An Applicable Family of Data
Flow Testing Criteria

e Assumptions about the program
- No
goto statements
with
variant records
Functions having ‘var’ parameters
- By reference
Procedural or functional parameters
« Conformant arrays
- size of an array parameter is not known to the called
function until run-time
- Every Boolean expression that determines the
flow of control has at least one occurrence
of a variable or a call to the function ‘eof’ or
‘eoln’

Program Structure

e Program consists of ‘blocks’
e Block
- Sequence of statements

* Whenever the first statement is executed,
the remaining statements in the block are

executed in the given order

e Can be represented by a flow graph

Classifying each

variable occurrence

Definition
- Value is stored in a memory location
* Use

- Value is fetched from a memory location
« Undefinition

- Value and location becomes unbound
e C-use

- Use in a computation or output statement

- Associated with each node
e P-use

- Use in a predicate

- Associated with each edge

Simple Statements

Assignment statement: v:= expr;

1
1
| Node i bas c-uses of cach variable in
; expr followed by a definition of v.
1
1

Simple Statements

Simple Statements

fommmmm e S e -

! Input/Output statements: ! '

! I 1 o LR e -

' read(vl,...,vn); ' ! ! : :

! rea:l(z;(vll,....vn)); ' X | Procedure call: P(el,...,en); : :

! read(f,v1,...,vn); . . ' \ i

i readln(f,v1,...,vn); X . | Node j has c-uses of cach variable occuring in : :

; . . ' I . the expressions cl,...,en. L . '

X got:e 1[,111 as de_hz]m(;n.s ;:e‘;lc;;.t,;:l; node § X X ! These are fo;llo:ed by defu:m:::s of “‘i:h lctllml o : :

e L par ter whic! p avar formal parameter.

i also has a c-use followed by a definition of ft. i . ! p corr : :
1

i Tviiaietetolai ittt | ' . Nodes i and k are included to assure that ' X

. write(el,....en); . i [the procedure call has its own node. i :

. writeln(el,...,en); ! ' ! . !

| write(f,¢l,...,en); ! : L o

. writeln({,el,...,en); ! '

] ¥ b

. Node i has c-uses of cach variable occurring in el,...,en. .| X

' If the file variable f is present then node i ' !

, also bas a definition followed by a c-use of ft. .)

e e T S N B B L R NN L, o

Repetitive Statements

while statement: while B do S;

i
I
l
Let h be the entry node i
to subgraph S. ,
Edges (i,h) and (i,j) have |
p-uses of each variable in .
the boolean expression B. '

+

Repetitive Statements

for statement:
for vi=el to €2 do §;
for v:=e¢1 downto €2 do §;

|
|

1

Let tmp be a new varigble. '
Let f and g be the entry h
and exit nodes, respectively, '
)

]

I

1

1

!

|

each variable in el,

followed by a definition of v and
c-uses of each variable in €2
followed by a definition of tmp.
Edges (i,f) and (i,j) have

p-uses of v and tmp. Node g has

1
1
I
1
1
1
1
|
i of S. Node h has c-uses of
|
'
!
1
|
:
i a c-use followed by a def of v.

Repetitive Statements

repeat statement:
repeat S1;...;5n until B;

Let j be the entry node of
$1, end let k be the exit
node of Sn.

Edges (k,j) and (k,i) have
p-uses of cach variable in
the boolean expression B.

Conditional Statements

if-then-clse statement

if B then S1;
if B then S1 else §2;

1
1
!
\‘
Let k and j be the entry nodes of J
$1 and S2, respectively. !
Edges (i,j) and (i,k) have |
p-uses of each variable in the !
boolean expression B, |
if there is no "else” part then [
subgraph S2 has a single node X
corresponding to an empty block. !

1

1

Conditional Statements

case ¢l of
label-listl : S1;

1 1

[I

1 ¥

i 5

i 1

label-listn : Sn I \ i
cod;) S 1
) 1

. i

. i

1 1

i l

Ll I

i .

Let j1,...,jn be the entry nodes of
§1,...,5n, respectively.

Edges (i,j1),--.,(i,jn)

have p-uses of each variable

in the expression el.

Entry and exit nodes

e Entry node
- Has the definition of
* Each parameter
« Each non-local variable that is used in the program
¢ Input buffer inputt
e Exit node has
- An undefinition of each local variable
- A c-use of each variable parameter
- A c-use of each non-local variable
- A c-use of the input buffer inputt

Arrays

e It is impossible to determine the
particular array element which is being
used or defined in an occurrence of an
array variable
- Al2]

- A[i+j]

» Definition of a[expr]

- A c-use of each variable in expr
- Followed by a definition of a

¢ Use of a[expr]

- c-uses of all the variables in expr
- Followed by a use of a

Pointers

Impossible to determine statically the
memory location to which a pointer points

Syntactic treatment

If p is a pointer variable
- Definition of p~

e C-use of p

« Followed by a definition of p~
- Use of p»

e C-use of p

« Followed by a c-use of p»

Ignore definitions and uses of p”

Records & Files

e Records

- Each field is treated as an individual
variable

- Any unqualified occurrence of a record
is treated as an occurrence of each
field

e File variables

- Considering the effect on the file
buffer

Simplifying Assumptions

No interprocedural dataflow
analysis

Ignore pointers

Array reference simplification

No aliasing/side-effects
Consequences

- Perhaps “less than perfect” test data

Global Definition

e Global c-use
« A c-use of x in node i is global if x has been assigned
in some block other than i
e Def-clear path wrt x “from node i to
node j” and “from node i to edge (n,, j)”
« Apath (i, n, n,, .., n,, j) containing no definitions or
undefinitions of x in nodes n,, n,, .., n
e Global definition of x
- A node i has a global definition of a variable
x if
« it has a definition of x and
 there is a def-clear path wrt x from node i to some
node containing
- aglobal c-use or
- edge containing a p-use of x

'm

Restricted Programs Class

e Satisfying the following properties
- NSUP

¢ No-syntactic-undefined-p-use Property

- For every p-use of a variable x on an edge (i,j), in
P, there is some path from the start node to edge
(i,j), which contains a global definition of x

- NSL
* Non-straight-line property
- P has at least one conditional or repetitive
statement

» At least one node in P's flow-graph has more
than one successor

» At least one variable has a p-use in P

Def-use graph

e Obtained from the flow graph

e Associate with each node the sets
- C-use(i)
« Variables which have global c-uses in block-i
- Def(l)
« Variables which have global definitions in block-i
* Associate with each edge (i,])
- P-use(i,j)
« Variables which have p-uses on edge (i,j)
* Define sets of nodes
- dcu(x,i)
« Nodes j such that x O c-use(j) and there is a def-clear
paths with respect to x fromii to j

- dpu(x,i)
« Edges (j,k) such that x O p-use(j,k) and there is a def-clear
path with respect to x from i to (j k)

Definitions for def-use graph

v = the set of variables

N = the set of nodes

E = the set of edges

def(i) = {x & V| x has a global definition in block i}

c-use(i) = (x€ VI x hasa global c-use in block i}

p-use(ij) = {x € V| xhas a p-use in edge (i,j) }

deu(x,i) = {je NI x e c-use(j) and there is a def-clear path wrt x from i to j}
dpu(xi) = {(.k) e E)x e p-use(jk) and there is a def-clear path wrt x from i to G.k) }

Explanation

e IT x O def(i) and j O dcu(x,i), then
- X has a global definition in node i and
- A c-use in node j, and
- There is a definition clear path with respect
to x from node i to node j
* Hence
- It may be possible for control to reach node
J with the variable x having the value which
was assigned to it in node i

More definitions

« Definition-c-use association
- Triple (i,j,x) where i is a node containing a global
definition of x and j O dcu(x,i)
e Definition-p-use association
- Triple (i,(J,k),x) where i is a node containing a global
definition of x and (j,k) O dpu(x,i)
e A path (ny,n,, .., nj,nk) is a du-path wrt x if n;
has a global definition of x and either
- ny has a global c-use of x and (n, ..,n;, ny) is a def-
clear simple path wrt x, and
- (n;, n) has a p-use of x and (n,, .., n;) is a def-clear
loop-free path wrt x
e An association is a definition-c-use association,
a definition-p-use association, or a du-path

Yet more definitions

* Complete path

- Path from the entry node to the exit node
« Covering

- A complete path 1 covers a definition-c-use

association (i,j,x) if it has a definition clear subpath
wrt x from i to j

- A complete path 1 covers a definition-p-use
association (i,(j,k),x) if it has a definition clear
subpath wrt x from i to (j,k)

- mcovers a du-path 1 if 7 is a subpath of 1

- The set M of paths covers an association if some
element of the set does

- A test set T covers an association if the elements of
T cause the execution of the set of paths M, and N
covers the association

Finally, the criteria

e Intuitively

- The family of DF testing criteria is based on
requiring that
« the test data execute definition-clear paths from
each node containing a global definition of a variable
to specified nodes containing
- global c-uses and
- edges containing p-uses of that variable
- For each variable definition, the criteria
require that
« All/some definition-clear paths wrt that variable
from the node containing the definition to all/some of

the uses/c-uses/p-uses reachable by some such paths
be executed

All-defs criterion

e IT variable x has a global definition
in node i, the all-defs criterion
requires the test data to exercise
some path which goes from i to
some node or edge at which the
value assigned to x in node i is used

All-uses criterion

e IT variable x has a global definition

in node i, the all-uses criterion
requires the test data to exercise
at least one path which goes from i
to each node and edge at which the
value assigned to x in node i is used

All-DU-paths criterion

e IT variable x has a global definition
in node i, the all-DU-paths
criterion requires the test data to
exercise all paths which go from i
to each node and edge at which the
value assigned to x in node i is used

Other DF testing criteria

e All-p-uses
All-c-uses
All-p-uses/some-c-uses
All-c-uses/some-p-uses

Definitions of DF criteria

CRITERION ASSOCIATIONS REQUIRED

All-defs Some (i,jx) s.t. jedcu(x,i) or
some G.Gk).x) st

. dpu(x,i).

All-c-uses All (i,j,%) st. jeden(x,i).

All-p-uses All (,(5,k).x) s.t. (k)€ dpu(x).

All-p-uses/some-c-uses All (3,G.%),x) s.t. (. k)e dpu(x.i).
In addition, if dpu(x,i)=$ then

some (ij.x) st jedcu(x,i).
Note that since i has a global
definition of x, dpu(x.i)=¢ =
dou(x,)29.

All-c-uses/some-p-uses All (jx) st jeden(x,i). In
addition, if dcu(x.i)=¢ then
some (1,G.%)x) s

(j.)e deu(x,i). Note that since
i has a global definition of x,
deu(x,i)=6 = dpu(x,i)#d.

All-uses All (ij.x) st j € deu(x,i) and
all (i(j4)x) s.t. (.k)e dpu(x,i).
All-du-paths All du-paths from i to j with

respect to x for each je dcu(x,i)
and all du-paths from i to (j,k)
with respect to x for each
(ke dpulx,i).

“includes”

 Criterion C, includes criterion C, iff
- For every subprogram, any test set
that satisfies C, also satisfies C,
e C, strictly includes C,, iff
- denoted C; = C,,

- C, includes C, and for some
subprogram P there is a test set that
satisfies C, but does not satisfy C;

Includes relationship

ALL-PATHS

[}

ALL-DU-PATHS

v
ALL-USES
v \
ALL-C-USES/SOME-P-USES ALL-P-USES/SOME-C-USES
; / \ i / \\
ALL-C-USES ALL-DEFS ALL-P-USES

N
ALL-EDGES

v
ALL-NODES

Applicability

e It may be the case that no test set for
program P satisfies criterion C
- Infeasible paths

e Tailor the DF criteria so that they are
applicable

e Assumptions
- All aliases are known
- All side effects are known

- No element of the test set causes the
program to crash
« Execution of entry node to exit node

Executable/Feasible Paths

e Recall
- Complete path
« Path from the entry node to the exit node
e Executable/feasible complete path

- A complete path that is executed on
some assignment of values to input
variables

e Executable/feasible path

- A subpath of an executable complete
path

Recall Definition

« Definition-c-use association
- Triple (i,j,x) where i is a node containing a global
definition of x and j O dcu(x,i)
e Definition-p-use association
- Triple (i,(J,k),x) where i is a node containing a global
definition of x and (j,k) O dpu(x,i)
e A path (ny,n,, .., nj,nk) is a du-path wrt x if n;
has a global definition of x and either
- ny has a global c-use of x and (n, ..,n;, ny) is a def-
clear simple path wrt x, and
- (n;, n) has a p-use of x and (n,, .., n;) is a def-clear
loop-free path wrt x
e An association is a definition-c-use association,
a definition-p-use association, or a du-path

Executable Associations

e Definition
- An association is executable if there is some

executable complete path that covers it;
otherwise it is unexecutable

e fdcu(x,i) O dcu(x,i)

- Nodes j such that x O c-use(j) and there is
an executable definition clear path wrt x
fromi to j

e fdpu(x,i) O dpu(x,i)

- Edges (j,k) such that x O p-use(j,k) and
there is an executable definition clear path
wrt x from i to (j,k)

Equivalently

e fdcu(x,i) =
- {j O dcu(x,i) | the association (i,]j,k) is
executable}
e fdpu(x,i) =
-{(,k) O dpu(x,i) | the association
(i,(j,Kk),x) is executable}
e Intuitively
* new criterion C* for each DF criterion C

« By selecting the required associations from
fdcu(x,i) and fdpu(x,i) instead of from
dcu(x,i) and dpu(x,i)

Feasible Data-flow Criteria
(FDF)

CRITERION REQUIRED ASSOCIATIONS

(all-defs)* if fdeu(x,i) U fdpu(x.i) # ¢ then
some (i,j,x) s.t jefdcu(x,i) or
some (,G.k)x) st

j.k)e fdpu(x,i).

(all-c-uses)* all (i,j,x) s.t. je fdcu(x,i).

all-p-uses)* all (i,(.%),x) s.t. (k) fdpu(x,i).

(all-p-uses/some-c-uses)* all (i,Gk),x) s.t. (j,k)e fdpu(x,i).

In addition, if fdpu(x,i) = ¢ and
fdcu(x,i) # ¢ then some (ij,x)
s.t. je fdeu(x,i).

all (i,j,x) s.t. jefdeu(x,i). In
addition, if fdcu(x,i) = ¢ and
fdpu(x,i)) # ¢ then some

(1,(j,k),x) s.t. (.k)e fdpu(x,i).

(all-c-uses/some-p-uses)*

(all-uses)* all (ij,x) s.t. j € fdcu(x,i) and
tl'zlil WGkux) st Gk €

pu(x,i).
(all-du-paths)* all executable du-paths with

respect to x from i 10 j st
jedcu(x,i) and all executable
du-paths with respect to x from
it (k) for cach (k) e
dpu(x,i).

Includes Relationships

(ALL-PATHS)*

VN N

(ALL-DU-PATHS)* (ALL-EDGES)*

Ny A4
(ALL-USES)* (ALL-NODES)*

ZEEN

(ALL-C-USES/SOME-P-USES)* (ALL-P-USES/SOME.C.USES)*

2 N\ Ny

(ALL-C-USES)* (ALL-DEFS)* (ALL-P-USES)*

Interprocedural DF Testing

* Most DF testing methodologies deal with
dependencies that exist within a
procedure (i.e., intraprocedural)

e Data dependencies also exist among
procedures

* Requires analysis of the flow of data
across procedure boundaries

e Calls and Returns GeiMax(MD+1,L,M2 = Global
. - . PairMax(M1,M2,MX —
» Direct dependencies (single call/return) endi; ™
R . . end;
¢ Indirect dependencies (multiple Lets consmm
procedure PairMax;
calls/returns) input L1,K: reference integer; reference parameters
begin that reach across
ifI>J then K :=1 -
elseK:=J; procedure boundaries
end:

module Main
declare
S: an array 1..N of integer;

for 1 := 12N do read(S[1]);
GetMax(1 AX);
write(MAX); ’

Recursive procedure

q:tual parameters at the
call site that are bound
to formal reference
parameters in called
procedures

declare M1,]

#in -
if F+1=L then PairMax(S[F],StesasR elemen
else begin
MD := (F+L) DIV 2; ~ m

GetMax(FMD M1);

10

The Def-uses

----------- Bl

'
g

T F
B3 lmm@l B4 [MD=F+LI2]

A test case
S = {3,5,1,6} Bl E'M’(ﬁi,—nﬁ)_] Execute and I
""""" check
F
L

B3 [ParVm G SILIRX)|

B ey

B4 [MD:=(F+L)2 |

All def-use
pairs are
covered

module Main

Any m | Ssed dedarse;gnmy 1..N of integer;
def-uses? b

LMAX MIN: integer;

for I:= 1to N do read(S[1]);
GetM: AX);
writl
end;

procedure Ge!
input

else begin

MD := (F+L) DIV 2;
GetMax(FMDM1);
M2),

ifI>] then K :=1
elseK:=1J;
end;

