Factory Pattern

What 1s 1t?

* returns an instance of one of several possible
classes depending on the data provided to it
— Usually all of the classes it returns have a common
parent class and common methods, but each of them

performs a task differently and is optimized for
different kinds of data

A Closer Look

Xy Xz

+ xis a base class and classes xy and xz are derived from it.

» Factory is a class that decides which of these subclasses to
return depending on the arguments you give it.

* On the right, we define a getClass method to be one that

passes in some value abc, and that returns some instance of
the class x. 3

More...

* Which one it returns doesn't matter to the
programmer since they all have “the same”
methods, but different implementations.

» How it decides which one to return is entirely up
to the factory.

— It could be some very complex function but it is often
quite simple.

An Example

* an entry form and we want to allow the user to
enter name either
— as “firstname lastname” or
— as “lastname, firstname”

* decide the name order by whether there is a
comma between the last and first name.

An Example

| -'\ Name Divider

[Smith, Sandy

Lets look at some code

 start by defining a simple base class that takes a String and splits it
(somehow) into two names:

class Namer |

//a simple class to take a string apart into two names
protected String last; //store last name here
protected String first; //store first name here

public String getFirst() {

return first; //return first name
}
pukblic String getlast() {

return last; //return last name

}

+ store the split first and last names in the Strings first and last, and,
since the derived classes will need access to these variables, we’ 11
make them protected.

A Derived Class “FirstFirst”

* In the FirstFirst class, we assume that everything before
the last space is part of the first name

class FirstFirst extends Namer | //split first last
public FirstFirst(String s) {
int 1 = z.lastIndexCE(" "); //find sep space

if (1 = 0) {
//left is first name
first = s.substring (0, i).trim();
//right is last name
last =s.substring(i+l) .trim();
t
else {
first = W, // put all in last name
last = 3; // 1f no space

}

Another Derived Class “LastFirst”

» LastFirst class, we assume that a comma delimits the last

name.
class LastFirst extends Namer | //split last, first
pukblic LastFirst(String =) {
int i = s.indexof(","); //find comma

if (1 = 0) {
//left is last name

last = s.substring(0, i).trim();
J/right is first name
first = s.substring(i + 1).trim();
1
else {
last = s; // put all in last name
first = ""; // 1f no comma

}

Lets Build the Factory!

 test for the existence of a comma and then return an
instance of one class or the other
class NameFactory {

//returns an instance of LastFirst or FirstFirst
//depending on whether a comma is found

public Namer getNamer (String entry) {
int i = entry.indexof (","); //comma determines name
order
if (i>0)
return new LastFirst (entry); //return one class
else
return new FirstFirst(entry); //or the other

Using the Factory

 initialize an instance of the factorv class
NameFactory nfactory = new NameFactory();

 call the computeName method, which calls the getNamer factory
method and then calls the first and last name methods of the class
instance it returns

private void computeName () {
//send the text to the factory and get a class back
namer = nfactory.getNamer (entryField.getText());

//compute the first and last names
//using the returned class
txFirstName.setText (namer.getFirst ());
txLastName.setText (namer.getlLast());

11

Fundamental Principle of Factory Patterns

* Create an abstraction which decides which of
several possible classes to return, and
— return one.
* Then you call the methods of that class instance
without ever knowing which derived class you are
actually using.

When to Use a Factory Pattern

* You should consider using a Factory pattern when

— A class can’ t anticipate which kind of class of objects it
must create.

— A class uses its subclasses to specify which objects it
creates.

— You want to localize the knowledge of which class gets
created.

