Is Mutation an Appropriate Tool for Testing Experiments?

J.H. Andrews, L.C. Briand, Y. Labiche ICSE '05

Mutants = real faults?

Problem: I want to compare testing techniques, but I don't have subject programs with lots of known faults.

Workaround: Automatically generate "mutants" of subject programs.

Question: Do results based on mutants generalize to programs with real faults?

What's a mutant?

A mutant of a program is that program with a small automatic change:

- add/subtract 1 from integer constants
- change * to /
- change TRUE to FALSE
- delete a statement
- other similar changes...

Mutants are easy to create in large numbers.

Experiment (1:3)

- 1. Take 8 programs with multiple known faulty versions and big pools of test cases.
- 2. Make mutants.
- 3. Eliminate mutants not detected by any test case.
- 4. Run randomly-chosen test suites on faulty versions.
- 5. Run same test suites on mutants.

Experiment (2:3)

For each faulty version or mutant of a given program:

++		#			
###		#			
###	>	# #	>	81	P
###	random	#	apply		
++		#			
Big		5000		Fau	ılty
test		test		ver	rsion
pool		suite	S	or	mutant

Experiment (3:3)

COMPARE

Mean # of faulty versions detected by each test suite

of faulty versions

WITH

Mean # of mutants detected by each test suite

of mutants

Hypothesis: Detection ratios will be equal.

What is being measured?

	faults not			mutants not			not
	detected			detected			tested
+-		-+	+.		•+		
	faults			mutants		\setminus	tested
	detected			detected			against
	by big			by big		Ι	subset
	test pool			test pool		/	of pool
+-		-+	+.		-+		

- What if each suite caught every fault?
- What if each suite caught at most one fault?
- Is this what we want?

The test applications

- ESA "space" program, 6KLOC, real faults.
- 7 "Seimens programs" \leq 500LOC each with hand-seeded faults.
- Experiment treats real and hand-seeded faults as equivalent.

Mutants = real faults needs an experiment.

Hand-seeded faults = real faults can just be assumed?

Empirical Results

- Median detection ratios for "space":
 - mutants: 75%
 - real faults: 76%
- Median detection ratios for 7 "Seimens" programs:
 - mutants: about 96%
 - hand-seeded faults: about 70%

Extra bonus analysis

Why not just calculate and compare:

	# of test cases in pool that
Mean over all	detected this faulty version
faulty versions:	
	total number of test cases
WITH	
	# of test cases in pool that
Mean over	detected this mutant
all mutants:	
	total number of test cases
"Ease of detection"	

Extra bonus results

Program	Faulty Version	s Mutants
SPACE	15%	10%
others	5%	30%
		• • •

(Values estimated by eye from paper's graphs.)

Authors' conclusions

- 1. Mutants = real faults
 - Supported by space case in experiment,
 - but what about the other 7 cases?
 - And what about the "ease of detection" calculation?
- 2. Hand-seeded faults are harder to detect than real faults.
 - Note on page 8 reveals original hand-seeded fault authors discarded any fault detected by 350 or more of their test cases.

And what about this?

Recall the Graves 2001 empirical regression test selection technique study:

- Used same programs as this experiment...
- ... plus one more: the Player program.
- Player was the only example with an actual history of real feature additions.
- Player results said "minimization" technique was good, the other cases said bad.
- Conclusion: minimization bad.