Mediator Pattern

Consider a program which has
several buttons, two list boxes
and a text entry field.

When the program starts, the
Copy and Clear buttons are
disabled.

When you select one of the
names in the left-hand list box,
it is copied into the text field for
editing, and the Copy button is
enabled.

|Amanda McCarthy
|Jamie Falco
|Meaghan O'Donnell
|Greer Gibbs

|Michelle Ducharme
|Karleen Danais

Example (cont...)

Eg; Mediator demo =] B3

* When you click on Copy, ° - .
. ’ I indsay Marotto -ﬁm ~ Clear I
that text is added to the sl . —

Amanda McCarthy 4| |Lindsay Marotto

right hand list box, and the |/mieFaie o

Meaghan O'Dannell

Clea}" button is enabled. Greer Gibbs ||

Rhiannon Jefirey

Sophie Connolly

» If you click on the Clear Dana Helyer

Lindsay Marotto

button, the I‘lght hand llSt Sarah Treichel

Ashley McEnts
box and the text field are 2ok sl
. . Michelle Duch:
cleared, the list box is il =

deselected and the two
buttons are again disabled.

Relationship Diagram

* The interactions between

the visual controls are
name te: Copy g—® Clear
pretty complex. ’ o [cen
» Each visual object needs &&
to know about two or

more others, leading to
quite a tangled Kid list Picked list
relationship diagram.

» The Mediator pattern simplifies this system by being the only class
that is aware of the other classes in the system.

» The controls that the Mediator communicates with is a Colleague.
» Each Colleague informs the Mediator when it has received a user

event, and the Mediator decides which other classes should be

informed of this event.

name text

Mediator

Kid list
Picked list

/

Why Mediator?

* The advantage of the Mediator is clear

— it is the only class that knows of the other classes, and
thus the only one that would need to be changed if one
of the other classes changes or if other interface control

classes are added.

The Code!

» Each class needs to be aware of the existence of
the Mediator.

— You start by creating an instance of the Mediator and

then pass the instance of the Mediator to each class in
its constructor.

Mediator med = new Mediator();
kidList =

new EidList({ med);
t¥x = new KTextField(m=d);
Move = new MoveButton(this, med);

Clear = new ClesarButton(this, msd);
med.init();

KTextField

» The text field registers itself with the mediator.

public class KTextField extends JTextField
{

Mediator med;

public KTextField (Mediator md)
super (10} ;
med = md;

med.registerText (this);

{

The Copy Button

* Our two buttons use the Command pattern and register
themselves with the Mediator during their initialization.

public class CopyButton extends JButton
implements Command
{
Mediator med; //copy of the Mediator
public CopyButton(Actionlistener fr, Mediator md)

{

super ("Copy") ; //create the button
addActionListener(fr); //add its listener
med = md; //copy in Mediator instance

med.registerMove (this); //register with the Mediator

}
public void Execute ()
{ //execute the copy
med.Copy () ;
}
1

The Kid name list...

* The data loading and registering of the Kid name list with the Mediator
both take place in the constructor. In addition, we make the enclosing
class the ListSelectionListener and pass the click on any list item on to
the Mediator directly from this class.

public class KidList extends Jawtlist
implements LiztsSelectionlistenser

{
KidData kdata; //reads the data from the file
Mediator med; //copy of the mediator

public KidList (Mediator md)
{

super (20) ; //create the JList

kdata = new KidData ("SOfree.txt");

£illRidList(); //£111 the list with names
med = md; //save the mediator

med.registerkKidList (this);
addListSelectionlistener (this); 10

The Rest of the Code...

public void valueChanged(ListSelectionEvent 1s)
{
//if an item was selected pass on to mediator
JList obj = (JList)ls.getSource();
if (obj.getsSelectedIndex () >= 0)
med.select (),

private void fillKidList()
{
Enumeration ekid = kdata.elements();
while (ekid.hasMoreElements()) {
Kid k =(Kid)ekid.nextElement();
add (k.getFrname ()+" "+k.getLname());
}

11

General Mediator Philosophy

* The general point of all these classes is that each
knows about the Mediator and tells the Mediator
of its existence so the Mediator can send
commands to it when appropriate.

The Mediator Code!

* The Mediator itself is very simple.

— It supports the Copy, Clear and Select methods, and has
register methods for each of the controls.

public class Mediator

{

private ClearButton clearButton;
private CopyButton copyButton;
private ETextField ktext;
private KidList klist;
private PickedKidsList picked;

public void Copv() {
picked.add (ktext.getText ()); //copy text
clearButton.setEnabled (trus); //enable Clear

More Mediator Code!

S

public void Clear() {
ktext.setText (""); //clear text
picked.clear(); //and list

//disable buttons
copyButton.setEnabled(false);
clearButton.setEnakblad (falze) ;

klist.clearSelection(); //deselect list
}
f
public void sSelect() {
String s = (3tring)klist.getsSelectadvalus();
ktext.setText (s) ; //copy text

copyButton.setEnabled(trus); //enable Copy

Yet More Mediator Code!

e copy in controls-------—-—---————--——————

public void registercClear (ClearButton cb) {
clearButton = cb; }

public void registerCopy (CopyButton mv) {
copyButton = mv; }

public void registerText (KTextField tx) {
ktext = tx; }

public void registerPicked(PickedKidsList pl) {
picked = pl; }

public void registerKidList (KidList k1) {
klist = k1; }

System Initialization

* One further operation that is best delegated to the Mediator
is the initialization of all the controls to the desired state.

* When we launch the program, each control must be in a
known, default state, and since these states may change as
the program evolves, we simply create an init method in
the Mediator, which sets them all to the desired state.

 In this case, that state is the same as is achieved by the
Clear button and we simply call that method.

public void init() {
Clear();

}

Concluding Remarks

» The Mediator makes loose coupling possible between
objects in a program.
— It also localizes the behavior that otherwise would be distributed
among several objects.
* You can change the behavior of the program by simply
changing the Mediator.

» The Mediator approach makes it possible to add new
Colleagues to a system without having to change any other
part of the program.

* The Mediator solves the problem of each Command object

needing to know too much about the objects and methods
in the rest of a user interface. 17

More Concluding Remarks

» The Mediator can become complex, making it
hard to change and maintain.

— Sometimes you can improve this situation by revising
the responsibilities you have given the Mediator.

— Each object should carry out it’ s own tasks and the
Mediator should only manage the interaction between
objects.

* Each Mediator is a custom-written class that has methods
for each Colleague to call and knows what methods each
Colleague has available.

— This makes it difficult to reuse Mediator code in different projects.

— On the other hand, most Mediators are quite simple and writing
this code is far easier than managing the complex object
interactions any other way.

