
1

Regression Testing
• Developed first version of software
• Adequately tested the first version
• Modified the software; version 2 now

needs to be tested
• How to test version 2?
• Approaches

– Retest entire software from scratch
– Only test the changed parts, ignoring

unchanged parts since they have already
been tested

– Could modifications have adversely affected
unchanged parts of the software?

Regression Testing
• “Software maintenance task
performed on a modified program to
instill confidence that changes are
correct and have not adversely
affected unchanged portions of the
program.”

Regression Testing vs.
Development Testing

• During regression testing, an
established test set may be
available for reuse

• Approaches
– Retest all
– Selective retest (selective regression
testing) ←←←← Main focus of research

Formal Definition
• Given a program P,
• its modified version P’, and
• a test set T

– used previously to test P
• find a way, making use of T to gain
sufficient confidence in the
correctness of P’

Regression Testing Steps
1. Identify the modifications that were

made to P
– Either assume availability of a list of

modifications, or
– Mapping of code segments of P to their

corresponding segments in P’
2. Select T’ ⊆⊆⊆⊆ T, the set of tests to re-

execute on P’
– May need results of step 1 above
– May need test history information, i.e., the

input, output, and execution history for
each test

Regression Testing Steps
3. Retest P’ with T’

– Use expected output of P, if same
4. Create new tests for P’, if needed

– Examine whether coverage criterion
is achieved

5. Create T’’
– The new test suite, consisting of

tests from steps 2 and 4, and old
tests that were not selected

2

Selective Retesting

• Tests to rerun
– Select those tests that will produce

different output when run on P’
• Modification-revealing test cases
• It is impossible to always find the set of

modification-revealing test cases – (we cannot predict
when P’ will halt for a test)

– Select modification-traversing test cases
• If it executes a new or modified statement in P’ or

misses a statement in P’ that it executed in P

T

Tests to rerun Tests not to rerun

3

1 1 1

1

1

1
1

2 2 2

2

2

2

2

3

3 3 3
3

3
3

3
3

33

3

T’ = {t2, t3}

Cost of Regression Testing

Retest All
Selective Retest

Analysis
Cost = Cx Cost = Cy

We want Cx < Cy

Key is the test selection algorithm/technique

We want to maintain the same “quality of testing”

+

Selective-retest Approaches
• Coverage-based approaches

– Rerun tests that could produce
different output than the original
program. Use some coverage criterion
as a guide

• Minimization approaches
– Minimal set of tests that must be run
to meet some structural coverage
criterion
• E.g., every program statement added to or

modified for P’ be executed (if possible) by
at least one test in T

Selective-retest Approaches
• Safe approaches

– Select every test that may cause the
modified program to produce different output
than the original program

• E.g., every test that when executed on P, executed at
least one statement that has been deleted from P, at
least one statement that is new in or modified for P’

• Data-flow coverage-based approaches
– Select tests that exercise data interactions

that have been affected by modifications
• E.g., select every test in T, that when executed on P,

executed at least one def-use pair that has been
deleted from P’, or at least one def-use pair that has
been modified for P’

Selective-retest Approaches
• Ad-hoc/random approaches

– Time constraints
– No test selection tool available

• E.g., randomly select n test cases from T

Factors to consider
• Testing costs
• Fault-detection ability
• Test suite size vs. fault-detection
ability

• Specific situations where one
technique is superior to another

4

Open Questions
• How do techniques differ in terms of

their ability to
– reduce regression testing costs?
– detect faults?

• What tradeoffs exist b/w testsuite size
reduction and fault detection ability?

• When is one technique more cost-
effective than another?

• How do factors such as program design,
location, and type of modifications, and
test suite design affect the efficiency
and effectiveness of test selection
techniques?

Experiment
• Hypothesis

– Non-random techniques are more effective than
random techniques but are much more expensive

– The composition of the original test suite
greatly affects the cost and benefits of test
selection techniques

– Safe techniques are more effective and more
expensive than minimization techniques

– Data-flow coverage based techniques are as
effective as safe techniques, but can be more
expensive

– Data-flow coverage based techniques are more
effective than minimization techniques but are
more expensive

Measure
• Costs and benefit of several test
selection algorithms

• Developed two models
– Calculating the cost of using the
technique w.r.t. the retest-all
technique

– Calculate the fault detection
effectiveness of the resulting test
case

Modeling Cost
• Did not have implementations of all
techniques
– Had to simulate them

• Experiment was run on several
machines (185,000 test cases) –
results not comparable

• Simplifying assumptions
– All test cases have uniform costs
– All sub-costs can be expressed in
equivalent units
• Human effort, equipment cost

Modeling Cost
• Cost of regression test selection

– Cost = A + E(T’)
– Where A is the cost of analysis
– And E(T’) is the cost of executing and
validating tests in T’

– Note that E(T) is the cost of
executing and validating all tests, i.e.,
the retest-all approach

– Relative cost of executing and
validating = |T’|/|T|

Modeling Fault-detection
• Per-test basis

– Given a program P and
– Its modified version P’
– Identify those tests that are in T and reveal

a fault in P’, but that are not in T’
– Normalize above quantity by the number of

fault-revealing tests in T
• Problem

– Multiple tests may reveal a given fault
– Penalizes selection techniques that discard

these test cases (i.e., those that do not
reduce fault-detection effectiveness)

5

Modeling Fault-detection
• Per-test-suite basis

– Three options
• The test suite is inadequate

– No test in T is fault revealing, and thus, no test in
T’ is fault revealing

• Same fault detection ability
– Some test in both T and T’ is fault revealing

• Test selection compromises fault-detection
– Some test in T is fault revealing, but no test in T’

is fault revealing

• 100 - (Percentage of cases in which
T’ contains no fault-revealing tests)

Experimental Design
• 6 C programs
• Test suites for the programs
• Several modified versions

Test Suites and Versions
• Given a test pool for each program

– Black-box test cases
• Category-partition method

– Additional white-box test cases
• Created by hand
• Each (executable) statement, edge, and def-

use pair in the base program was exercised
by at least 30 test cases

• Nature of modifications
– Most cases single modification
– Some cases, 2-5 modifications

Versions and Test Suites
• Two sets of test suites for each

program
– Edge-coverage based

• 1000 edge-coverage adequate test suites
• To obtain test suite T, for program P (from its test

pool): for each edge in P’s CFG, choose (randomly)
from those tests of pool that exercise the edge (no
repeats)

– Non-coverage based
• 1000 non-coverage-based test suites
• To obtain the kth non-coverage based test suite, for

program P: determine n, the size of the kth coverage-
based test suite, and then choose tests randomly
from the test pool for P and add them to T, until T
contains n test cases

Another look at the subjects

•For each program
•1000 edge-coverage based test suites:
•1000 non-coverage based test suites:

1000

Test Selection Tools
• Minimization technique

– Select a minimal set of tests that cover
modified edges

• Safe technique
– DejaVu

• we discussed the details earlier in this lecture
• Data-flow coverage based technique

– Select tests that cover modified def-use
pairs

• Random technique
– Random(n) randomly selects n% of the test

cases
• Retest-all

6

Variables
• The subject program

– 6 programs, each with a variety of
modifications

• The test selection technique
– Safe, data-flow, minimization,
random(25), random(50), random(75),
retest-all

• Test suite composition
– Edge-coverage adequate
– random

Measured Quantities
• Each run

– Program P
– Version P’
– Selection technique M
– Test suite T

• Measured
– The ratio of tests in the selected test
suite T’ to the tests in the original
test suite

– Whether one or more tests in T’
reveals the fault in P’

Dependent variables
• Average reduction in test suite size
• Fault detection effectiveness

• 100-Percentage of test suites in which T’
does not reveal a fault in P’

Number of runs
• For each subject program, from the
test suite universe
– Selected 100 edge-coverage adequate
– And 100 random test suites

• For each test suite
– Applied each test selection method
– Evaluated the fault detection
capability of the resulting test suite

100-Percentage of test suites in which
T’ does not reveal a fault in P’

Fault-detection Effectiveness How to read the graphs

Upper quartile

Lower quartile

MedianBox’s height
spans the central
50% of the data

Entire structure
represents a

data distribution

7

How to read the graphs Fault-detection Effectiveness

Conclusions
• Minimization produces the smallest and

the least effective test suites
• Random selection of slightly larger test

suites yielded equally good test suites as
far as fault-detection is concerned

• Safe and data-flow nearly equivalent
average behavior and analysis costs
– Data-flow may be useful for other aspects

of regression testing
• Safe methods found all faults (for which

they has fault-revealing tests) while
selecting (average) 74% of the test
cases

8

Conclusions
• In certain cases, safe method could
not reduce test suite size at all
– On the average, slightly larger random
test suites could be nearly as
effective

• Results were sensitive to
– Selection methods used
– Programs
– Characteristics of the changes
– Composition of the test suites

