
Is Mutation an Appropriate Tool for
Testing Experiments?

J.H.Andrews, L.C.Briand, Y.Labiche

CMSC737

Srividya Ramaswamy
December 1, 2009

1

Experimentation

• Essential part of research in software testing

• Determine which model/technique is superior

• Require realistic subject programs

Model BModel A

2

Realistic Programs

• Must have appropriate size

• Significant number of real faults

Problem

• Too hard to find such programs

• Often faults are not numerous enough

Faults do come in handy….
Sometimes!!!

3

4

Solution

• Introduce faults by hand

• Realistic

• Difficult to replicate

• Generate variants of the code automatically

• Various operators available to produce these
variants

• Well defined fault seeding process

• Easy to replicate

5

Mutant:
Faulty version of code
generated by a mutation
operator

Mutation operator:
Generates variants of code

Mutation:
Process of mutant
generation

6

Is the ability to detect mutants an
accurate predictor of actual

performance?

The paper has tried to answer this question

7

Related Work

Usage of mutants to measure test suite adequacy
- DeMillo et al, Hamlet

Test data that detects simple faults will detect complex faults
- Offutt

Method for generating faulty versions for experiments
- Memon et al, Kim et al, …

8

The Experiment

• Analyze the detection rates of test suites

• Eight subject programs

• Large comparable pools of test cases
• Satisfying several structural criteria

• Test suites formed by random sampling of test pool

• Create mutant versions of those programs

• Execute test suites on faults and mutants

• Compare fault detection ratio

9

Null Hypothesis (Ho):

There is no difference in detection ratios between
sets of faults and sets of mutants

Alternative Hypothesis (Ha):

There is a difference in detection ratios between
sets of faults and sets of mutants

10

Subject programs

• Eight well known programs written in C

• Space
• Developed at European Space Agency
• Real faults
• 38 faulty versions

• Siemens suite of programs
• First used to compare control flow-based

and data-flow based coverage criteria
• Hand seeded faults
• Faults seeded by eight different people

• Programs chosen due to historical significance

• Black-box testing techniques and structural test
coverage criteria used to create test pool

11

NLOC – Net lines of code
conditionals – Number of C conditional constructs and binary logical operators

• Replace an integer constant C by 0, 1, -1, ((C) + 1), or ((C) – 1)

• Replace an arithmetic, relational, logical, bitwise logical,
increment/decrement, or arithmetic-assignment operator by
another

• Negate the decision in an if or while statement

• Delete a statement

12

Mutant Operators

• Each line considered in sequence

• Each of the four classes of “mutant operators” applied
(whenever possible)

• “Sufficient” mutant operators

13

Mutant Operators (contd..)

• Generate mutants using these operators

• 8.4% of resulting mutants did not compile

• Too many mutants generated for the Space program

• Test suite ran on every 10th mutant generated

• Random selection of 10% of the mutants

• Whole source code seeded with faults

14

Analysis procedure

• Generate and compile the mutants

• 5000 test suites randomly formed by sampling the available pool

• Obtain sample distributions of fault/mutant detection rates
that would approximate well the underlying theoretical distributions

• Random selection deemed to provide good variability as compared to
a selection driven by coverage criteria

• Size of each test suite taken as 100

15

For each test suite S, we calculate the following:

Dm(S) - Number of mutants detected by S

Df(S) - Number of faults detected by S

Nm - Number of non-equivalent mutants

Nf - Number of non-equivalent faults

Am(F) - Mutation detection ratio (Dm(S) / Nm)

Af(S) - Fault detection ratio (Df(S) / Nf)

Analysis procedure (contd..)

16

Analysis procedure (contd..)

• For each program P, check if mean of Am and Af ratios for P
were the same

• If the means are different, the next question is why?

• If the results are not consistent across programs, identify most
most plausible explanations

• Differences in characteristics of subject programs?
• Test suites?
• The way faults were seeded?

17

Analysis procedure (contd..)

For each mutant M and faulty version F,
we calculate the following:

K(M) - Number of test cases that killed M

K(F) - Number of test cases that killed F

E(M) - Ease of killing M (K(M) / T)

K(F) - Ease of killing F (K(F) / T)

18

Threats to Validity

• Internal:
• The programs, test pools, and faults used as is
• No guarantee that test pools have the same detection power and

coverage
• Except Space, others have “realistic” hand seeded faults
• Programs could be of varying complexity
• Other mutation operators could produce varying results
• Fixed size of test suite

• External:
• Relates to our ability to generalize the results of the experiment

to industrial practice
• Only one program with real faults used

19

Threats to Validity

• Construct:
• Concerns the way we defined our measurement
• Does it measure the detection power of test sets

and detectability of faults?
• This was justified before

• Conclusion:
• Relates to subject selection, data collection, validity

of the statistical tests, and measurement reliability
• Addressed during the design of the experiment

20

Analysis Results

• Compare detection distributions of mutants and faults

• Identify possible phenomena which could explain the trends
observed from the above step

• Investigate most plausible explanations

21

Comparing detection distributions of mutants and faults

10%, 25%, 75%, 90% are all quantiles

22

Comparing detection distributions of mutants and faults

• From Table 2 we can observer that mutants tend to be easier to detect
than faults except for Space

• Is the difference in the results between Space and the other programs
due to higher difficultly of detectability of seeded faults in the
Siemens suite as compared to the real faults in Space?

23

Alternative Explanations

• Relative detectability of real and seeded faults

• Test pool

• Test suite size compared to the size of the test pool and program

• Mutation process

• Difference between Am and Af increases as the test suite size increases
compared to the size of the test pool or the size of the program

• Mutation could somehow be biased so that mutants are harder to kill on
Space than on the Siemens programs

• Space could have lower mutant detection ratio as larger programs are more
difficult to test

24

One other explanation:

• Space faults easier to detect for any individual test case
as compared to the Siemens faults

• Space mutants should not be easier for any individual test
case to kill than the Siemens program mutants

25

Comparing the detectability of faults
and mutants across programs

X-Axis: Subject program

Y-Axis: Computer ratio for
each fault

26

• Horizontal line across all programs – Overall average

• Line across the diamond - Each program specific average

• The vertical span of the diamond – The 95% confidence level

X-Axis: Subject program

Y-Axis: Computer ratio for
each fault

27

Discussion

• The faults seeded in the programs other than Space are probably not
representative in terms of ease of detection

• Hutchins et al. state that, faults that were detected by 350 or more
test cases (from their original test pool) were discarded

• We can conclude that mutants, based on the mutation operators
presented here, do provide test effectiveness results that are
representative of real faults

• Using human-seeded faults could lead to underestimating the
effectiveness of the techniques

• The faults seeded in the Siemens suite are preferable where we may want
to concentrate on hard-to-detect faults

• Should be able to create difficult to kill mutants just as faults were selected
in Siemens suite

28

Conclusion

• Mutants can provide a good indication of the fault detection
ability of a test suite

• Certain faults, like the ones in the Siemens suite, could lead to
under estimation

• Faults made by programmers will be detected by test suites
that kill mutants

29

Future work

• Replicate the study report in this
paper

• Perform similar studies in the context
of object-oriented systems

• Test suites selected according to various
criteria, such as code coverage criteria or
operational profile criteria

30

Questions

31

