
1

Visitor Pattern

2

Fine Print…

•  The Visitor pattern turns the tables on our object-oriented
model and creates an external class to act on data in other
classes.

•  This is useful if there are a fair number of instances of a
small number of classes and you want to perform some
operation that involves all or most of them.

•  While at first it may seem �unclean� to put operations that
should be inside a class in another class instead, there are
(usually) good reasons for doing it.

3

An Example

•  Suppose each of a number of
drawing object classes has
similar code for drawing itself.

•  The drawing methods may be
different, but they probably all
use underlying utility functions
that we might have to duplicate
in each class.

•  Further, a set of closely related
functions is scattered
throughout a number of
different classes.

4

The Visitor Solution

•  Instead, we write a Visitor
class which contains all
the related draw methods
and have it visit each of
the objects in succession.

5

But What Does �Visiting� Mean?

•  There is only one way that an outside class can gain access to another
class
–  by calling its public methods.

•  In the Visitor case, visiting each class means that you are calling a
method already installed for this purpose, called accept.

•  The accept method has one argument: the instance of the visitor, and
in return, it calls the visit method of the Visitor, passing itself as an
argument.

6

In Terms of Code…

•  Every object that you want to visit must have the following
method:

•  In this way, the Visitor object receives a reference to each
of the instances, one by one, and can then call its public
methods to obtain data, perform calculations, generate
reports, or just draw the object on the screen.

7

Use a Visitor when…

•  You should consider using a Visitor pattern when
you want to perform an operation on the data
contained in a number of objects that have
different interfaces.

•  Visitors are also valuable if you have to perform a
number of unrelated operations on these classes.

8

An Example

•  Remember the Employee problem we discussed in
the Composite pattern.
–  Lets extend it.

•  We have a simple Employee object which
maintains a record of the employee�s name,
salary, vacation taken and number of sick days
taken.

9

The Class

10

Generating a Report

•  Note that we have included the accept method in
this class.

•  Now let�s suppose that we want to prepare a
report of the number of vacation days that all
employees have taken so far this year.

•  We could just write some code in the client to sum
the results of calls to each Employee�s
getVacDays function, or we could put this
function into a Visitor.

11

The Visitor Abstract Class

•  Since Java is a strongly typed language, your base
Visitor class needs to have a suitable abstract visit
method for each kind of class in your program.

•  In this simple example, we only have Employees,
so our basic abstract Visitor class is just:

12

A Concrete Visitor

•  Notice that there is no indication what the Visitor
does with each class in either the client classes or
the abstract Visitor class.

•  We can in fact write a whole lot of visitors that do
different things to the classes in our program.

•  The Visitor we are going to write first just sums
the vacation data for all our employees.

13

The Concrete Visitor Code

14

The Main Program

•  Now, all we have to do to compute the total vacation taken
is to go through a list of the employees and visit each of
them, and then ask the Visitor for the total.

15

The Steps

1.  Move through a loop of all the Employees.
2.  The Visitor calls each Employee�s accept

method.
3.  That instance of Employee calls the Visitor�s

visit method.
4.  The Visitor fetches the vacation days and adds

them into the total.
5.  The main program prints out the total when the

loop is complete.

