large, widely-deployed open-source middleware
software toolkit that can be reused and extended to simibidyde-
velopment of performance-intensive distributed softwapelica-
tions. The ACE+TAO source base has evolved over the pastideca
and now contains over one million lines of C++ source codés It
highly configurable with a large number of configuration op&
(over 500) supporting a wide variety of program families atah-
dards.

In a previous study,
the system’s entire configuration space. This model cormprld
compile-time and 6 runtime options. Each compile-time apis
binary-valued, while the runtime options have differingmhers of
settings: four options with three levels, one option witbrfevels,
and one option with two levels. All told, this configuratiopase
has 18,792 valid configurations.

Compile-time options allow features, such as asynchronize
method invocation (AMI) and CORBA messaging, to be compiled
in or out of the system. Runtime options provide more finérge
control over the runtime behavior of the system, such asbb-
location strategies and connection purging strategies.

CA Strength{) | No. of Tests (V)
116

348

1229-1236
3369 - 3372

9433-9453

OO wWN

Table 2: Size of test suites foR < ¢ < 6.

We tested each configuration using 96 regression testakit®
one machine year to run the experiment. Each test were agkign
to emit an error message in the case of failure. The erroragess
were captured and recorded. In this paper, we adopt thetsexful
these tests and refer themedaustive results

To evaluate the use of covering arrays, we created five differ
t-way covering arrays for this configuration space. We alkbwe
to range between 2 and 6. We reran the regression tests flor eac
of theset-way suites and used classification trees to automatically
characterize the test results. We then compared the faalach
terizations obtained from-way suites to the ones obtained from
exhaustive testing.

Because our earlier work uncovered numerous compilatiob-pr
lems, we chose to group the 10 compile time options into a sin-
gle configuration with 29 levels (i.e., the 29 static confagions
that compiled). Otherwise, we would have generated nunserou
uncompilable configurations. Our goal then became to see how
well we could detect runtime errors and the failure-indgcap-
tions that lead to them. Note that this is simply a time-sgiésue,
it does not change the size of the underlying configuratiacep
or the characterizations we are trying to find. Using thisrapph
we computed alMC A(N;t,29'4'3%2'). The model has seven
configuration options. The first corresponds to the 29 sisfoiy
compiled static options, and the rest correspond to the Bnnen
configurations.

Table 2 gives the covering array si2efor each value of. When
t < 3 all five arrays were the same si2é. For these we were
able to construct covering arrays with the smallest mathieaiy
possible number of rows. When> 4, the problem of building a
small V is harder so we obtained a range of sizes.

In the remainder of the section we present the results ofakve
studies. The first study examines how well CA test schedelesat
failures. Obviously, if they don't, then fault charactetibns based
on them will suffer. The second study involves CA test sclhesiu
and for each test builds one characterization model foradlifes
observed on that test. The third study uses CA test schedules
builds one characterization model for each observed fadareach
test. Finally, the fourth study repeats study three, bus sseeeral
lower strength covering arrays and compares them to the exare
pensive to obtain higher strength covering arrays.

we modeled and studied a small subset of4-1 Study 1: Revealing option-related failures

with covering arrays

An initial question that arose is whether covering arraygaé
the option-related failures. If they don't, then any chéegezation
based on them will obviously suffer.

Figure 3 plots error coverage statistics for 2-way covedng
rays. The reason we include figures for only 2-way coverimgyar
is that they are the most interesting ones for showing ther eov-
erage statistics since their sizes are the smallest. Ifighise, each
bar represents one test case and tests that never failechate
The height of a bar is the number of unique errors seen witexhe
haustive test suite. The lower part of a bar (darker colasypsithe

Error Coverage for 2-way Covering Arrays

0 — A A

O # of unique errs missed
W # of unique errs caught

of unique errors seen

I

0 4 9 13 20 28 33 38 43 50 55 65 71 77 89 95

test

Figure 3: Error coverage statistics for 2-way covering arrays.

average number of unique errors seen by the five 2-way skites.
example, during the execution of test #35 in the exhaustivte s
we observed eight unique error messages whereas the 2-itey su
only revealed three of them on average.

As Figure 3 indicates, the 2-way suites discovered only dlsma
percentage of the failures seen by the exhaustive suiteh&uother
hand, we are particularly interested in the effectivendgbere-
duced suites in revealing option-related failures.

In order to identify option-related failures we used the 3#aff
value described in Section 3.1. We removed any failure from ¢
sideration that occurred in less than 3% of the test runsdreti
tire configuration space. This gave us 40 “potential” optietated
failures from now on just referred to aption-related failuresWe
then checked the effectiveness of covering arrays in rengettiose
40 failures. It turned out that each and evemyay suite revealed
all of these failures.

Figure 4 summarizes this result for the 2-way suites. Thigéig
plots the number of failing configurations for each test. Tdveer
part of each bar shows the number of failing configurationesgh

error messages are discovered by the 2-way suites and tlee upp

part indicates the number of configurations whose error agess

are missed by the 2-way suites. As can be seen from the figure

the 2-way suites discovered the failures that constitutgeléailing
sub-spaces.

In the rest of the paper, we assess the effectivenessaatly
suites for fault characterization only on these optiomted fail-
ures.

4.2 Study 2: Covering arrays with per test
case characterization

Error Coverage for 2-way Covering Arrays

18792
|

W # of errs caught
O # of errs missed

10000 12500 15000
| | |

7500
|

of configurations failed

5000
|

2500
|

0
L

0 4 9 13 20 28 33 38 43 50 55 65 71 77 89 95

test

Figure 4: Error coverage statistics for 2-way covering arrays (a
different view).

For each configuration in the entire space, we ran all theesegr
sion tests and recorded their pass/failure informationth&a built
a classification model using this data and tested it on the skta.
This tells us how well, in the best case, the models charaettre
faults.

We repeated the process above for only the scheduled configu-
rations (i.e., those selected by the covering array). We thalt
classification tree models using this data. We tested theslwpod
however, on the exhaustive data set. This tells us how well th
models, built using only a subset of the data, charactehmizéatults.

In the rest of the paper, we’ll refer to the models obtaineanfr
the covering arrays and the exhaustive suite as reducedisraut®
exhaustive models, respectively.

4.2.2 Evaluation

We applied the classification models to our exhaustive tesul
and collected the F measures for each option-related éailur

Figure 5 shows the F measures of the reduced models and the
exhaustive models for 40 option-related failures. Theivalxis
denotes F measure, and the horizontal axis denotes test amde
‘error index. For example, the first tick on the horizontakawihich
is 0-1, represents the error indexed as 1, which occurradgitire
execution of the test indexed as 0.

The first thing to note is the F measures for the reduced models
are almost always near those of the exhaustive models. Jhift i
the exhaustive models characterize the failure well, tleedosthe
reduced models. If they don't, then neither do the reduced-mo
els. This is true no matter what the strength of the coveringya
(the level oft) is. For example, 78% of the models obtained from

In this study we use CA test schedules. For each test case, wethe 2-way schedules gave F measures within 0.1 of the extraust

build one characterization model for all failures obseriedny of
the scheduled configurations.

4.2.1 Creating classification tree models

models. 88% of them were within 0.2. The higher the strenfith o
the covering arrays, the closer the F measures were. Alsorimp
tant, is the fact that the 2-way covering arrays provides simnilar
performance while providing a 99.4% reduction in the nunfer

F-measures of the models for each test

F-measure

A

exhaustive
2-way
3-way
4-way
5-way
6-way

A
+
X

A

<

»
TTTTT

%

A

*
T

TTTTTT

Figure 5: Models for each test.

configurations to be tested! In our experiments with ACE+TAO
for example, it took us 8 hours to compile ACE+TAO, compile th
tests, and execute them for each configuration. Using 2-witgss
would have saved us almost a year of machine time comparesd to u
ing the exhaustive suite without dramatically lowering diceuracy

of the fault characterizations.

F-measures of the models for each test and failure

F-measure

—— exhaustive

. A 2-way

+ 3-way

N X 4-way

5-way

A v 6-way

0.0 - ® ® A ®

L I A
AN 00ONLOMN 00 ANSHN 00 ANLO AN O O T O 00 AN N () +00 00 00 00 00 OO D O —H AN NN
| oA | oA | | e |] 0Oc | AN | | v | O | e | e AN
Ol Il I TNO| IO TN L LIl | LIt 1ol I 11 111
e =N aNMmm ANMOOTT IO AN T LNOLDOON—HNMN~OM
OO OO OMNNNMN~0000

g“tte(svi"l’dx—failure id><)m
Figure 6: Models for each test and failure combination.

4.3 Study 3: Covering arrays with per test,
failure case characterization

Building classification models with several classes cad tea
situations where there is too little data from which to codel class
assignment or to situations where global model buildingicg®
lead to suboptimal models for individual classes.

In this study we attempt to circumvent this problem by buntdi
one characterization model for each test case and failunbica-

Our analysis also suggests that the higher the F measure, thelion.

more similar the exhaustive and reduced models were in tefms
the options and settings captured. To make the analysiseclea
we divided the models into four categories using the F measur
obtained from exhaustive models: very strorig & 1), strong
(0.8 < F < 1),weak 0 < F < 0.8), and unknown ¥’ = 0).

4.3.1 Creating classification tree models

Just as in Study 2, we ran all test cases on every configuriation
the configuration space and recorded their pass/failucerirdtion.
For each test and failurg we created a training data set. Here

The reduced models for very strong patterns were exactly the we recoded the test outcomes into two classes: those failithgy

same as the exhaustive models. That is, they produced theessdam

of rules to describe the failures. The similarity decreasgeddily as

we moved to strong patterns and then to weak patterns. Weak pa
terns captured by the reduced models (especially the 2-wml m
els) tended to differ substantially from those found in tRbaas-
tive models — See failures 52-18, 80-22, and 35-14. In thasesc
we saw that using higher strength covering arrays boostddrpe
mance.

Failures with unknown patterns are interesting. Althouggse
failures were seen frequently enough to be consideredroptiated
failures, the classification model found no apparent patietheir
occurrences. We observed three failures of this natureelya28-
4, 38-20, and 55-18. None of the suites, even the exhaustites s
were able to provide fault characterizations for thesaifas.

This result amplifies our earlier results [11] in which wesiad
that the patterns contained in the classification treespffet not
always, corresponded with the actual cause of the failure wa
will show in Section 5, the concept of pattern strength gues
way to determine whether the classification tree model ialvk,
and, therefore, likely to help developers find an actualifaicause.

failure f and those passing. We repeated the process with the CA
test schedules and compared the results.

4.3.2 Evaluation

Figure 6 shows the F-measures for the models. At a first glance
this performance is indistinguishable from that of Study@nse-
guently, our findings in Study 2 also apply to this study.

One important way in which these two approaches differ how-
ever is in the readability of the resulting models. When widbu
one model for multiple failures, as we did in Study 2, extarse
information can creep into the patterns that describe tfierdnt
failures.

Figure 7(a), (b) and (c) illustrate this situation. Figu(a)shows
the characterization for two failures that occurred dutheyexecu-
tion of test #3 (we've excluded other errors to simplify thecds-
sion). This model says that error #2 occurs when CALLBACK==0
and that error #17 occurs when CALLBACK==1 and ORBCollo-
cation==NO. We know from earlier analysis, however, thaorer
#2 occurs when CALLBACK==0 and that error #17 occurs when
ORBCollocation==NO. That is, the setting of CALLBACK has no

CALLBACK=0: ERR #2
CALLBACK=1

| ORBCol | ocati on=gl b: PASS

| ORBCol | ocati on=or b: PASS

| ORBCol | ocati on=NO ERR #17

@

CALLBACK=0: ERR #2 ORBCol | ocati on=gl b: PASS
CALLBACK=1: PASS ORBCol | ocat i on=or b: PASS
ORBCol | ocati on=NG ERR #17

(b) (c)

Figure 7: Fault characterizations for test #3, test #3 and eor
#2, and test #3 and error #17, respectively.

effect on the manifestation of error #17. That the CALLBACj: 0
tion appears in the pattern for error #17 is simply an artifdiche
modeling process when there are multiple classes beinglethde

When we build a model for each test and failure combination,
on the other hand, this problem doesn’t appear. In fact, ahé f
characterizations, shown in Figures 7(b) and (c), are exadtare
the actual causes of the failures.

Error #2 occurred during the compilation of the test case. It
turned out that certain files within TAO implementing CORBAsn
saging incorrectly assumed that CALLBACK option would ajsa
be set to 1. Consequently, when CALLBACK==0 certain defini-
tions were unset.

Error #17 occurred when the ORBCollocation optimizatiorswa
turned off. ACE+TAO’s ORBCollocation option controls therc
ditions under which the ORB should treat objects as beintp-col
cated. Turning it off means that objects should never beddeas
being collocated. When objects are not co-located theyezalh

other's methods by sending messages across the networkn Whe

they are collocated, they can communicate directly, saviey
working overhead. The fact that these tests worked wherctsbje
communicated directly, but failed when they talked over riieé&
work clearly suggested a problem related to message pasking
fact, the source of the problem was a bug in their routinesnfar-
shaling/unmarshalling object references.

As the strength of the covering arrays increases, fauliacheri-
zations move closer to the ones obtained from the exhausitite.
We illustrate the differences among the characterizatoftained
from different strength covering arrays in Figure 8.

Figure 8(a), (b), and (c) show the fault characterizatidstaioed
from the exhaustive suite, 2-way covering arrays, and 3-ooy
ering arrays, respectively for error #18 which occurredrduthe
execution of test #3. The exhaustive model correlates theda

with four options and gives an F measure of 0.849. The 2-way

model is able to link the failure to only one option. This ksu

POLLER=0

DI OP=0

I NTERCEPTCOR=0
MUTEX=0: PASS
MJUTEX=1: ERR #18

NTERCEPTOR=1: ERR #18

DI OP=1

I NTERCEPTOR=0: ERR #18

| NTERCEPTOR=1

MJUTEX=0: ERR #18

MUTEX=1: PASS

POLLER=1: PASS

(@)

POLLER=0: ERR #18 POLLER=0
POLLER=1: PASS | MJTEX=0
| | 1 NTERCEPTOR=0: PASS
| | I NTERCEPTOR=1: ERR #18
MUTEX=1: ERR #18
POLLER=1: PASS

(b) ()

Figure 8: Fault characterizations for error #18 obtained from
exhaustive suite, 2-way covering arrays, and 3-way covergnar-
rays, respectively.

the uncombined ones. This is interesting because the caseof
ating (¢ + 1)-way suites can be significantly higher than the cost
of obtaining¢-way suites (the cost is exponentialdp If ¢-way-
combined andt + 1)-way suites have comparable performance
measures then using the combined suites can be cost-edfecti

4.4.1 Creating classification tree models

We created combinetiway schedules by merging randomly se-
lected uncombined-way schedules. No duplicate test configura-
tions were allowed. We created 5 combined schedulesffom 2
to 5. We didn’t combine 6-way suites because the averagen§ize
the 6-way suites was almost half that of the exhaustive stite
average sizes of theway-combined suites are given in Table 3.

Classification models were built as in Study 3.

Size
344.20
1357.60
3450.60
8422.00

Suite

2-way-combined
3-way-combined
4-way-combined
5-way-combined

Table 3: Size of combined suites.

in an F measure of 0.747. On the other hand, the 3-way model 4-4.2 Evaluation

associates the failure with three options and resulted iattebF
measure, (0.795), than the 2-way model.

4.4 Study 4: Combined reduced suites

Figure 9 plots the F measures foway andt-way-combined
suites. ¢t-way-combined suites result in better fault characteriza-
tions than the-way suites. In particular, they boost the characteri-
zations of failures while single suites give low F measuresless

As shown in Table 2, the size of the CA test schedules grows than 0.5).

rapidly ast increases. In this study we examined how combined
lower strength schedules compare to single higher strecutér-

ing arrays (e.g., 3, 2-way covering arrays vs. 1, 3-way doger
array).

For example, consider the 2-way and 2-way-combined models

for test #35, error #14 shown in Figure 9. The F measures &seth

models are 0.06 and 0.39, respectively. The combined siviés g
an F measure that is much closer to that of the 3-way suiteshwhi

Specifically, we combined schedules in such a way that the siz is 0.42. On the other hand, when the F measures of singlessuite
of the combinedt-way schedules is close to the size of a single are already high (say greater than 0.5), the combined sdite’s
(t + 1) schedule. We then compared the combined schedules toimprove performance to a great degree.

F-measures of combined suites

exhaustive
2-way
2-way—c
3-way
3-way-c
v 4-way
4-way-c

F-measure

A

TTTTTTTTTTTTTT
LONODO T ON 0NN NM 0
)

TT
0N
— |
| ™
3]

T
i~
1

ol
—

100 | AN | | | 00—

TTTTTTTT
0OONLON 00NN
A |
I 11N |
— N

2
53-18 —

ML
m“tte(svi"l’dx—failure id><)m
Figure 9: Models for combined suites.

One possible explanation for this improvement is that the-co
bined suites cover 82-89% of the t+1 tuples. Thus, they geovi
many of the data points seen in the t+1 covering arrays, bat at
much lower construction cost.

5. GUIDELINES FOR SOFTWARE PRAC-
TITIONERS

We have evaluated our fault characterization process byaom
ing it to the results of exhaustive testing. In practice,elepers
will not have access to this information. Therefore, in ggstion,
we provide some guidelines on how to use this approach in prac
tice.

In particular, we examine how to interpret reduced modedg; h
to estimate whether the reduced models are reliable, hoel¢ats
the appropriate strength level for the covering arrays, fzow to
work with a set of models.

Classification tree models can be partially evaluated wiittzo
traditional test set. Typically this is done using:dold stratified
cross-validation strategy [13]. Assuming tiat= 10, for example,
the training data is randomly divided into ten parts. Witkach
part the classes should be represented in approximatelyatne
proportions as in the original data set.

Then for each of the 10 parts, a model is built using the reimgin
nine-tenths of the data and tested to see how well it preéicts
that part. Finally, the ten error estimates are averagedtairo
an overall error rate. A high error rate indicates that thelet®
are highly sensitive to the subset of the data with which tuey
constructed. This suggests that the models may be “overfid” a
shouldn't be trusted.

We performed stratified ten-fold cross-validation on outueed
models from Study 3. We found that whenever the reduced risodel
cross-validation F measures were 0, the failure was eitrgrnare
(not considered option-related) or was an option-reladédre for
which even the exhaustive model couldn’t find a fault chamaza-

tion (i.e., ' = 0). These failures were, namely 28-4, 38-20, and
55-18. This suggests that models with 0 F measures are lyniike
signal option-related failures.

As a next step, we investigated the relation between thescros
validation F measures and the F measures of the exhaustikelsno
Figures 10(a) and (b) depict scatter plots of these two F aneas
for the 2-way and the 4-way models, respectively. We show onl
two figures due to space limitations. The trends of the otladats
are similar. We see the two F measures are very similar (ibey |
near the x=y line). The higher the strength of the arraysckbser
the F measures are.

F-measures of the 2-way models

0.8 1.0
|

0.6

F-measure from exhaustive results
0.4

0.2
|

0.0

T T T T T T
0.4 0.6 0.8 1.0

F-measure from cross-validation
(@

F-measures of the 4—way models

0.8 1.0
|

0.6

F-measure from exhaustive results
0.4

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

F-measure from cross-validation

(b)

Figure 10: Scatter plots of F measures for 2-way and 4-way
models.

This suggests that F measures from the cross-validatioe-of r

duced models can help estimate the performance of the models

Number of unique errors seen by the random and the t-way covering arrays
. . . .

5_way 6_way

2_way 3_way 4_way

of unique errors seen

80 - r

60

40 A . -

T T T T T T
covering random covering random covering random
suite type

Figure 11: Number of unique errors seen in random andt-way
covering suites.

when they are applied to the exhaustive results.

Based on the findings above, we give the following guidelioes

the users of covering arrays:

POLLER=0
| MUTEX=0

| | | NTERCEPTOR=0: PASS

| | | NTERCEPTOR=1: ERR #18
| MUTEX=1

| | | NTERCEPTOR=0: ERR #18
| | | NTERCEPTOR=1: PASS
POLLER=1: PASS

€Y

POLLER=0: ERR #18 POLLER=0

POLLER=1: PASS | Connect Strat egy=0: PASS
| Connect Strategy=1: ERR #18
| Connect Strat egy=2: PASS
POLLER=1: PASS

(b) (c)

Figure 12: Fault characterization for test #2, ERR #18 obtaned
from the exhaustive suite, a 2-way suite, and a random suite,
respectively.

Random schedules, however, sometimes completely missedop
related failures or resulted in unbalanced sampling of #ikng
subspaces. In the first situation, obviously, the modeleriggh the
failure because it had not been observed when running tli®nan
schedule. The second situation occurs when some parts obthe
figuration space are tested much more frequently than otfais
often lead to spurious options to be included in the models.

Figure 12 illustrates this situation by contrasting thdtfabar-
acterizations for test #2, ERR #18 obtained from the exhhaust
schedule, a 2-way schedule, and a random schedule. The F mea-
sures for the models are 0.993, 0.774, and 0.436, resplgciite

1. Use the F measures obtained from cross-validations of re- exhaustive schedule gave the model shown in Figure 12(ap-Co

duced models to flag unreliable models.

2. Higher F values are more likely to signal accurate faudtreh

pare this to the 2-way schedule appearing in Figure 12(b)e Th
latter is simpler and thus incorrect in some cases becadsesn’t
recognize the importance of the MUTEX option. Still, it do&s$n-

acterizations, which in turn can help pinpoint the causes of clude any unrelated options that would distract a develtyérg

failures quickly and accurately. Investigate the modelth wi

the highest F-measures first.

3. Consider using higher strength covering arrays or coatbin

to find the cause of the failure.

The model created from the random schedule however (Fidi{og)1
includes a node for the ConnectionStrategy option righeutide
node for the POLLER option. Our analysis shows that thisaopti

ones for the failures whose F values are low (i.e., less then is unrelated to the underlying failure. This happened beeawith

0.5).

6. COMPARISONWITHRANDOM SUITES

In this section, we compare the effectiveness-ofay and ran-
domly selected schedules. For this, we created 100 randitas su
for each value of where the size of each random schedule is the

same as the corresponditigvay schedule.

Our first concern was to see how well the random schedules re-

vealed failures. Figure 11 contains boxplots for the nunatbéail-

ures observed by the random andlay schedules conditioned én
In general we see that the higher the value @nd thus the larger

its size), the greater the number of failures observed. tFhay

suites tend to reveal slightly more failures than the cpoasing

random suites with less variance.

Next we evaluated the two scheduling approaches in terms of
their fault characterizations. For this, we randomly chdSean-
domly selected schedules for each value and created the classi-
fication tree models for option-related failures. In gehese ob-
served that random andway schedules yielded comparable fault

characterization models.

the random schedule, when POLLER == 0, 86% of the configura-
tion with ConnectionStrategy == 1 fail with ERR #18. Thusthe
model building algorithm ConnectionStrategy == 1 appearbe
important in explaining the underlying failure. In contrais the
exhaustive and 2-way schedules only 21% and 33% of the cenfigu
rations with ConnectionStrategy == 1 fail. This differemgsimply

due to an “unlucky” random selection that produced an umizaid
sampling of the underlying configuration space.

In summary, we observed that random anelay schedules gave
comparable fault characterizations on the average, btttthaan-
dom schedules sometimes created unreliable models. Margov
practice, the covering array approach automatically detess the
size of the schedule, whereas there’'s no way to predeterthine
correct size of a randomly selected schedule.

7. CONCLUSION

Fault characterization in configuration spaces can helpldpv
ers quickly pinpoint the causes of failures, hopefully iegdto
much quicker turn-around time for bug fixes. Therefore, auto
mated techniques, which can effectively, quickly, and eaimly

perform fault characterization, can save a great deal of tmd [2] R. Brownlie, J. Prowse, and M. S. Padke. Robust testing of

money throughout the industry. This is especially true whsss- AT&T PMX/StarMAIL using OATS. AT& T Technical
tem configuration spaces are large, the software changpseindy, Journal, 71(3):41-7, 1992.
and resources are limited. [3] K. Burr and W. Young. Combinatorial test techniques:
To make the process more efficient, we recast the problem of Table-based automation, test generation and code coverage
selecting test schedules (determining which configurattortest) In Proc. of the Intl. Conf. on Software Testing Analysis &
as a problem of calculatingtaway covering array over the system Review 1998.
configuration space. Using this schedule, we ran tests ahthée [4] M. Chateauneuf and D. Kreher. On the state of strengtieth
results to a classification tree algorithm to localize theesbed covering arraysJournal of Combinatorial Designs
faults. We then compared the fault characterizations nbthfrom 10(4):217-238, 2002.
exhaustive testing to those obtained via the covering atesived [5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
schedule.

The AETG system: an approach to testing based on
combinatorial designEEE Transactions on Software
Engineering 23(7):437-44, 1997.

[6] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge. Constructing test suites for interaction tegtin

e We observed that building fault characterizations for edzh
served fault rather than building a single one for all obsédrv
faults led to more reliable models.

¢ We observed that even low strength covering arrays, which Proc. of the Intl. Conf. on Software Engineering, (ICSE ;03)
provided up to 99% reduction in the number of configura- pages 38-44, 2003.
tions to be tested, often had fault characterizations tleaew [7] S.R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
as reliable as those created through exhaustive testing. Lott, G. C. Patton, and B. M. Horowitz. Model-based testing
in practice. InProc. of the Intl. Conf. on Software
o Higher strength covering arrays performed better than dlowe Engineering, (ICSE)pages 285-294, 1999.

strength ones and yielded more precise fault characteriza- [8] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows
tions, but were more costly. and A. lannino. Applying design of experiments to software
e We also showed that we could improve the fault characteriza- testing. InProc. of the Intl. Conf. on Software Engineering,

tion accuracy at low cost by combining lower strength cover- (ICSE "97) pages 205-215, 1997.

ing arrays rather than increasing the covering array streng ~ [9] D- Kuhn and M. Reilly. An investigation of the applicaity
of design of experiments to software testiRgoc. 27th

We were also able to develop some diagnostic tools to support Annual NASA Goddard/IEEE Software Engineering
software practitioners who want to use covering arraystiti toar- Workshop pages 91-95, 2002.
acterizations. In particular we found that: [10] R. Mandl. Orthogonal Latin squares: an application of

experiment design to compiler testingommunications of
e Low F measures in the exhaustive models tended to be as- the ACM 28(10):1054-1058, 1985.
sociated with overfit models or non-option-related faiture [11] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
These models are not likely to help developers identifyapti Schmidt, and B. Natarajan. Skoll: Distributed continuous
related failures. quality assurancélo be appear in Proc. of the Intl. Conf. on
Software Engineering, (ICSE '042004.

We found that the F taken f 10-fold -\taia . . .
¢ yeloundthat te - measures taxen from o'd cross a [12] N. Sloane. Covering arrays and intersecting codestnal of

were highly correlated and nearly identical with those take ; X ;]
from exhaustive models. This suggests that that crosdat#in Combmatorlal De5|gn,sl(1).51—6.3., 1993' . .
measures, which can be taken without having already done [13] I H. Witten and E. FrankData Mining: Practical Machine
exhaustive testing, might be a useful surrogate for the ex- Learning Tools and Techniques with Java Implementations

haustive model F measures. Morgan Kaufmann, 1999.

In continuing work, we are integrating covering arrays okle
tions directly into the Skoll system. At the same time thelBko
system is being integrated into the daily build process wvéis
large-scale, widely used systems such as ACE+TAO. Thiggivid
us a chance to replicate the experiments over much largananel
realistic configuration spaces. We are also examining hdveti@r
model the effect of inter-option constraints on the faulirettteri-
zations.

Acknowledgements

This material is based upon work supported by the National Sc
ence Foundation under Grant Nos. NSF ITR CCR-0312859, CCR-
0205265, CCR-0098158.

8. REFERENCES

[1] L. Breiman, J. Freidman, R. Olshen, and C. Stone.
Classification and Regression Tre®#gadsworth, Monterey,
CA, 1984.

