
1 

Mediator Pattern 

2 

Example 

•  Consider a program which has 
several buttons, two list boxes 
and a text entry field. 

•  When the program starts, the 
Copy and Clear buttons are 
disabled. 

•  When you select one of the 
names in the left-hand list box, 
it is copied into the text field for 
editing, and the Copy button is 
enabled. 



3 

Example (cont…) 

•  When you click on Copy, 
that text is added to the 
right hand list box, and the 
Clear button is enabled. 

•  If you click on the Clear 
button, the right hand list 
box and the text field are 
cleared, the list box is 
deselected and the two 
buttons are again disabled. 

4 

Relationship Diagram 

•  The interactions between 
the visual controls are 
pretty complex.  

•  Each visual object needs 
to know about two or 
more others, leading to 
quite a tangled 
relationship diagram. 



5 

Mediator 
•  The Mediator pattern simplifies this system by being the only class 

that is aware of the other classes in the system.  
•  The controls that the Mediator communicates with is a Colleague.  
•  Each Colleague informs the Mediator when it has received a user 

event, and the Mediator decides which other classes should be 
informed of this event. 

6 

Why Mediator? 

•  The advantage of the Mediator is clear 
–  it is the only class that knows of the other classes, and 

thus the only one that would need to be changed if one 
of the other classes changes or if other interface control 
classes are added. 



7 

The Code! 

•  Each class needs to be aware of the existence of 
the Mediator.  
–  You start by creating an instance of the Mediator and 

then pass the instance of the Mediator to each class in 
its constructor. 

8 

KTextField 

•  The text field registers itself with the mediator. 



9 

The Copy Button 

•  Our two buttons use the Command pattern and register 
themselves with the Mediator during their initialization. 

10 

The Kid name list… 

•  The data loading and registering of the Kid name list with the Mediator 
both take place in the constructor. In addition, we make the enclosing 
class the ListSelectionListener and pass the click on any list item on to 
the Mediator directly from this class. 



11 

The Rest of the Code… 

12 

General Mediator Philosophy 

•  The general point of all these classes is that each 
knows about the Mediator and tells the Mediator 
of its existence so the Mediator can send 
commands to it when appropriate. 



13 

The Mediator Code! 

•  The Mediator itself is very simple.  
–  It supports the Copy, Clear and Select methods, and has 

register methods for each of the controls. 

14 

More Mediator Code! 



15 

Yet More Mediator Code! 

16 

System Initialization 

•  One further operation that is best delegated to the Mediator 
is the initialization of all the controls to the desired state.  

•  When we launch the program, each control must be in a 
known, default state, and since these states may change as 
the program evolves, we simply create an init method in 
the Mediator, which sets them all to the desired state.  

•  In this case, that state is the same as is achieved by the 
Clear button and we simply call that method. 
public void init() { 

Clear(); 
} 



17 

Concluding Remarks 

•  The Mediator makes loose coupling possible between 
objects in a program.  
–  It also localizes the behavior that otherwise would be distributed 

among several objects. 

•  You can change the behavior of the program by simply 
changing the Mediator. 

•  The Mediator approach makes it possible to add new 
Colleagues to a system without having to change any other 
part of the program. 

•  The Mediator solves the problem of each Command object 
needing to know too much about the objects and methods 
in the rest of a user interface. 

18 

More Concluding Remarks 

•  The Mediator can become complex, making it 
hard to change and maintain.  
–  Sometimes you can improve this situation by revising 

the responsibilities you have given the Mediator.  
–  Each object should carry out it�s own tasks and the 

Mediator should only manage the interaction between 
objects. 

•  Each Mediator is a custom-written class that has methods 
for each Colleague to call and knows what methods each 
Colleague has available.  
–  This makes it difficult to reuse Mediator code in different projects.  
–  On the other hand, most Mediators are quite simple and writing 

this code is far easier than managing the complex object 
interactions any other way. 


