
1

Test Coverage & Adequacy
• How much testing is enough?
• When to stop testing
• Test data selection criteria
• Test data adequacy criteria

– Stopping rule
– Degree of adequacy

• Test coverage criteria
• Objective measurement of test 
quality

Preliminaries
• Test data selection

– What test cases
• Test data adequacy criteria

– When to stop testing
• Examples

– Statement Coverage
– Branch coverage
– Def-use coverage
– Path coverage

Goodenough & Gerhart [‘75]
• What is a software test adequacy 
criterion
– Predicate that defines “what 
properties of a program must be 
exercised to constitute a thorough 
test”, i.e., one whose successful 
execution implies no errors in a tested 
program

Goodenough & Gerhart [‘75]
• Reliability requirement

– “Test criterion always produces consistent 
test results”

– If a program tested successfully on one test 
set that satisfies the criterion, then the 
program also tested successfully on all test 
sets that satisfy the criterion

• Validity requirement
– “Test always produces a meaningful result”
– For every error in a program, there exists a 

test set that satisfies the criterion and is 
capable of revealing the error

• There is no computable criterion that 
satisfies the above requirements

Uses of test adequacy
• Objectives of testing
• In terms that can be measured

– For example branch coverage
• Two levels of testing

– First as a stopping rule
– Then as a guideline for additional test 
cases

Categories of Criteria
• Specification based

– All-combination criterion 
• choices

– Each-choice-used criterion
• Program based

– Statement
– Branch

• Note that in both the above types, the 
correctness of the output must be 
checked against the specifications



2

Others
• Random testing
• Statistical testing
• Interface based

Classification according to 
underlying testing approach
• Structural testing

– Coverage of a particular set of 
elements in the structure of the 
program

• Fault-based testing
– Some measurement of the fault 
detecting ability of test sets

• Error-based testing
– Check on some error-prone points

Structural Testing
• Program-based structural testing

– Control-flow based adequacy criteria
• Statement coverage
• Branch coverage
• Path coverage

– Length-i path coverage
• Cyclomatic number criterion

– Set of v independent paths, where v = e –n + 1
• Multiple condition coverage

– All possible combinations of truth values of 
predicates

– Data-flow based adequacy criteria

Structural Testing
– Data-flow based adequacy criteria

• All definitions criterion
– Each definition to some reachable use

• All uses criterion
– Definition to each reachable use

• All def-use criterion
– Each definition to each reachable use

Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:

All Definitions Criterion
• A set P of execution 

paths satisfies the all-
definitions criterion iff 
– for all definition 

occurrences of a 
variable x such that 

• there is a use of x, 
which is feasibly 
reachable from that 
definition, 

– there is at least one 
path p in P such that 

• p includes a subpath 
through which the 
definition of x reaches 
some use occurrence of 
x

• A set P of execution 
paths satisfies the all-
definitions criterion iff 
– for all definition 

occurrences of a 
variable x such that 

• there is a use of x, 
which is feasibly 
reachable from that 
definition, 

– there is at least one 
path p in P such that 

• p includes a subpath 
through which the 
definition of x reaches 
some use occurrence of 
x

read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:



3

All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + z + 2;7:

8:

y := y * 2;4:

• A set P of 
execution paths 
satisfies the all-
uses criterion iff 
– for all definition 

occurrences of a 
variable x and all 
use occurrences of 
x, 

• that the definition 
feasibly reaches, 

– there is at least 
one path p in P such 
that 

• p includes a subpath 
through which that 
definition reaches 
the use

• A set P of 
execution paths 
satisfies the all-
uses criterion iff 
– for all definition 

occurrences of a 
variable x and all 
use occurrences of 
x, 

• that the definition 
feasibly reaches, 

– there is at least 
one path p in P such 
that 

• p includes a subpath 
through which that 
definition reaches 
the use

All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + z + 2;7:

8:

y := y * 2;4:

All DU-paths criterion
• A set P of execution paths satisfies 
the all-DU paths criterion iff 
– for all definitions of a variable x and 
all paths q through which that 
definition reaches a use of x,

– there is at least one path p in P such 
that 
• q is a subpath of p and q is cycle-free

Fault-based Adequacy
• Error seeding

– Introducing artificial faults to 
estimate the actual number of faults

• Program mutation testing
– Distinguishing between original and 
mutants
• Competent programmer assumption

– Mutants are close to the program
• Coupling effect assumption

– Simple and complex errors are coupled

Subsumption
• Criteria C1 subsumes criteria C2, iff

– For all programs p being tested with 
specifications s

– All test sets t
– t is adequate according to C1 for 
testing p with respect to s implies 
that t is adequate according to C2 for 
testing p with respect to s

• Path subsumes branch
• Path subsumes statement


