
Covering Arrays for Efficient Fault Characterization in
Complex Configuration Spaces

Cemal Yilmaz
University of Maryland

cyilmaz@cs.umd.edu

Myra Cohen
University of Auckland

myra@cs.auckland.ac.nz

Adam Porter
University of Maryland

aporter@cs.umd.edu

Abstract
Testing systems with large configurations spaces that change often
is a challenging problem. The cost and complexity of QA explodes
because often there isn’t just one system, but a multitude ofrelated
systems. Bugs may appear in certain configurations, but not in oth-
ers.

The Skoll system and process has been developed to test these
types of systems through distributed, continuous quality assurance,
leveraging user resources around-the-world, around-the-clock. It
has been shown to be effective in automatically characterizing con-
figurations in which failures manifest. The derived information
helps developers quickly narrow down the cause of failures which
then improves turn around time for fixes. However, this method
does not scale well. It requires one to exhaustively test each con-
figuration in the configuration space.

In this paper we examine an alternative approach. We use a
mathematical object called a covering array to obtain relatively
small test schedules with certain coverage properties overthe en-
tire configuration space. We empirically assess the effect of using
covering array derived test schedules on the resulting fault charac-
terizations and provide guidelines to practitioners for their use.

1. INTRODUCTION
Many modern software systems must be customized to specific

run-time contexts and application requirements. To support such
customization, these systems provide numerous user-configurable
options. For example, some web servers (e.g., Apache), object re-
quest brokers (e.g., TAO), and databases (e.g., Oracle) can have
dozens, even hundreds, of options. While this flexibility promotes
customization, it creates many potential system configurations, each
of which may need extensive QA to validate. We call this problem
software configuration space explosion.

To address this issue we have developed Skoll [11]– a distributed
continuous QA process supported by automated tools which lever-
ages the extensive computing resources of worldwide user com-
munities in order to efficiently, incrementally and opportunistically
improve software quality and to provide greater insight into the
behavior and performance of fielded systems. Skoll does thisby

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’04,July 11–14, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-820-2/04/0007 ...$5.00.

dividing QA processes into multiple subtasks which are thenintel-
ligently distributed to client machines around the world, executed
by them, and their results returned to central collection sites where
they are fused together to complete the overall QA process.

One QA task implemented in Skoll was to determine which spe-
cific options and option settings caused specific failures toman-
ifest. We call thisfault characterization. Fault characterization
is done by testing numerous different configurations and feeding
the results to a classification tree analysis. The output is amodel
describing the options and settings that best predict failure. For ex-
ample, using Skoll on a CORBA implementation we found that if
the executable is running on Linux, with Corba Messaging Support
enabled, but with Asynchronous Messaging optimization disabled,
then socket connections timeout.

We gave this information to the system’s developers who then
quickly pinpointed the failure’s cause. Further analysis showed that
this problem had in fact been observed previously by severalusers,
but that the developers simply hadn’t been able to track downthe
problem. Skoll’s automatically derived fault characterization, how-
ever, greatly narrowed down the search space, making the develop-
ers’ job much easier.

While we were pleased with this outcome, the fundamental down-
side of this approach was that we have to test the entire configura-
tion space. In the example cited above, for instance, that means
that nearly 19,000 times, remote clients downloaded, configured
and compiled the 1M+ lines of code system, and then executed a
battery of tests. For each client this took about 6–8 hours. Further-
more, this was only a small subset of the system’s entire configu-
ration space. The actual space is much bigger. Clearly, somemore
efficient process will be necessary in general.

This paper proposes and evaluates an alternative strategy.The
idea is to systematically sample the configuration space, test only
the selected configurations, and conduct fault characterization on
the resulting data. The sampling approach we use is based on cal-
culating a mathematical object called a covering array (These are
described in more detail in Section 2.1). Our experimental results
show that this approach is nearly as accurate as that based onex-
haustive data, but is much cheaper (provides 50-99% reductions in
the number of configurations to be tested).

The remainder of this paper is organized as follows: Section2
briefly explains the mathematical tools we used in this paper; Sec-
tion 3 describes the fault characterization process; Section 4 de-
scribes the studies we conducted; Section 5 provides practical ad-
vice to users of this approach; Section 6 compares covering arrays
to random selection; and Section 7 presents concluding remarks
and possible directions for future work.

2. BACKGROUND

In this paper we propose a 3-step process for characterizingfaults.
First we systematically sample a system’s entire configuration space
using a mathematical object called a covering array as opposed to
using the entire configuration space as we did in [11]. Next we
use Skoll to distribute and test individual configurations at remote
user sites and relay the results to a central server. Finally, we clas-
sify the test results and provide the resulting model to the system’s
developers.

In this section we provide some background information on these
three steps.

2.1 Covering Arrays
The software systems we consider in this research have options,

each of which takes its value from a set of valid settings. Ourmain
goal is to identify and characterize failures that are caused by spe-
cific combinations of options settings. Therefore, it is important
that we maximize the “coverage” of option setting combinations.
However, we also want to do this at some reasonably low cost.
Consequently, we also want to minimize the total number of con-
figurations tested.

Our approach to doing this is to computet-way coverage using
a combinatorial object called acovering array. A covering array,
CA(N ; t, k, v), is anN × k array onv symbols with the property
that anyN × t sub-array contains all orderedt-sets of sizev at
least once [4]. For instance, whent = 2 we can arbitrarily select
any 2 columns from the covering array to form a new sub-array.
We can now choose any ordered pair from thev values with the
guarantee that it will be found in at least one row of this sub-array.
In the Skoll system, each of the configuration options is a column
of the covering array. Each option setting is mapped to one ofthev

values for that column. This gives us a covering array derived test
schedule orCA test schedule. Thestrengthof the array is denoted
by t.

Since many software systems do not have the same number of
option settings for each option we can use amixed levelcovering
array to model such systems. AnMCA(N ; t, k, (v1, v2, ...vk)), is
anN × k array ons symbols, wheres =

Pk

i=1 vi. In this array
each columni (1 ≤ i ≤ k) contains elements from a setSi with
|Si| = vi. The rows of everyN × t sub-array cover allt−tuples
of values from thet columns at least once. We can use a shorthand
notation to describe our covering array by combiningvi’s that are
the same and representing this number as a superscript. For exam-
ple if we have 4v’s each with 3 levels, we can write this34. In this
manner anMCA(N ; t, k, (v1v2...vk)) can also be written as an
MCA(N ; t, (sp1

1 s
p2

2 ...spr

r)) wherek =
Pr

i=1 pi. In this paper,
we restrict ourselves to mixed level covering arrays. Therefore we
will use the general termcovering arrayto refer to these from now
on.

Covering arrays have the property that eacht-tuple is usedat
leastonce, which means they can be arbitrarily large. One of our
goals, in building these, must be to minimizeN .

There are many mathematical oralgebraicmethods that can be
used to construct covering arrays [4, 12]. However, the algebraic
methods are restricted to specific parameter sizes fort, k andv and
often require in depth mathematical knowledge to implement. In-
stead a variety of computational methods exists that can be used to
find covering arrays with a smallN for a given set of parameters.
In [6] several greedy algorithms are compared with heuristic search
such as simulated annealing and hill climbing. Simulated anneal-
ing gives a consistently smallN whent = 2 or t = 3. Therefore,
we chose this as our construction method. Simulated annealing is a
standard combinatorial optimization technique (see [6] for a more
thorough discussion of this algorithm). In our implmentatoon of

simulated annealing method, the cost function is the numberof un-
coveredt-sets remaining, i.e. a covering array has a cost of0. We
begin with an unknownN for a particular set of parameters, re-
peating the annealing process many times, using a binary search
strategy to find the smallestN which gives us a solution [6].

Covering arrays have been used most frequently to test input
combinations of programs. Mandl [10] first used orthogonal ar-
rays, a special type of covering array in which allt-sets occurex-
actly once, to test enumerated types in ADA compiler software.
This idea was extended by Brownlieet al. [2] who developed the
orthogonal array testing system (OATS). They provided empirical
results to suggest that the use of orthogonal arrays is effective in
fault detection and provides good code coverage. Dalalet al. [7]
argue that the testing of all pairwise interactions in a software sys-
tem finds a large percentage of the existing faults. In further work,
Burr et al., Dunietzet al. and Kuhnet al. provide more empiri-
cal results to show that this type of test coverage is effective [3, 8,
9]. These studies focus on finding unknown faults in already tested
systems and equate covering arrays with code coverage metrics [5,
8].

Our approach is different in that we apply covering arrays tosys-
tem configuration options and we assess their effectivenessin re-
vealing option-related failures and finding failure inducing options.

2.2 Skoll
Skoll [11] is a distributed continuous QA process supportedby

automated tools which leverages the extensive computing resources
of worldwide user communities in order to efficiently, incremen-
tally and opportunistically improve software quality and to provide
greater insight into the behavior and performance of fieldedsys-
tems. Skoll does this by dividing global QA processes into multiple
subtasks which are then intelligently distributed to client machines
around the world and executed. The results are returned to Skoll
server where they are fused together to complete the overallQA
process. Figure 1 summarizes the Skoll process (refer to [11] for
further details).

A corner stone of Skoll is a formal model of a QA process’ con-
figuration space calledconfiguration model. The model captures
configuration options and their settings as well as the constraints
on them. An Intelligent Steering Agent (ISA) located at the Skoll
server uses this information in planning the global QA process, for
adapting the process dynamically, and to aid in interpreting the re-
sults. ISA is implemented using planning technology and utilizes
various constraint solving, scheduling and planning algorithms.

In this paper, we create covering arrays for a configuration model
and use Skoll to distribute and test individual configurations at re-
mote user sites and collect the results at a central server. For a given
configuration, each client downloads the software under study from
a central code repository, configures and compiles it, runs abattery
of tests, and sends the results back to the server.

2.3 Classification Trees
Once we have obtained the test results, we use a classification

tree analysis to model failure-inducing options (i.e., thespecific
options and their settings in which the failure manifests itself).

Classification trees use a recursive partitioning approachto build
a model that predicts a configuration’s class (e.g., passingor fail-
ing) in terms of the values of individual option settings. This model
is tree-structured. Each node denotes an option, each edge repre-
sents an option setting, and each leaf represents a class or set of
classes (if there are more than 2 classes).

Classification trees are constructed using data called thetrain-
ing set. A training set consists of configurations, each with the

Figure 1: Process view of Skoll.

same set of options, but with potentially different option settings
together with known class information. Based on the training set,
models are built as follows. First, for each option, partition the
training set based on the option settings. The resulting partition is
evaluated based on how well the partition separates configurations
of one class from those of another. Commonly, this evaluation is
realized as an entropy measure [1].

The option that creates the best partition becomes the root of the
tree. To this node we add one edge for each option setting. Finally,
for each subset in the partition, we repeat the process. The process
stops when no further split is possible (or desirable).

To evaluate the model, we use it to predict the class of previ-
ously unseen configurations. We call these configurations the test
set. For each configuration we begin with the option at the root
of the tree and follow the edge corresponding to the option setting
found in the new configuration. This process continues untila leaf
is encountered. The class label found at the leaf is interpreted as
the predicted class for the new configuration. By comparing the
predicted class to the actual class we estimate the accuracyof the
model.

In this research, we use the classification trees to extract failure-
inducing option setting patterns. That is we extract the options
and option settings from the tree that characterize failingconfig-
urations. In particular we use the Weka implementation of J48
classification tree algorithm with the default confidence factor of
0.25 [13] to obtain the models.

3. THE FAULT CHARACTERIZATION PRO-
CESS

In this research, our ultimate goal is to provide developerswith
compact and accurate descriptions of failing configurationsubspaces.
Our experience shows that such information can help developers
find the causes of failures much more quickly than they can with-
out this information [11]. In this section we provide more detail

about the fault characterization process and describe how we eval-
uate its performance.

Config Result Config Result
o1 o2 o3 o1 o2 o3
0 0 0 PASS 1 1 2 ERR #1
0 0 1 PASS 1 2 0 ERR #1
0 0 2 ERR #3 1 2 1 ERR #1
0 1 0 PASS 1 2 2 ERR #1
0 1 1 PASS 2 0 1 ERR #2
0 1 2 PASS 2 0 2 ERR #2
0 2 0 PASS 2 0 3 ERR #2
0 2 1 PASS 2 1 0 ERR #2
0 2 2 PASS 2 1 1 ERR #2
1 0 0 ERR #1 2 1 2 ERR #2
1 0 1 ERR #1 2 2 0 ERR #3
1 0 2 ERR #1 2 2 1 ERR #2
1 1 0 ERR #3 2 2 2 ERR #2
1 1 1 ERR #1

Table 1: An example of an exhaustive suite.

1

PASS ERR #1 ERR #2

0 2

 o1

Figure 2: An example of a classification tree.

Table 1 depicts the results of exhaustively testing a systemwith
three configuration options (o1, o2, ando3) when each has three
levels of settings (0, 1, and2). There are no constraints among the
options, so there are 27 valid configurations. These resultsshow
four outcomes – test PASSed, test failed with ERR#1, test failed
with ERR #2 and test failed with ERR #3.

Feeding this data to a classification tree algorithm yields the
model shown in Figure 2. This simple model tells us that the setting
of optiono1 is strongly correlated with the manifestation of failures
ERR#1 andERR#2. That is, configurations witho1 == 1 fail
with ERR#1 and those witho1 == 2 fail with ERR #2.

3.1 Evaluating Fault Characterizations
Obviously, these models may not be complete and correct. In

some cases this is because:

1. the underlying problem is not related to the option settings
(e.g., ERR #3 occurs with all settings ofo1 ando2 and 2 of
the 3 settings ofo3), or

2. the model building approach identifies spurious, but non-
causal patterns.

This research is not concerned with non-option-related failures.
We attempt to remove them from our analysis. In general, thiscan’t
be done without manually verifying each and every failure. Con-
sequently, we simply remove any failure from considerationthat
occurs in less than 3% of the test runs. Our rationale is that deter-
ministic failures involving up to 5 binary options should manifest
at least this many times as should non-deterministic failures involv-
ing fewer options, but appearing with a reasonable frequency (e.g.
3 options with the failure manifesting 1/4 of the time).

To evaluate the accuracy of classification tree models we usesev-
eral standard metrics. Precision (P) and recall (R) are two widely
used metrics to assess the performance of classification models. For
a given failure classE, they are defined as follows:

recall = # of correctly predicted instances of E by the model

total # of instances of E

precision = # of correctly predicted instances of E by the model

total # of predicted instances of E by the model

Drawing an analogy to a medical test, recall measures how well
the test identifies infected people; Precision measures howmany
false alarms the test raises. In general we want good recall because
otherwise the models may miss relevant characteristics or add ir-
relevant ones. On the other hand, we want to minimize the false
alarms because we don’t want developers to waste resources inves-
tigating them.

Since neither measure predominates our evaluation we combine
the measures using the F metric. This is defined as:

F = (b2+1)PR

b2P+R

In this formula,b controls the weight of importance to be given
to precision and recall:F = P whenb = 0 andF = R when
b = ∞. Throughout this paper, we computeF with b = 1, which
gives precision and recall equal importance.

3.2 Reducing Test Suite Size
While the model in Figure 2 explains the observed failures rea-

sonably well, it did so at the cost of exhaustively testing the con-
figuration space. This won’t scale. Interestingly, we get the same
tree model using only the shaded configurations in Table 1. More-
over, this reduced suite is only one-third the size of the exhaustive
suite. We selected these configurations because they constitute a2-
way covering array of the configuration space. That is, all pairwise
combinations of the options appear in the shaded configurations.
If these results hold in practice, it would greatly reduce the cost
of fault characterization, without compromising its accuracy. We
evaluate this conjecture throughout the rest of this paper.

4. EXPERIMENTS
In this Section we describe several studies of our fault charac-

terization approach. We applied this process to an open-source
CORBA middleware implementation called ACE+TAO.

ACE+TAO is large, widely-deployed open-source middleware
software toolkit that can be reused and extended to simplifythe de-
velopment of performance-intensive distributed softwareapplica-
tions. The ACE+TAO source base has evolved over the past decade
and now contains over one million lines of C++ source code. Itis
highly configurable with a large number of configuration options
(over 500) supporting a wide variety of program families andstan-
dards.

In a previous study, we modeled and studied a small subset of
the system’s entire configuration space. This model comprises 10
compile-time and 6 runtime options. Each compile-time option is
binary-valued, while the runtime options have differing numbers of
settings: four options with three levels, one option with four levels,
and one option with two levels. All told, this configuration space
has 18,792 valid configurations.

Compile-time options allow features, such as asynchronized
method invocation (AMI) and CORBA messaging, to be compiled
in or out of the system. Runtime options provide more fine-grained
control over the runtime behavior of the system, such as object col-
location strategies and connection purging strategies.

CA Strength (t) No. of Tests (N)
2 116
3 348
4 1229-1236
5 3369 - 3372
6 9433-9453

Table 2: Size of test suites for2 ≤ t ≤ 6.

We tested each configuration using 96 regression tests. It took us
one machine year to run the experiment. Each test were designed
to emit an error message in the case of failure. The error messages
were captured and recorded. In this paper, we adopt the results of
these tests and refer them asexhaustive results.

To evaluate the use of covering arrays, we created five different
t-way covering arrays for this configuration space. We allowed t

to range between 2 and 6. We reran the regression tests for each
of theset-way suites and used classification trees to automatically
characterize the test results. We then compared the fault charac-
terizations obtained fromt-way suites to the ones obtained from
exhaustive testing.

Because our earlier work uncovered numerous compilation prob-
lems, we chose to group the 10 compile time options into a sin-
gle configuration with 29 levels (i.e., the 29 static configurations
that compiled). Otherwise, we would have generated numerous
uncompilable configurations. Our goal then became to see how
well we could detect runtime errors and the failure-inducing op-
tions that lead to them. Note that this is simply a time-saving issue,
it does not change the size of the underlying configuration space
or the characterizations we are trying to find. Using this approach
we computed anMCA(N ; t, 291413421). The model has seven
configuration options. The first corresponds to the 29 successfully
compiled static options, and the rest correspond to the 6 runtime
configurations.

Table 2 gives the covering array sizeN for each value oft. When
t ≤ 3 all five arrays were the same sizeN . For these we were
able to construct covering arrays with the smallest mathematically
possible number of rows. Whent ≥ 4, the problem of building a
smallN is harder so we obtained a range of sizes.

In the remainder of the section we present the results of several
studies. The first study examines how well CA test schedules reveal
failures. Obviously, if they don’t, then fault characterizations based
on them will suffer. The second study involves CA test schedules
and for each test builds one characterization model for all failures
observed on that test. The third study uses CA test schedules, but
builds one characterization model for each observed failure on each
test. Finally, the fourth study repeats study three, but uses several
lower strength covering arrays and compares them to the moreex-
pensive to obtain higher strength covering arrays.

4.1 Study 1: Revealing option-related failures
with covering arrays

An initial question that arose is whether covering arrays reveal
the option-related failures. If they don’t, then any characterization
based on them will obviously suffer.

Figure 3 plots error coverage statistics for 2-way coveringar-
rays. The reason we include figures for only 2-way covering arrays
is that they are the most interesting ones for showing the error cov-
erage statistics since their sizes are the smallest. In thisfigure, each
bar represents one test case and tests that never failed are omitted.
The height of a bar is the number of unique errors seen with theex-
haustive test suite. The lower part of a bar (darker color) shows the

0 4 9 13 20 28 33 38 43 50 55 65 71 77 89 95

of unique errs missed
of unique errs caught

Error Coverage for 2−way Covering Arrays

test

of

 u
ni

qu
e

er
ro

rs
 s

ee
n

0
2

4
6

8

Figure 3: Error coverage statistics for 2-way covering arrays.

average number of unique errors seen by the five 2-way suites.For
example, during the execution of test #35 in the exhaustive suite
we observed eight unique error messages whereas the 2-way suites
only revealed three of them on average.

As Figure 3 indicates, the 2-way suites discovered only a small
percentage of the failures seen by the exhaustive suite. On the other
hand, we are particularly interested in the effectiveness of the re-
duced suites in revealing option-related failures.

In order to identify option-related failures we used the 3% cut-off
value described in Section 3.1. We removed any failure from con-
sideration that occurred in less than 3% of the test runs in the en-
tire configuration space. This gave us 40 “potential” option-related
failures from now on just referred to asoption-related failures. We
then checked the effectiveness of covering arrays in revealing those
40 failures. It turned out that each and everyt-way suite revealed
all of these failures.

Figure 4 summarizes this result for the 2-way suites. This figure
plots the number of failing configurations for each test. Thelower
part of each bar shows the number of failing configurations whose
error messages are discovered by the 2-way suites and the upper
part indicates the number of configurations whose error messages
are missed by the 2-way suites. As can be seen from the figure,
the 2-way suites discovered the failures that constitute large failing
sub-spaces.

In the rest of the paper, we assess the effectiveness oft-way
suites for fault characterization only on these option-related fail-
ures.

4.2 Study 2: Covering arrays with per test
case characterization

In this study we use CA test schedules. For each test case, we
build one characterization model for all failures observedin any of
the scheduled configurations.

4.2.1 Creating classification tree models

0 4 9 13 20 28 33 38 43 50 55 65 71 77 89 95

Error Coverage for 2−way Covering Arrays

test

of

 c
on

fig
ur

at
io

ns
 fa

ile
d

0
25

00
50

00
75

00
10

00
0

12
50

0
15

00
0

18
79

2

of errs caught
of errs missed

Figure 4: Error coverage statistics for 2-way covering arrays (a
different view).

For each configuration in the entire space, we ran all the regres-
sion tests and recorded their pass/failure information. Wethen built
a classification model using this data and tested it on the same data.
This tells us how well, in the best case, the models characterize the
faults.

We repeated the process above for only the scheduled configu-
rations (i.e., those selected by the covering array). We then built
classification tree models using this data. We tested the models,
however, on the exhaustive data set. This tells us how well the
models, built using only a subset of the data, characterize the faults.

In the rest of the paper, we’ll refer to the models obtained from
the covering arrays and the exhaustive suite as reduced models and
exhaustive models, respectively.

4.2.2 Evaluation
We applied the classification models to our exhaustive results

and collected the F measures for each option-related failure.
Figure 5 shows the F measures of the reduced models and the

exhaustive models for 40 option-related failures. The vertical axis
denotes F measure, and the horizontal axis denotes test index and
error index. For example, the first tick on the horizontal axis, which
is 0-1, represents the error indexed as 1, which occurred during the
execution of the test indexed as 0.

The first thing to note is the F measures for the reduced models
are almost always near those of the exhaustive models. That is, if
the exhaustive models characterize the failure well, then so do the
reduced models. If they don’t, then neither do the reduced mod-
els. This is true no matter what the strength of the covering array
(the level oft) is. For example, 78% of the models obtained from
the 2-way schedules gave F measures within 0.1 of the exhaustive
models. 88% of them were within 0.2. The higher the strength of
the covering arrays, the closer the F measures were. Also impor-
tant, is the fact that the 2-way covering arrays provided this similar
performance while providing a 99.4% reduction in the numberof

F−measures of the models for each test

(test idx−failure idx)

F
−

m
ea

su
re

0.0

0.2

0.4

0.6

0.8

1.0

0−
1

1−
17

1−
18

1−
2

11
−

15
2−

17
2−

18
2−

2
28

−
4

3−
17

3−
18

3−
2

31
−

5
31

−
82

32
−

19
32

−
6

35
−

14
38

−
20

4−
17

4−
18

4−
2

45
−

7
5−

12
5−

3
5−

81
52

−
18

53
−

18
54

−
18

55
−

18
64

−
8

65
−

16
66

−
16

68
−

9
69

−
10

71
−

11
72

−
12

73
−

12
77

−
22

80
−

22
83

−
13

exhaustive
2−way
3−way
4−way
5−way
6−way

Figure 5: Models for each test.

configurations to be tested! In our experiments with ACE+TAO,
for example, it took us 8 hours to compile ACE+TAO, compile the
tests, and execute them for each configuration. Using 2-way suites
would have saved us almost a year of machine time compared to us-
ing the exhaustive suite without dramatically lowering theaccuracy
of the fault characterizations.

Our analysis also suggests that the higher the F measure, the
more similar the exhaustive and reduced models were in termsof
the options and settings captured. To make the analysis clearer
we divided the models into four categories using the F measures
obtained from exhaustive models: very strong (F = 1), strong
(0.8 < F < 1), weak (0 < F ≤ 0.8), and unknown (F = 0).

The reduced models for very strong patterns were exactly the
same as the exhaustive models. That is, they produced the same sets
of rules to describe the failures. The similarity decreasedsteadily as
we moved to strong patterns and then to weak patterns. Weak pat-
terns captured by the reduced models (especially the 2-way mod-
els) tended to differ substantially from those found in the exhaus-
tive models – See failures 52-18, 80-22, and 35-14. In these cases
we saw that using higher strength covering arrays boosted perfor-
mance.

Failures with unknown patterns are interesting. Although these
failures were seen frequently enough to be considered option-related
failures, the classification model found no apparent pattern to their
occurrences. We observed three failures of this nature, namely 28-
4, 38-20, and 55-18. None of the suites, even the exhaustive suite,
were able to provide fault characterizations for these failures.

This result amplifies our earlier results [11] in which we showed
that the patterns contained in the classification trees often, but not
always, corresponded with the actual cause of the failure. As we
will show in Section 5, the concept of pattern strength givesus a
way to determine whether the classification tree model is reliable,
and, therefore, likely to help developers find an actual failure cause.

F−measures of the models for each test and failure

(test idx−failure idx)

F
−

m
ea

su
re

0.0

0.2

0.4

0.6

0.8

1.0

0−
1

1−
17

1−
18

1−
2

11
−

15
2−

17
2−

18
2−

2
28

−
4

3−
17

3−
18

3−
2

31
−

5
31

−
82

32
−

19
32

−
6

35
−

14
38

−
20

4−
17

4−
18

4−
2

45
−

7
5−

12
5−

3
5−

81
52

−
18

53
−

18
54

−
18

55
−

18
64

−
8

65
−

16
66

−
16

68
−

9
69

−
10

71
−

11
72

−
12

73
−

12
77

−
22

80
−

22
83

−
13

exhaustive
2−way
3−way
4−way
5−way
6−way

Figure 6: Models for each test and failure combination.

4.3 Study 3: Covering arrays with per test,
failure case characterization

Building classification models with several classes can lead to
situations where there is too little data from which to conclude class
assignment or to situations where global model building choices
lead to suboptimal models for individual classes.

In this study we attempt to circumvent this problem by building
one characterization model for each test case and failure combina-
tion.

4.3.1 Creating classification tree models
Just as in Study 2, we ran all test cases on every configurationin

the configuration space and recorded their pass/failure information.
For each test and failuref we created a training data set. Here
we recoded the test outcomes into two classes: those failingwith
failure f and those passing. We repeated the process with the CA
test schedules and compared the results.

4.3.2 Evaluation
Figure 6 shows the F-measures for the models. At a first glance

this performance is indistinguishable from that of Study 2.Conse-
quently, our findings in Study 2 also apply to this study.

One important way in which these two approaches differ how-
ever is in the readability of the resulting models. When we build
one model for multiple failures, as we did in Study 2, extraneous
information can creep into the patterns that describe the different
failures.

Figure 7(a), (b) and (c) illustrate this situation. Figure 7(a) shows
the characterization for two failures that occurred duringthe execu-
tion of test #3 (we’ve excluded other errors to simplify the discus-
sion). This model says that error #2 occurs when CALLBACK==0
and that error #17 occurs when CALLBACK==1 and ORBCollo-
cation==NO. We know from earlier analysis, however, that error
#2 occurs when CALLBACK==0 and that error #17 occurs when
ORBCollocation==NO. That is, the setting of CALLBACK has no

CALLBACK=0:ERR #2
CALLBACK=1
| ORBCollocation=glb:PASS
| ORBCollocation=orb:PASS
| ORBCollocation=NO:ERR #17

(a)

CALLBACK=0:ERR #2
CALLBACK=1:PASS

(b)

ORBCollocation=glb:PASS
ORBCollocation=orb:PASS
ORBCollocation=NO:ERR #17

(c)

Figure 7: Fault characterizations for test #3, test #3 and error
#2, and test #3 and error #17, respectively.

effect on the manifestation of error #17. That the CALLBACK op-
tion appears in the pattern for error #17 is simply an artifact of the
modeling process when there are multiple classes being modeled.

When we build a model for each test and failure combination,
on the other hand, this problem doesn’t appear. In fact, the fault
characterizations, shown in Figures 7(b) and (c), are exactand are
the actual causes of the failures.

Error #2 occurred during the compilation of the test case. It
turned out that certain files within TAO implementing CORBA mes-
saging incorrectly assumed that CALLBACK option would always
be set to 1. Consequently, when CALLBACK==0 certain defini-
tions were unset.

Error #17 occurred when the ORBCollocation optimization was
turned off. ACE+TAO’s ORBCollocation option controls the con-
ditions under which the ORB should treat objects as being collo-
cated. Turning it off means that objects should never be treated as
being collocated. When objects are not co-located they calleach
other’s methods by sending messages across the network. When
they are collocated, they can communicate directly, savingnet-
working overhead. The fact that these tests worked when objects
communicated directly, but failed when they talked over thenet-
work clearly suggested a problem related to message passing. In
fact, the source of the problem was a bug in their routines formar-
shaling/unmarshalling object references.

As the strength of the covering arrays increases, fault characteri-
zations move closer to the ones obtained from the exhaustivesuite.
We illustrate the differences among the characterizationsobtained
from different strength covering arrays in Figure 8.

Figure 8(a), (b), and (c) show the fault characterizations obtained
from the exhaustive suite, 2-way covering arrays, and 3-waycov-
ering arrays, respectively for error #18 which occurred during the
execution of test #3. The exhaustive model correlates the failure
with four options and gives an F measure of 0.849. The 2-way
model is able to link the failure to only one option. This results
in an F measure of 0.747. On the other hand, the 3-way model
associates the failure with three options and resulted in a better F
measure, (0.795), than the 2-way model.

4.4 Study 4: Combined reduced suites
As shown in Table 2, the size of the CA test schedules grows

rapidly ast increases. In this study we examined how combined
lower strength schedules compare to single higher strengthcover-
ing arrays (e.g., 3, 2-way covering arrays vs. 1, 3-way covering
array).

Specifically, we combined schedules in such a way that the size
of the combinedt-way schedules is close to the size of a single
(t + 1) schedule. We then compared the combined schedules to

POLLER=0
| DIOP=0
| | INTERCEPTOR=0
| | | MUTEX=0:PASS
| | | MUTEX=1:ERR #18
| | INTERCEPTOR=1:ERR #18
| DIOP=1
| | INTERCEPTOR=0:ERR #18
| | INTERCEPTOR=1
| | | MUTEX=0:ERR #18
| | | MUTEX=1:PASS
POLLER=1:PASS

(a)

POLLER=0:ERR #18
POLLER=1:PASS

(b)

POLLER=0
| MUTEX=0
| | INTERCEPTOR=0:PASS
| | INTERCEPTOR=1:ERR #18
| MUTEX=1:ERR #18
POLLER=1:PASS

(c)

Figure 8: Fault characterizations for error #18 obtained from
exhaustive suite, 2-way covering arrays, and 3-way covering ar-
rays, respectively.

the uncombined ones. This is interesting because the cost ofcre-
ating (t + 1)-way suites can be significantly higher than the cost
of obtainingt-way suites (the cost is exponential int). If t-way-
combined and(t + 1)-way suites have comparable performance
measures then using the combined suites can be cost-effective.

4.4.1 Creating classification tree models
We created combinedt-way schedules by merging randomly se-

lected uncombinedt-way schedules. No duplicate test configura-
tions were allowed. We created 5 combined schedules fort from 2
to 5. We didn’t combine 6-way suites because the average sizeof
the 6-way suites was almost half that of the exhaustive suite. The
average sizes of thet-way-combined suites are given in Table 3.

Classification models were built as in Study 3.

Suite Size
2-way-combined 344.20
3-way-combined 1357.60
4-way-combined 3450.60
5-way-combined 8422.00

Table 3: Size of combined suites.

4.4.2 Evaluation
Figure 9 plots the F measures fort-way andt-way-combined

suites. t-way-combined suites result in better fault characteriza-
tions than thet-way suites. In particular, they boost the characteri-
zations of failures while single suites give low F measures (i.e. less
than 0.5).

For example, consider the 2-way and 2-way-combined models
for test #35, error #14 shown in Figure 9. The F measures for these
models are 0.06 and 0.39, respectively. The combined suite gives
an F measure that is much closer to that of the 3-way suite, which
is 0.42. On the other hand, when the F measures of single suites
are already high (say greater than 0.5), the combined suitesdon’t
improve performance to a great degree.

F−measures of combined suites

(test idx−failure idx)

F
−

m
ea

su
re

0.0

0.2

0.4

0.6

0.8

1.0

0−
1

1−
17

1−
18

1−
2

11
−

15
2−

17
2−

18
2−

2
28

−
4

3−
17

3−
18

3−
2

31
−

5
31

−
82

32
−

19
32

−
6

35
−

14
38

−
20

4−
17

4−
18

4−
2

45
−

7
5−

12
5−

3
5−

81
52

−
18

53
−

18
54

−
18

55
−

18
64

−
8

65
−

16
66

−
16

68
−

9
69

−
10

71
−

11
72

−
12

73
−

12
77

−
22

80
−

22
83

−
13

exhaustive
2−way
2−way−c
3−way
3−way−c
4−way
4−way−c
5−way
5−way−c
6−way

Figure 9: Models for combined suites.

One possible explanation for this improvement is that the com-
bined suites cover 82-89% of the t+1 tuples. Thus, they provide
many of the data points seen in the t+1 covering arrays, but ata
much lower construction cost.

5. GUIDELINES FOR SOFTWARE PRAC-
TITIONERS

We have evaluated our fault characterization process by compar-
ing it to the results of exhaustive testing. In practice, developers
will not have access to this information. Therefore, in thissection,
we provide some guidelines on how to use this approach in prac-
tice.

In particular, we examine how to interpret reduced models, how
to estimate whether the reduced models are reliable, how to select
the appropriate strength level for the covering arrays, andhow to
work with a set of models.

Classification tree models can be partially evaluated without a
traditional test set. Typically this is done using ak-fold stratified
cross-validation strategy [13]. Assuming thatk == 10, for example,
the training data is randomly divided into ten parts. Withineach
part the classes should be represented in approximately thesame
proportions as in the original data set.

Then for each of the 10 parts, a model is built using the remaining
nine-tenths of the data and tested to see how well it predictsfor
that part. Finally, the ten error estimates are averaged to obtain
an overall error rate. A high error rate indicates that the models
are highly sensitive to the subset of the data with which theyare
constructed. This suggests that the models may be “overfit” and
shouldn’t be trusted.

We performed stratified ten-fold cross-validation on our reduced
models from Study 3. We found that whenever the reduced model’s
cross-validation F measures were 0, the failure was either very rare
(not considered option-related) or was an option-related failure for
which even the exhaustive model couldn’t find a fault characteriza-

tion (i.e.,F = 0). These failures were, namely 28-4, 38-20, and
55-18. This suggests that models with 0 F measures are unlikely to
signal option-related failures.

As a next step, we investigated the relation between the cross-
validation F measures and the F measures of the exhaustive models.
Figures 10(a) and (b) depict scatter plots of these two F measures
for the 2-way and the 4-way models, respectively. We show only
two figures due to space limitations. The trends of the other models
are similar. We see the two F measures are very similar (they lie
near the x=y line). The higher the strength of the arrays, thecloser
the F measures are.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measures of the 2−way models

F−measure from cross−validation
F

−
m

ea
su

re
 fr

om
 e

xh
au

st
iv

e
re

su
lts

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measures of the 4−way models

F−measure from cross−validation

F
−

m
ea

su
re

 fr
om

 e
xh

au
st

iv
e

re
su

lts

(b)

Figure 10: Scatter plots of F measures for 2-way and 4-way
models.

This suggests that F measures from the cross-validation of re-
duced models can help estimate the performance of the models

Number of unique errors seen by the random and the t−way covering arrays

suite type

of

 u
ni

qu
e

er
ro

rs
 s

ee
n

 40

 60

 80

covering random

2_way

covering random

3_way

covering random

4_way

5_way 6_way

Figure 11: Number of unique errors seen in random andt-way
covering suites.

when they are applied to the exhaustive results.
Based on the findings above, we give the following guidelinesto

the users of covering arrays:

1. Use the F measures obtained from cross-validations of re-
duced models to flag unreliable models.

2. Higher F values are more likely to signal accurate fault char-
acterizations, which in turn can help pinpoint the causes of
failures quickly and accurately. Investigate the models with
the highest F-measures first.

3. Consider using higher strength covering arrays or combined
ones for the failures whose F values are low (i.e., less then
0.5).

6. COMPARISON WITH RANDOM SUITES
In this section, we compare the effectiveness oft-way and ran-

domly selected schedules. For this, we created 100 random suites
for each value oft where the size of each random schedule is the
same as the correspondingt-way schedule.

Our first concern was to see how well the random schedules re-
vealed failures. Figure 11 contains boxplots for the numberof fail-
ures observed by the random andt-way schedules conditioned ont.
In general we see that the higher the value oft (and thus the larger
its size), the greater the number of failures observed. Thet-way
suites tend to reveal slightly more failures than the corresponding
random suites with less variance.

Next we evaluated the two scheduling approaches in terms of
their fault characterizations. For this, we randomly chose15 ran-
domly selected schedules for each value oft and created the classi-
fication tree models for option-related failures. In general, we ob-
served that random andt-way schedules yielded comparable fault
characterization models.

POLLER=0
| MUTEX=0
| | INTERCEPTOR=0:PASS
| | INTERCEPTOR=1:ERR #18
| MUTEX=1
| | INTERCEPTOR=0:ERR #18
| | INTERCEPTOR=1:PASS
POLLER=1:PASS

(a)

POLLER=0:ERR #18
POLLER=1:PASS

(b)

POLLER=0
| ConnectStrategy=0:PASS
| ConnectStrategy=1:ERR #18
| ConnectStrategy=2:PASS
POLLER=1:PASS

(c)

Figure 12: Fault characterization for test #2, ERR #18 obtained
from the exhaustive suite, a 2-way suite, and a random suite,
respectively.

Random schedules, however, sometimes completely missed option-
related failures or resulted in unbalanced sampling of the failing
subspaces. In the first situation, obviously, the models ignored the
failure because it had not been observed when running the random
schedule. The second situation occurs when some parts of thecon-
figuration space are tested much more frequently than others. This
often lead to spurious options to be included in the models.

Figure 12 illustrates this situation by contrasting the fault char-
acterizations for test #2, ERR #18 obtained from the exhaustive
schedule, a 2-way schedule, and a random schedule. The F mea-
sures for the models are 0.993, 0.774, and 0.436, respectively. The
exhaustive schedule gave the model shown in Figure 12(a). Com-
pare this to the 2-way schedule appearing in Figure 12(b). The
latter is simpler and thus incorrect in some cases because itdoesn’t
recognize the importance of the MUTEX option. Still, it doesn’t in-
clude any unrelated options that would distract a developertrying
to find the cause of the failure.

The model created from the random schedule however (Figure 12(c))
includes a node for the ConnectionStrategy option right under the
node for the POLLER option. Our analysis shows that this option
is unrelated to the underlying failure. This happened because, with
the random schedule, when POLLER == 0, 86% of the configura-
tion with ConnectionStrategy == 1 fail with ERR #18. Thus, tothe
model building algorithm ConnectionStrategy == 1 appears to be
important in explaining the underlying failure. In contrast, in the
exhaustive and 2-way schedules only 21% and 33% of the configu-
rations with ConnectionStrategy == 1 fail. This differenceis simply
due to an “unlucky” random selection that produced an unbalanced
sampling of the underlying configuration space.

In summary, we observed that random andt-way schedules gave
comparable fault characterizations on the average, but that the ran-
dom schedules sometimes created unreliable models. Moreover, in
practice, the covering array approach automatically determines the
size of the schedule, whereas there’s no way to predeterminethe
correct size of a randomly selected schedule.

7. CONCLUSION
Fault characterization in configuration spaces can help develop-

ers quickly pinpoint the causes of failures, hopefully leading to
much quicker turn-around time for bug fixes. Therefore, auto-
mated techniques, which can effectively, quickly, and accurately

perform fault characterization, can save a great deal of time and
money throughout the industry. This is especially true where sys-
tem configuration spaces are large, the software changes frequently,
and resources are limited.

To make the process more efficient, we recast the problem of
selecting test schedules (determining which configurations to test)
as a problem of calculating at-way covering array over the system
configuration space. Using this schedule, we ran tests and fed the
results to a classification tree algorithm to localize the observed
faults. We then compared the fault characterizations obtained from
exhaustive testing to those obtained via the covering array-derived
schedule.

• We observed that building fault characterizations for eachob-
served fault rather than building a single one for all observed
faults led to more reliable models.

• We observed that even low strength covering arrays, which
provided up to 99% reduction in the number of configura-
tions to be tested, often had fault characterizations that were
as reliable as those created through exhaustive testing.

• Higher strength covering arrays performed better than lower
strength ones and yielded more precise fault characteriza-
tions, but were more costly.

• We also showed that we could improve the fault characteriza-
tion accuracy at low cost by combining lower strength cover-
ing arrays rather than increasing the covering array strength.

We were also able to develop some diagnostic tools to support
software practitioners who want to use covering arrays in fault char-
acterizations. In particular we found that:

• Low F measures in the exhaustive models tended to be as-
sociated with overfit models or non-option-related failures.
These models are not likely to help developers identify option-
related failures.

• We found that the F measures taken from 10-fold cross-validation
were highly correlated and nearly identical with those taken
from exhaustive models. This suggests that that cross-validation
measures, which can be taken without having already done
exhaustive testing, might be a useful surrogate for the ex-
haustive model F measures.

In continuing work, we are integrating covering arrays calcula-
tions directly into the Skoll system. At the same time the Skoll
system is being integrated into the daily build process of several
large-scale, widely used systems such as ACE+TAO. This willgive
us a chance to replicate the experiments over much larger andmore
realistic configuration spaces. We are also examining how tobetter
model the effect of inter-option constraints on the fault characteri-
zations.

Acknowledgements
This material is based upon work supported by the National Sci-
ence Foundation under Grant Nos. NSF ITR CCR-0312859, CCR-
0205265, CCR-0098158.

8. REFERENCES
[1] L. Breiman, J. Freidman, R. Olshen, and C. Stone.

Classification and Regression Trees. Wadsworth, Monterey,
CA, 1984.

[2] R. Brownlie, J. Prowse, and M. S. Padke. Robust testing of
AT&T PMX/StarMAIL using OATS. AT&T Technical
Journal, 71(3):41–7, 1992.

[3] K. Burr and W. Young. Combinatorial test techniques:
Table-based automation, test generation and code coverage.
In Proc. of the Intl. Conf. on Software Testing Analysis &
Review, 1998.

[4] M. Chateauneuf and D. Kreher. On the state of strength-three
covering arrays.Journal of Combinatorial Designs,
10(4):217–238, 2002.

[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
The AETG system: an approach to testing based on
combinatorial design.IEEE Transactions on Software
Engineering, 23(7):437–44, 1997.

[6] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge. Constructing test suites for interaction testing. In
Proc. of the Intl. Conf. on Software Engineering, (ICSE ’03),
pages 38–44, 2003.

[7] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based testing
in practice. InProc. of the Intl. Conf. on Software
Engineering, (ICSE), pages 285–294, 1999.

[8] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. Iannino. Applying design of experiments to software
testing. InProc. of the Intl. Conf. on Software Engineering,
(ICSE ’97), pages 205–215, 1997.

[9] D. Kuhn and M. Reilly. An investigation of the applicability
of design of experiments to software testing.Proc. 27th
Annual NASA Goddard/IEEE Software Engineering
Workshop, pages 91–95, 2002.

[10] R. Mandl. Orthogonal Latin squares: an application of
experiment design to compiler testing.Communications of
the ACM, 28(10):1054–1058, 1985.

[11] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed continuous
quality assurance.To be appear in Proc. of the Intl. Conf. on
Software Engineering, (ICSE ’04), 2004.

[12] N. Sloane. Covering arrays and intersecting codes.Journal of
Combinatorial Designs, 1(1):51–63, 1993.

[13] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1999.

