
Automated GUI Testing Guided By Usage Profiles

Penelope A. Brooks and Atif M. Memon
Department of Computer Science

University of Maryland
College Park, Maryland, USA

{penelope, atif}@cs.umd.edu

ABSTRACT
Most software developed in recent years has a graphical user
interface (GUI). The only way for the end-user to interact
with the software application is through the GUI. Hence,
acceptance and system testing of the software requires GUI
testing. This paper presents a new technique for testing
of GUI applications. Information on the actual usage of
the application, in the form of “usage profiles,” is used to
ensure that a new version of the application will function
correctly. Usage profiles, sequences of events that end-users
execute on a GUI, are used to develop a probabilistic usage
model of the application. An algorithm uses the model to
generate test cases that represent events the user is most
likely to execute. Reverse engineering methods are used to
extract the underlying structure of the application. An em-
pirical study on four open source GUI applications reveals
that test suites generated from the probabilistic model are
0.2-22% of the size of test suites produced directly from us-
age profiles. Furthermore, the test suites generated from
the model detect more faults per test case than those de-
tected directly from the usage profiles, and detect faults not
detected by the original profiles.

Categories and Subject Descriptors: D.2 Software En-
gineering: Testing and Debugging, I.6 Simulation and Mod-
eling: Model Development

General Terms:Verification

Keywords: usage profiles, GUI testing, event-driven soft-
ware

1. INTRODUCTION
The most popular user interface for software today is the

graphical user interface (GUI), providing user-friendly ac-
cess to the functionality provided by the application. Test-
ing GUIs, however, presents many challenges, primarily due
to the immense number of possible permutations of com-
mands that can be executed on the GUI. Testing all possible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

combinations and orderings of events1 is not practical, as the
number of test cases that would be required is exponential in
the number of events. Instead, testers of GUI applications
attempt to limit the number of test cases that need to be
executed. Due to the event-driven nature of GUI software,
GUI testing requires different techniques than those used in
conventional testing [13].

Although it seems the code that makes up the interface to
the application would not be very substantial, it generally
makes up 45-60% of the overall code and can house faults
[15]. Errors in the GUI can manifest themselves as failures
of the overall software. Therefore, it is important to test the
GUI.

This paper presents a technique that can be used for re-
gression testing of GUI applications, i.e., information gath-
ered from usage of the current version of a GUI application
is used to determine whether the new application will per-
form as expected. Previous work on GUI regression testing
showed that test suites covering all feasible pairs of events,
called smoke tests, detect a large number of faults [14].
Many of these event sequences are unlikely to occur in ac-
tual usage of the software. For instance, the event sequence
Save followed by Save As is a valid test case in the smoke test
suite (represented as the ordered pair (Save, SaveAs)), but
is not very likely to occur in actual usage of the software.
Conversely, the event sequence that represents formatting a
document (for instance, adding tables and figures, or chang-
ing font size, style, and color) is very likely, but will not be
contained in the smoke test suite since formatting requires
a sequence of more than two events, and smoke tests are
restricted to sequences of two events. In previous work, we
have shown that event sequences longer than two events re-
veal many faults not detected by the smoke test suite [14].
Including these test cases in the smoke test suite, however, is
not a viable solution since increasing the test suite from all
possible pairs of events to all possible triples, . . ., n-tuples
causes it to grow exponentially [14].

To counteract this exponential test suite growth, another
approach, and the one used in this paper, is to automatically
generate test cases based on usage information, in the form
of “usage profiles,” collected from end-users interacting with
a fielded version of the application. Usage profiles (called op-
erational profiles [24] or session data [6] in some literature)

1An event is a user action that can be performed on a GUI
widget, such as clicking on a button or a menu item, or
typing in a text field. In the remainder of this paper, wher-
ever possible, events will be denoted by their corresponding
widget; for example, click on Cancel button will be called
Cancel and click on menu item Save will be called Save.

333

can be obtained by capturing event sequences users execute
on the GUI application. Because they are gathered from
actual usage of the software, any faults detected by using
them represent faults likely to be encountered by users in
the field. After collection, profiles can be used in two ways:
they can be replayed directly or used to create a model of
the application which can be used for testing. Using an au-
tomatic test case replayer to replay the profiles directly on a
modified version of the GUI application is the most straight-
forward approach [16]. Due to possible structural changes
to the GUI, this is not a good approach for regression test-
ing, however, since as many as 75% of the event sequences
may no longer execute on the modified application [13]. The
second approach, and the focus of this paper, is to employ
the usage profiles to create and update an abstract model
of the GUI application and use the model to generate test
cases automatically.

In this paper, a new technique is presented to capture
GUI user profiles in a transparent manner and with very
little overhead, employ the profiles to populate a probabilis-
tic model of the GUI application, and generate test cases
from this model. An empirical study was conducted on four
open source applications to measure the benefit user profiles
add to the regression testing process. After collecting user
profiles, the probabilistic model was populated and used to
generate test cases corresponding to the concatenation of
many short, highly likely event subsequences. Test cases
generated by the model were ordered by the likelihood of
occurring in actual use; therefore, the test suite was com-
posed of test cases that were most indicative of actual use
of the application. The challenge of collecting profiles was
mitigated by using a profiling tool that runs in the back-
ground, with very little impact on performance of the ap-
plication. Two test suites were compared: one composed
of test cases replayed directly from a set of collected user
profiles and one composed of test cases generated from our
model (populated with the same set of usage profiles). The
results show that the test suites generated from our model
detected more faults per test case than replaying the profiles
directly, and with a fraction of the number of test cases in
the original profiles suite, thereby reducing the cost of test-
ing. Additionally, the test cases generated from the model
detect faults that are not detected by replaying the original
profiles; these are faults that are likely to be discovered by
users of the application.

The work presented in this paper provides the following
primary contributions:

1. a new probabilistic finite state model representation
of a GUI application that combines its static win-
dow/widget structure with actual usage,

2. a method to populate the model with user information
gathered from real application usage,

3. an algorithm to generate test cases based on the model,
and

4. an empirical investigation comparing the size and fault
detection ability of a test suite generated by our tech-
nique to a test suite of “raw” usage profiles on four
large, fielded applications.

The remainder of this paper is organized as follows. Sec-
tion 2 expands on work in related areas, such as using state

models in testing and usage profile-based testing. The de-
tails of the model used in this paper are elucidated in Sec-
tion 3. Section 4 contains a description of the empirical
studies and the results are presented in Section 5. Finally,
conclusions and future work are described in Section 6.

2. RELATED WORK
Previous researchers have studied the effectiveness of col-

lecting information from users, either at runtime or during
software development, to be used in software testing. Our
previous work investigated replaying usage profiles to per-
form regression testing on applications, but did not employ
usage profiles to create a model of the application and test
the application based on that model [12]. Many of the pre-
vious approaches to testing with usage profiles rely on man-
ually generating profiles based on a priori knowledge of the
application [23, 24]. The overall goal of testing using these
methods is to develop and implement fully automated meth-
ods in which user interactions are captured, the application
or application model is generated automatically from the
binary code, and test cases are developed and executed.

Usage profile-based testing transitions nicely to testing
GUI applications. Due to the large number of events in a
GUI, user profiles can assist a tester in shrinking the scope
of testing by focusing test case generation on the parts of
the GUI and sequences of events most often used by actual
users. In regression testing, user profiles are collected on
the fielded version and used to generate test cases for the
version under test. Collecting profiles on a fielded version
of the software enables testers to accurately represent tasks
users will execute, leading to more effective test cases.

2.1 Usage profile-based testing
Many researchers in software testing have used capture

and replay tools to test software, often in conjunction with
test scripts created by testers to ensure the software func-
tions properly. The same capture/replay tools can also be
used to record usage information, in the form of event se-
quences executed on the application, from actual users [4,
16, 18]. The information collected can then be integrated
into test cases or used to generate test cases. Although this
approach is not widespread, it is similar to the approach
used in this work.

Operational profiles, generally gathered through ethno-
graphic methods (customer interviews, videotaping, usage
logs), can also be used to develop test cases. These profiles
can be used to identify critical failures in a GUI application;
be used to partition users into classes of users and develop
test cases accordingly; be annotated based on expected or
actual usage of the application; and be used to determine
testing coverage, updating the profile to reflect success or
failure [1,5,17,20].

Usage data (or “session data”) has also been used to test
web applications, by generating test cases from a combina-
tion of events from different users’ session data, creating a
new virtual user [6]. While the approach presented in this
paper uses a similar idea, it is applied to GUI applications
rather than web applications, and a probabilistic model is
populated and used to generate test cases, rather than gen-
erating test cases based solely on the user-session data.

2.2 GUI testing
There are a variety of popular methods used for testing

334

GUIs, including test harnesses, capture/replay tools, and
model-based methods. Test harnesses invoke methods in
the underlying business logic of a application, as if executed
by the GUI, without actually using the GUI [10]. While test
harnesses effectively isolate the behavior of the GUI, they
do not test the interface code itself and, therefore, are not
applicable to the approach presented here.

The second approach, using manual tools to mimic the
usage of the GUI, only provides limited testing [7, 21]. JU-
nit, an open-source, regression testing framework used to
test Java code, has been extended into JFCUnit and Jemmy
Module for use in GUI testing [8]. Several capture/replay
tools have also been created based on JUnit, including Ab-
bot, Jacareto, and Pounder [8]. These tools mimic actual
usage of a GUI by recording interactions with the GUI in
capture mode and replaying the interactions in replay mode.
A common approach of these tools is to store mouse coordi-
nates, causing test cases to be fragile and dependent on the
GUI layout, and rendering many test cases ineffective for
regression testing since the GUI layout may change between
versions. Tools such as Winrunner2, Abbot3, and Rational
Robot4 avoid this problem by capturing GUI widgets rather
than mouse coordinates. These tools, however, require a
significant amount of manual effort to be effective, includ-
ing developing test scripts and manually detecting failures.
Modifications to the GUI require changes to the scripts as
well. Testers who employ these tools typically come up with
a small number of tests to utilize during development [11].

Finally, test cases can be generated based on a model
of the GUI. Previous research has shown the usefulness of
graphs and state machine models to represent the GUI, and
test cases were developed by exploring paths through the
model [2, 3, 14, 22]. Graph models can be walked, either
randomly or deterministically, but can not be traversed ex-
haustively because of the large number of possible traversals.
Therefore, it is common to traverse all paths of the graph
up to a specified length [14].

State machines are a well-known way to model complex
software. Behavioral models, in which nodes represent pro-
gram states or sets of related states and edges represent
transitions between states, are one type of state-machine
model which encodes the behavior of the program. Each
test case is generated by traversing the model, representing
the path traversed [2].

Operational models, a type of state machine, use nodes
to represent user operations. Nodes, edges, or paths can
be weighted with the probability that a user traverses them.
Previous research has explored using Markov models in which
the probability on each node depends only on the previous
node [22] and using a Bayesian framework in which model
parameters can be learned and updated during testing [17].

Representing a GUI with a state machine or graph model
allows a wide variety of algorithms to be used for test case
generation, but many of the current approaches are not
based on actual usage of the software. The method pre-
sented in this paper uses a graph to model the GUI and
augments it with probabilities based on observed usage.

2Mercury Winrunner,
http://www.mercuryinteractive.com/products/winrunner
3Abbot JavaGUITest Framework,
http://abbot.sourceforge.net
4Rational Robot,
http://www.rational.com.ar/tools/robot.html

3. PROBABILISTIC MODEL OF GUI
INTERACTIONS

In developing testing strategies for GUIs, it is desirable to
develop a multi-purpose model that can be used to represent
all possible GUIs. Due to the variety of applications with a
GUI front-end, however, such a model would be required to
represent a vast number of GUIs. Therefore, we represent
one sub-class of GUIs: those which take input from a single
user, have a fixed number of events, and are deterministic.
This class of GUIs can be represented by an Event-Flow
Graph (EFG) and standard graph walking techniques can be
used to reason about the model and generate test cases [14].

In developing a software model to be used in testing, it is
important that it be reusable and flexible [19]. The model
described here can be used for an application in any do-
main, given information about sequences of events for that
application, rendering our model very flexible and applica-
ble to any GUI application in the aforementioned subclass.
In modeling expected usage, all users are treated as “aver-
age” users. Therefore, although each application under test
can potentially have many usage models (one for each class
of users), one usage model was developed per subject ap-
plication for the purposes of this work. Additionally, the
model presented here gives a tester the ability to represent
the behavior of a new user, formed by combining the most
likely event sequences observed in the pool of users.

3.1 Modeling GUI structure with an Event
Flow Graph

An EFG is a specific model of the GUI for a particular ap-
plication, representing all possible sequences of events that
a user can execute on that GUI. Nodes in the EFG represent
events, and directed edges represent the event-flow relation-
ship between two events. An edge in the graph between
events e1 and e2 indicates that event e2 may be invoked
immediately after event e1. The predicate follows(e2, e1)
represents this relationship and denotes that e2 follows e1.
EFGs are potentially cyclic, since events can typically be ex-
ecuted more than once during a session with an application.

For instance, a user looking for a word in a Microsoft
Word document can select the Edit menu followed by the
Find menu item, type the word they wish to find in the
text box, and select the Find button to perform the find
operation. The user can then find the next occurrence of
the word by selecting Find again before selecting Cancel to
close the dialog box. Each of these events is represented by
a node in the EFG. Figure 1(a) shows a screenshot of the
Microsoft Word GUI. For increased readability, only a few
menu items for the File and Edit menus are shown. Each
item (or event) in the menu is a node in the event flow
graph, shown in Figure 1(b). Three types of events are
shown in Figure 1(b); menu items in the top level menu
bar are shown in boxes, menu items from drop down menus
are shown in diamonds, and buttons in the Find/Replace
window are shown in circles. The event sequence described
above is indicated by bold lines. Because edges in an EFG
are directed, the EFG in Figure 1(b) shows the order which
must be maintained in executing events on the GUI.

3.2 Developing a probabilistic EFG
In the work presented here, a subgraph of the EFG is pro-

duced based on observed event sequences collected in usage

335

(a)

(b)

Figure 1: Example using Microsoft Word: (a) Mi-
crosoft Word GUI; (b) Example Event Flow Graph
for a subset of Microsoft Word

profiles. Starting with the full EFG for the application un-
der test, nodes and edges not observed in the usage profiles
are eliminated, resulting in a smaller EFG. Next, the tai-
lored EFG is augmented with two special nodes, INIT and
FINAL, and two sets of events, the initial and final events,
are populated. The set of initial nodes contains the first
event of each usage profile, and the set of final nodes con-
tains the last event in each user profile. These initial and
final node sets represent all possible first and last events,
respectively, in the observed user interactions with the GUI.
Transitions are added from INIT to each initial node and
from each final node to FINAL, constraining the EFG to
one entry point and one exit point. This property makes
the EFG conform to the rules of a Markov chain and allows
the model to take advantage of the Markov assumption [9].
Using the Markov assumption of event independence and
frequencies observed in the usage profiles, the EFG’s nodes
are weighted in preparation for generating test cases.

Our model contains a collection of R paths through the
EFG called r1, r2, . . . , rR. Each path ri where 1 ≤ i ≤ R,
consists of a sequence of n events in addition to INIT and
FINAL:

ri = INIT, x1, x2, . . . , xn, F INAL;

∀j ej ∈ {e1, e2, . . . , en−1}∧

follows(ej+1, ej)

where x1, x2, . . . , xn and e1, e2, . . . , en−1 are events in the
EFG, ri denotes a path, and each path ri contains only
events with a follows relationship between them. Valid

Figure 2: Example Event Flow Graph

paths can also be formed by the concatenation of two paths,
e.g., ra and rb, provided the first event of rb follows the
last event of ra in the EFG.

Consider the following usage profiles, i.e., a set of paths
through the EFG, shown in Figure 2:

r1 = INIT, e1, e2, F INAL

r2 = INIT, e1, e3, e1, e2, F INAL

r3 = INIT, e1, e2, e2, e2, F INAL

Let count(ei) return the number of times event ei occurs
in the paths r1, r2, . . . , rR. The prior probability that a ran-
domly selected event from any of r1, r2, . . . , rR is ei is:

P (ei) =
count(ei)

ΣE
j=1count(ej)

.

Following the example given above, the counts and proba-
bilities for each event are:

count(e1) = 4 P (e1) = 0.4
count(e2) = 5 P (e2) = 0.5
count(e3) = 1 P (e3) = 0.1

Now, count(ei) and the prior probability calculation are
extended from single events to sequences of events. Let s be
a length-S subsequence of some path through the EFG (not
necessarily in r1, r2, . . . , rR):

si = x1, x2, . . . , xS

∀j ej ∈ {INIT, e1, e2, . . . , en−1, F INAL}∧

follows(ej+1, ej).

For a subsequence length of 2 (i.e., S = 2), some valid sub-
sequences for the example are:

s1 = e3, e1

s2 = e1, e2

s3 = e2, e2

The prior probability that a randomly selected, length-S
subsequence from any of r1, r2, . . . , rR turns out to be s is

P (s) =
count(s)

Σsi∈subs(S)count(si)
,

336

where count(s) returns the number of times s occurs as
a subsequence of r1, r2, . . . , rR and subs(S) is the set of
all length-S subsequences in r1, r2, . . . , rR. For each sub-
sequence given above, the count and probability are:

count(s1) = 1 P (s1) = 0.17
count(s2) = 3 P (s2) = 0.50
count(s3) = 2 P (s3) = 0.33

Given that s immediately precedes ei, the conditional
probability of ei is

P (ei|s) =
P (s1, s2, . . . , sS, ei)

ΣE
j=1P (s1, s2, . . . , sS, ej)

.

Note that P (ei|s) can be thought of as P (ei) when s has
length 0. This is not the same as P (ei|INIT), which is the
probability that event ei is the first event in the sequence,
occurring immediately after INIT . Rather, P (ei|s) is the
probability of ei given no information about the events that
precede it.

A probabilistic EFG (PEFG) is created by annotating each
event (node) in the EFG with a table containing the event’s
prior probability and its probability conditioned on each
subsequence in {r1, r2, . . . , rR} up to some maximum sub-
sequence length, or history, H . Each set of entries for all
length-h subsequences, 0 ≤ h ≤ H , succinctly encodes a
probabilistic Markov model whose O(Eh) nodes correspond
to length-h subsequences and whose edges are labeled with
conditional probabilities. Table 1 shows a conditional prob-
ability table of event e1 for subsequences of events up to
length 5 for the EFG shown in Figure 2. Zero-probability
entries are omitted. The first data row in the table gives the
prior probability of e1.

h P (e1|h)
- 0.3125

INIT 1.0
e2 0.25
e3 1.0

e1, e3 1.0
e2, e2 0.5

INIT, e1, e3 1.0
e2, e2, e2 1.0

e1, e2, e2, e2 1.0
INIT, e1, e2, e2, e2 1.0

Table 1: Probabilities relating to Figure 2

3.3 Generating test cases
In general, there are two ways to use a probabilistic test

case generation model. Test cases can be generated that ex-
ercise the most probable sequence of events, given a range
of starting points and test case lengths. Alternatively, test
cases (i.e., event sequences) can be generated based on con-
catenating pairs of events that have the highest probability
of occurring. For the study presented in this paper, the lat-
ter method is used, in order to determine the effectiveness
of highly probable pairs of events. All possible test cases are
generated, based on the events observed during usage profile
collection, up to a specified history provided by the tester.

The algorithm in Figure 3 generates test cases by con-
structing and traversing the probabilistic EFG. In the pseu-
docode shown, sets of event sequences, such as the input set

Input: Profiles, maxHistory

Step 1: Construct Subs
for each row Row of Profiles

for m from 1 to maxHistory
for each unique length-m subseq Seq of Row

Subs := Subs unioned with {Seq}
end

end
end

Step 2: Construct Distributions
for each row index i of Subs

m := length of Subs(i)
numTotal := number of length-m subseq in Profiles
for each unique element e in Profiles

Seq := row i of Subs concatenated with e
numSeq := number of occurrences of Seq in Profiles
Distributions(e, i) := numSeq / numTotal

end
end

Step 3: Construct BestPrefixes
for each unique element e in Profiles

i := index such that Subs(i) = e
Prefixes(e) := row indices of Subs for rows
with first element INIT and last sequence element e

BestPrefixes(e) := element j of Prefixes(e) such that
Distributions(j, e) is the

maximum in its column
end

Step 4: Generate TestSuite
Maxes := index (indices) of row(s) with max value in each
column of Distributions for each element index i of Maxes

KeyEvents := row i of Subs
Prefix := BestPrefixes(first element of KeyEvents)
TestCase := Prefix concatenated with KeyEvents
TestSuite := TestSuite unioned with {TestCase}

end

Output: TestSuite

Figure 3: Test case generation algorithm

of usage profiles and the output set of test cases, are stored
as matrices in which each row holds an event sequence and
the ith column of a row holds the ith event in the sequence.
The algorithm takes two parameters: Profiles, the set of
usage profiles, and maxHistory, the maximum number of
previous events on which the probability calculations are to
be conditioned. The output is TestSuite, a set of test cases.

In Step 1, the Subs matrix is constructed by adding in
each unique event subsequence up to length maxHistory in
Profiles. In Step 2, the probability distribution P (e|i) is
computed for each unique event e in Profiles and each
row i in Subs and is stored in Distributions. For each
unique event e, Step 3 calculates the probability of each path
from INIT to e. Finally, in Step 4, the matrix TestSuite is
constructed by adding a legal test case (i.e. one that begins
with INIT) for each column maximum in Distributions.

4. EMPIRICAL STUDY
We conducted an empirical study to evaluate the effec-

tiveness of our model-based test case generation technique
(pefg) in relation to replaying the usage profiles “as-is”
(profiles), without using the probabilistic EFG. The study
answered the following questions:

1. Is the pefg test suite more effective at fault detection
than the profiles test suite?

337

2. Is the cost of testing using the pefg technique less
than that of the profiles technique?

3. Does reducing the history parameter in the pefg tech-
nique (down to some minimum length) decrease the
cost of testing without decreasing the effectiveness of
the test suite?

Under the assumption that the usage profiles used to pop-
ulate the probabilistic EFG are representative of usage in the
field, the first question implies that the pefg technique is
more effective at finding faults than replaying the usage pro-
files directly. In order to compare the results of test suites
of different sizes, test suite effectiveness was normalized by
computing fault density, that is, the number of faults de-
tected by a test suite, divided by the number of test cases
in that test suite. More formally,

F (pefg, h)

|pefg| >
F (profiles)

|profiles| (1)

where F (suite, history) is the number of faults detected by
suite with a history value of history5. Test suite effective-
ness was determined by running each test case on each sub-
ject application. Failed test cases are those that caused the
application to encounter an uncaught exception during test
case execution. After collecting the set of failures, each was
manually linked to the fault that caused it. This approach
has been used before and has been found to be useful [25,26].

The second question relates to the cost of generating and
executing test cases, and proposes that the pefg technique
will be cheaper than executing the profiles directly as test
cases, or

c(profiles) > c(pefg, h), (2)

where c(suite, history) is the cost of testing that suite with
a history value of history. As a proxy for cost, the size of
the test suite was used. In the context of this study, using
the size of the test suite rather than the length of the test
cases is reasonable since the overhead required to run each
test case, including starting the test case execution frame-
work, starting the application, and ending the application
and framework, consumed more computation time than any
other activity. The goal of developing a cost value for each
test suite is to use it as a comparison measure. Computing
cost based on the size of the test suite allows valid compar-
ison of our method to work performed by others using this
suite of tools, since the cost of executing test cases will be
the same.

The third question asserts that, if the minimum sufficient
history length is known or estimated for some application,
the cost of testing the application can be reduced without
loss of fault detection ability, determined by the following:

F (pefg, h) ≈ F (pefg, h − n)∧
c(pefg, h) > c(pefg, h − n)

(3)

where h−n represents the minimum sufficient history length.

4.1 Infrastructure
The GUI Testing FrAmewoRk (GUITAR) was used to

perform the study [14]. The JavaGUIRipper, one of the
tools in the GUITAR suite, was used to glean the struc-
ture of the subject applications. By using Java Reflection,
5History only applies to the pefg test suite, given as a pa-
rameter to the model

the JavaGUIRipper creates an XML file that represents the
windows, menu items, and buttons present in the GUI, in-
cluding the actions that are executed when those items are
selected.

Another tool in the suite, the JavaGUIReplayer, was used
for test case execution. The JavaGUIReplayer is a frame-
work that opens the application under test and replays test
cases. Each event is executed on the GUI, and the state
of the GUI is recorded after each step. The state is saved
in XML files that can be examined to determine which test
cases failed and why.

Usage profiles can be captured by a tool in GUITAR’s
family of applications called the Profiler [16]. (The Pro-
filer does not currently belong to GUITAR’s canonical, pub-
licly available set of tools.) Running the subject application
through Java Reflection, the Profiler attaches its own event
handlers to each JButton, JTextArea, and JMenuItem that
becomes visible. When one of the Profiler’s event handlers
is triggered, the Profiler records an identifier for the widget
and the type of event.

4.2 Subject applications
Four popular open source applications developed in Java

Swing were chosen for this study and downloaded from Source-
Forge:

1. CrosswordSage 0.3.56, a popular tool for creating and
solving professional-looking crossword puzzles with built-
in word suggestion capabilities, with an all-time activ-
ity rate of 76.87%.

2. FreeMind 0.8.07, a very popular mind-mapping appli-
cation, with an all-time activity rate of 99.96%.

3. GanttProject 2.0.18, a project scheduling application
featuring Gantt chart, resource management, calen-
dars, and the option to import/export MS Project,
HTML, PDF, and spreadsheets, with an all-time ac-
tivity rate of 99.85%.

4. jMSN 0.9.9b29, a clone of MSN Messenger, including
instant messaging, file sharing, and additional chat fea-
tures standard in MSN Messenger, with an all-time
activity rate of 93.81%.

These applications were chosen for several reasons. First,
they all have an active developer community and high all-
time-activity scores on SourceForge, with three of the ap-
plications above 90%. CrosswordSage was chosen partially
because it is fairly new (first released in 2005) and yet has
an activity score of almost 80%. These applications have
also been released in several versions and have undergone
quality assurance prior to each release.

Preparation for testing the applications included setting
up a database for text-field values. In order to automate
test case replaying, a database that contains one instance for
each of the text types in the set {negative number, real num-
ber, long file name, empty string, special characters, zero,
existing file name, non-existent file name} was used. Note
that if a text field is encountered in the GUI (represented as

6http://sourceforge.net/projects/crosswordsage
7http://sourceforge.net/projects/freemind
8http://sourceforge.net/projects/ganttproject
9http://sourceforge.net/projects/jmsn

338

an event called type-in-text), one instance for each text
type is tried in succession. We also set up the test oracle
to detect crashes for these applications, where a crash is
defined as an uncaught exception thrown during test case
execution.

4.3 File formats and examples
Usage profiles and test cases are both stored in an XML

format understood by the JavaGUIReplayer. An example of
one usage profile, the corresponding entries in the map and
matrix files, and a test case resulting from the model are
shown below. For the sake of space, only a few attributes
are shown, and only on the first step. In a full profile or test
case, there are 16 attributes for each step.

Figure 4 shows a partial usage profile for GanttProject.
This profile is composed of six steps, which together make
a new GanttProject, and set some of the project specifics
in the “Create new project” window. Finally, Cancel is se-
lected, which will cancel all of the user actions for creating
the new project.

The following lines, each representing one usage profile in
the “matrix” file to be used by the test case generation al-
gorithm, represent a usage profile in an abbreviated format;
each number represents one event in the profile.

1 2 3 4 7 9

1 2 10 3 12 7

1 2 3 12 5 7

The “map” file is the translator between the profile and
the matrix. The portion of the map file shown here describes
the events in the sample usage profile and one line of the
matrix.

1 <Window>GanttProject_1</Window><Component>New..._R_33
</Component><Action>doClick</Action>

2 <Window>Create new project_2</Window><Component>AutoText_R_0
</Component><Action>setText_String_5</Action>

3 <Window>Create new project_2</Window><Component>AutoText_R_1
</Component><Action>setText_String_5</Action>

4 <Window>Create new project_2</Window><Component>AutoText_R_9
</Component><Action>setText_String_5</Action>

7 <Window>Create new project_2</Window><Component>Cancel_R_23
</Component><Action>doClick</Action>

9 <Window>Create new project_2</Window><Component>AutoText_R_2
</Component><Action>setText_String_5</Action>

After running the test case generation algorithm (Sec-
tion 3), a map and matrix were produced for the generated
test suite. The resulting matrix file was expanded into test
case events, based on the numbers assigned in the mapping,
and test cases were generated. The following line is an ex-
ample of a test case generated by the algorithm; this exact
sequence of events did not occur in the set of profiles.

1 2 10 3 12 7 1

An example of a generated test case is shown in Figure 5.

4.4 Generation and execution of test suites
The usage profiles were processed in several stages to cre-

ate replayable test cases. First, the usage profiles were dis-
tilled into a matrix of integers (Profiles in Figure 3) and
a mapping from each integer in the matrix to the textual
event identifier it represents. From this matrix, test cases
were generated by a Matlab implementation of our test case
generation algorithm.

Based on previous research which showed that event se-
quences of length 3 reveal substantially more faults than

<Profile>
<Step>

<Window>GanttProject_1</Window>
<Component>New..._R_33</Component>
<Action>doClick</Action>
<WindowFlag>FALSE</WindowFlag>
<Attributes>

<Property>
<Name>IconImage</Name>
<Value>IconImage_24</Value>

</Property>
<Property>

<Name>Type</Name>
<Value>RESTRICTED</Value>

</Property>
<Property>

<Name>ReplayableAction</Name>
<Value>doClick</Value>

</Property>
<Property>

<Name>Visible</Name>
<Value>TRUE</Value>

</Property>
<Property>

<Name>Enabled</Name>
<Value>TRUE</Value>

</Property>
</Attributes>

</Step>
<Step>

<Window>Create new project_2</Window>
<Component>AutoText_R_0</Component>
<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>

</Step>
<Step>

<Window>Create new project_2</Window>
<Component>AutoText_R_2</Component>
<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>

</Step>
<Step>

<Window>Create new project_2</Window>
<Component>AutoText_R_1</Component>
<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>

</Step>
<Step>

<Window>Create new project_2</Window>
<Component>AutoText_R_9</Component>
<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>

</Step>
<Step>

<Window>Create new project_2</Window>
<Component>Cancel_R_23</Component>
<Action>doClick</Action>
<WindowFlag>FALSE</WindowFlag>

</Step>
</Profile>

Figure 4: Partial usage profile for GanttProject

event sequences of length 1 or 2, maxLength was set to 5
for this study [14]. Fault detection effectiveness for each se-
quence length up to 5 is examined, to determine the optimal
level. In some applications, a sequence length of 5 required
roughly twice as much time for test case generation and pro-
cessing.

The original matrix, such as that shown above, encoded
the test suite for the profiles technique, and the matrix
output by Matlab (TestSuite in Figure 3) encoded the test
suite for pefg. Finally, using the mapping from integers
to event identifiers, both matrices were expanded into XML
test cases for JavaGUIReplayer.

Each test case was run using the JavaGUIReplayer, us-

339

<Testcase>
<Step>

<Action>doClick</Action>
<WindowFlag>FALSE</WindowFlag>
<Window>GanttProject_1</Window>
<Component>New..._R_33</Component>
<Attributes>

<Property>
<Name>Title</Name>
<Value>New..._R_33</Value>

</Property>
<Property>

<Name>Class</Name>
<Value>javax.swing.JMenu$1</Value>

</Property>
<Property>

<Name>Enabled</Name>
<Value>TRUE</Value>

</Property>
<Property>

<Name>Visible</Name>
<Value>TRUE</Value>

</Property>
<Property>

<Name>Type</Name>
<Value>RESTRICTED</Value>

</Property>
</Attributes>

</Step>
<Step>

<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>
<Window>Create new project_2</Window>
<Component>AutoText_R_0</Component>

</Step>
<Step>

<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>
<Window>Create new project_2</Window>
<Component>AutoText_R_2</Component>

</Step>
<Step>

<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>
<Window>Create new project_2</Window>
<Component>AutoText_R_9</Component>

</Step>
<Step>

<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>
<Window>Create new project_2</Window>
<Component>AutoText_R_4</Component>

</Step>
<Step>

<Action>setText_String_5</Action>
<WindowFlag>FALSE</WindowFlag>
<Window>Create new project_2</Window>
<Component>AutoText_R_1</Component>

</Step>
<Step>

<Action>doClick</Action>
<WindowFlag>FALSE</WindowFlag>
<Window>GanttProject_1</Window>
<Component>New..._R_33</Component>

</Step>
</Testcase>

Figure 5: Partial generated test case

ing one machine per application in a cluster of PCs run-
ning Linux. The overall process executed in approximately
4 hours per application. Pre-processing the usage profiles
for the model took approximately 5 minutes, model cre-
ation took approximately one hour, and test case generation
took about 30 minutes. Finally, test case execution took 2-3
hours. There is no interaction between the test cases, mean-
ing the results of one do not influence the results of another.

4.5 Threats to Validity
The results of this study should be interpreted with some

deference to threats to validity. First, due to our desire to
use the existing GUITAR infrastructure, and to compare
our results to those posted by previous graduate student re-
searchers, we used subject applications developed in Java.
Therefore, we have no information on how the results would
translate to other development languages. Also, although
the GUI for each application is different, they do not reflect
all possible classes of GUIs. Furthermore, the majority of
the application code is written for the GUI, meaning the
results may not be consistent for applications with a sim-
ple GUI and complex underlying business logic. Second,
although the applications chosen for this study have under-
gone quality assurance, they are open-source and developed
by volunteers, leading to the possibility that they are more
prone to bugs than professionally developed software.

5. RESULTS
The fault density of the pefg test suite was better than

the profiles test suite on all four applications. The test
suites produced by the model, referred to as the pefg test
suites, were consistently smaller than the original profiles
test suites, reducing the time and computation resources
required for producing and executing the test suites. Table 2
shows the difference in the test suite sizes. Finally, for the
set of usage profiles used as input, the most effective history
length was 5.

5.1 Fault Detection

Figure 6: Fault density

In order to determine if the pefg test suite detects more
faults per test case than the profiles test suite, Equation 1
was computed, shown in Figure 6. The pefg test suite for
CrosswordSage produced 123 faults, compared to 111 faults
detected by the profiles test suite. In all four applications,
the fault density of the pefg test suite was better than that
of the profiles test suite. FreeMind’s pefg test suite de-
tected 111 faults, while the profiles test suite detected 200.
jMSN’s pefg and profiles test suites detected 1135 and 76
faults, respectively. There was a rather large difference in
test suite size for GanttProject (Table 2), which greatly im-
pacted the fault density for the test suites (Figure 6). The
pefg test suite found 308 faults, while the profiles test
suite found 258.

340

Additionally, the pefg test suite found faults not found
in the profiles test suite in two applications. The pefg
test suite found 5 faults in CrosswordSage and 2 faults in
jMSN that were not detected by the profiles suite. The
faults are uncaught exceptions related to incorrect state of
the application, resulting in an error of ”Wrong index for
this event.”

5.2 Cost

Application profiles pefg
CrosswordSage 1903 248

FreeMind 58301 171
GanttProject 199139 762

jMSN 6852 1484

Table 2: profiles and pefg test suite sizes for each
application

The cost of executing each test suite, i.e., the size, was
computed using Equation 2. Comparing these costs, as
shown in Table 2, it can be seen that the pefg test suites are
consistently smaller than those of the profiles test suites.
Therefore, less resources are required to generate and exe-
cute the test suites.

5.3 History
Using Equation 3, the fault detection and cost of each

history level can be compared, as shown in Figure 7. It is
important to note that for any history, h, all prior histories
are also used, so the faults detected using a history of n
include

Pn
h=1 F (suite, n). Using a history of 5 in preparing

the pefg test cases produced test cases that detect 100% of
faults.

Figure 7: Faults for varying levels of history

5.4 Discussion
The fault detection effectiveness of the pefg test suite

shows the validity of the model-based test case generation
technique presented here. Although the model can be im-
proved to detect more faults, the test cases do detect faults
not detected by using the original profiles as test cases. One
of the motivating factors of this research is to detect faults
that will be discovered by users and are not detected by

other approaches, which has been shown to some degree in
this work.

By generating the pefg test suite and drastically decreas-
ing the size of the test suite – roughly 0.2%-22% of the size
of the profiles test suites – the cost of testing has been
reduced. This can be partially explained by the fact that
many users will execute not only the same events, but also
very similar event sequences. The pefg test suite would
then be much smaller because the use of probabilities effec-
tively collapses the sequences and gives more weight to the
common sequences.

The best results are obtained by using a history value of
5, yielding 100% fault detection. We initially hypothesized
that a history value of 3 would provide sufficient fault de-
tection, but this is not the case in these test suites, which
may be due to the length of the usage profiles. In gen-
eral, longer usage profiles, much like longer test cases, will
train the model more effectively and thus generate better
test cases. The usage profiles in this study contain, on av-
erage, 9 events, which is relatively short. Ideally, profiles of
20 events or more are desirable to provide a more accurate
insight into actual usage of the application.

6. CONCLUSIONS AND FUTURE WORK
The model presented in this paper was demonstrated in

the context of automated regression testing of GUI appli-
cations. The foundation of the model is collecting usage
information from real users of the application, and applying
that information to test case generation. Well-known prob-
abilistic methods were used to develop a model, which was
in turn used to generate test cases. Processing the collected
profiles through the model produced smaller test suites with
better fault detection per test case than the profiles test
suites.

User-profile based testing naturally lends itself to applica-
tions in regression testing. In order to avoid the complexity
of unexecutable test cases, regression testing of multiple ver-
sions of the open source applications was not demonstrated
in this study. Collecting usage profiles on one version and
using them to populate a model of a subsequent version will
require some extensions to the model in order to map from
one EFG to the other, and is a planned extension of this
research. Based on work by Weyuker [20], we will also de-
fine coverage criteria for this technique, which will help to
identify new parts of the application that are not covered
by any of the existing usage profiles.

In the future, the test case generation algorithm can be
improved. Currently, the algorithm selects event sequences
that contain at least one highly probable n-tuple of events,
but the probability of the whole event sequence, and there-
fore the test case, may be very low. For example, if P (e2|e1) =
0.999, the algorithm will construct a test case that contains
the sequence e1, e2, even if e1 is only exercised in 0.001% of
the usage profiles collected. We will modify our algorithm
to use techniques which consider the probability of a whole
sequence of events in generating a test case. Another vari-
ation of the algorithm is to traverse the least likely paths
in the PEFG to reveal rarely-encountered faults that may
otherwise be difficult to detect.

Many of the generated test cases for CrosswordSage did
not complete because of one event they had in common: the
Save event. The test cases failed when the Save event was
replayed, due to the event not being enabled at that point

341

in the test case execution, because the test cases did not
first execute Open or New. The current test case generation
algorithm does not have any notion of dependency, and does
not enforce business logic such as “Execute an Open or New
before a Save.” This will be addressed in future versions of
the algorithm.

Finally, training the model to detect different classes of
users, and generating test cases based on these classes, will
provide another level of insight into the usage of the appli-
cation. Because the process is automated, developing test
suites based on the user class will not be more difficult, and
could uncover faults that would not be detected in the single
user class model presented here.

Acknowledgments
We would like to thank the GUITAR group for their help
in creating many of the file manipulation tools used in gen-
erating test cases, assistance with the GUITAR suite, and
in producing results for the profiles test suites. This work
was partially supported by the US National Science Founda-
tion under NSF grant CCF-0447864 and the Office of Naval
Research grant N00014-05-1-0421.

7. REFERENCES

[1] J. Berstel, S. C. Reghizzi, G. Roussel, and P. S.
Pietro. A scalable formal method for design and
automatic checking of user interfaces. ACM Trans.
Softw. Eng. Methodol., 14(2):124–167, 2005.

[2] J. M. Clarke. Automated test generation from a
behavioral model. In Proc. of the Eleventh Int’l
Software Quality Week, May 1998.

[3] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In Proc. of the 21st
Int’l Conf on Software engineering, pages 285–294.
IEEE Computer Society Press, 1999.

[4] M. Dmitriev. Profiling Java applications using code
hotswapping and dynamic call graph revelation. In
Proc. of the 4th Int’l workshop on Software and
performance, pages 139–150. ACM Press, 2004.

[5] D. Donovan, C. Dislis, R. Murphy, S. Unger,
C. Kenneally, J. Young, and L. Sheehan.
Incorporating software reliability engineering into the
test process for an extensive GUI-Based network
management system. In Proc. of the 12th Int’l
Symposium on Software Reliability Engineering,
page 44. IEEE Computer Society, 2001.

[6] S. Elbaum, S. Karre, and G. Rothermel. Improving
web application testing with user session data. In
Proc. of the 25th Int’l Conf on Software Engineering,
pages 49–59. IEEE Computer Society, 2003.

[7] M. Finsterwalder. Automating acceptance tests for
GUI applications in an extreme programming
environment. In Proc. Second Int’l Conf. eXtreme
Programming and Flexible Processes in Software Eng.,
pages 114–117, 2001.

[8] JUnit. Testing resources for extreme programming.
http://junit.org/news/extension/gui/index.htm, 2004.

[9] D. Jurafsky and J. H. Martin. Speech and Language
Processing. Prentice-Hall, 2000.

[10] B. Marick. Bypassing the GUI. Software Testing and
Quality Engineering Magazine, pages 41–47, 2002.

[11] A. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. Phd, Dept. of Computer
Science,Univ. of Pittsburgh, Jul 2001.

[12] A. M. Memon. Employing usage profiles to test a new
version of a gui component in its context of use.
Software Quality Control, 14(4):359–377, 2006.

[13] A. M. Memon and M. L. Soffa. Regression testing of
GUIs. In ESEC/FSE-11: Proceedings of the 9th
European Software Engineering Conf/11th ACM
SIGSOFT Int’l Symposium on Foundations of
Software Engineering, pages 118–127, New York, NY,
USA, 2003. ACM Press.

[14] A. M. Memon and Q. Xie. Studying the
fault-detection effectiveness of GUI test cases for
rapidly evolving software. IEEE Transactions on
Software Engineering, 31(10):884–896, 2005.

[15] B. A. Myers. User interface software tools. ACM
Trans. Comput.-Hum. Interact., 2(1):64–103, 1995.

[16] A. Nagarajan and A. M. Memon. Refactoring using
event-based profiling, 2003.

[17] S. Özekici, I. K. Altinel, and E. Angün. A general
software testing model involving operational profiles.
Probab. Eng. Inf. Sci., 15(4):519–533, 2001.

[18] J. Steven, P. Chandra, B. Fleck, and A. Podgurski.
jRapture: A capture/replay tool for observation-based
testing. In Proc. of the 2000 ACM SIGSOFT Int’l
Symposium on Software Testing and Analysis, pages
158–167. ACM Press, 2000.

[19] G. H. Walton and J. H. Poore. Generating transition
probabilities to support model-based software testing.
Softw. Pract. Exper., 30(10):1095–1106, 2000.

[20] E. J. Weyuker. Using operational distributions to
judge testing progress. In Proc. of the 2003 ACM
symposium on Applied computing, pages 1118–1122.
ACM Press, 2003.

[21] L. White, H. AlMezen, and N. Alzeidi. User-based
testing of GUI sequences and their interactions. In
Proc. 12th Int’l Symposium on Software Reliability
Engineering, pages 54–63, 2001.

[22] J. A. Whittaker and M. G. Thomason. A Markov
chain model for statistical software testing. IEEE
Trans. Softw. Eng., 20(10):812–824, 1994.

[23] D. Woit. Conditional-event usage testing. In CASCON
’98: Proc. of the 1998 Conf of the Centre for
Advanced Studies on Collaborative research, page 23.
IBM Press, 1998.

[24] D. M. Woit. Specifying operational profiles for
modules. In ISSTA ’93: Proc. of the 1993 ACM
SIGSOFT Int’l Symposium on Software Testing and
Analysis, pages 2–10. ACM Press, 1993.

[25] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for GUI-based software
applications. ACM Transactions on Software
Engineering and Methodology, 16(1):4, 2007.

[26] X. Yuan and A. M. Memon. Using GUI run-time state
as feedback to generate test cases. In ICSE’07, Proc.
of the 29th Int’l Conf on Software Engineering,
Minneapolis, MN, USA, May 23–25, 2007.

342

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

