
Call Stack Coverage for GUI Test-Suite Reduction

Scott McMaster and Atif Memon
Department of Computer Science, University of Maryland, College Park, Maryland

{scottmcm,atif}@cs.umd.edu

Abstract

Graphical user interfaces (GUIs) are used as front-

ends to most of today’s software applications; testing
GUIs for functional correctness is needed to ensure the
overall correctness of these applications. The event-
driven nature of GUIs presents new challenges for
testing. One important challenge is test suite reduction.
Conventional reduction techniques/tools based on
static analysis are not easily applicable due to the
increased use of multi-language GUI implementations,
callbacks for event handlers, virtual function calls,
reflection, and multi-threading. Moreover, many
existing techniques ignore event handlers from
libraries, and fail to consider the context in which a
handler executes. Consequently, they yield GUI test
suites with seriously impaired fault-detection ability.
This paper presents a new reduction technique based
on the call stack coverage criterion. Call stacks may
be collected for any executing program with very little
overhead. An empirical study involving three large
GUI-based applications shows that call stack based
reduction provides an excellent tradeoff between
reduction in test suite size and loss of fault-detection
effectiveness.

1. Introduction

Users increasingly interact with modern software
through graphical user interfaces (GUIs). Testing
GUIs for functional correctness is extremely important
because (1) GUI code makes up an increasingly large
percentage of overall application code and (2) due

to the GUI’s proximity to the end user, GUI defects can
drastically affect the user’s impression of the overall
quality of a system.

Because of these factors, automated test case
generation techniques for GUIs have been developed
[12]. Event-flow coverage based test-case generation
has been shown to be effective for defect detection in
GUI applications [13]. However, the number of tests
generated by using event flow coverage can be quite
large. An event-flow-adequate test suite may be too
large to fully execute regularly in a rapid development
and integration environment that mandates, for
example, nightly builds and smoke tests.

Test suite reduction [[5][19][16]] (also referred to
as test suite minimization in the literature) seeks to
reduce the number of test cases in a test suite while
retaining a high percentage of the original suite’s fault
detection effectiveness. Several techniques are
available which employ algorithms to reduce the size of
a test suite while maintaining coverage adequacy
relative to some criterion. For example, our earlier
work [9] presented call stack coverage as a practical
and effective basis for performing test suite reduction,
advancing the state-of-the-art for coverage-based test
suite reduction. Traditionally, these techniques,
including our own, have been evaluated against
conventional, non-GUI software.

The event-driven execution model for a GUI differs
from that of other types of software. A given piece of
code in a GUI application may be executed in many
different contexts due to the increased degrees of
freedom that modern GUIs provide to users. The
context may be essential to uncovering defects; yet
most existing coverage criteria are not capable of
capturing context. Furthermore, today’s sophisticated
GUI applications increasingly integrate multiple
source-code languages and object code formats, along
with virtual function calls, reflection, multi-threading,
and event handler callbacks. These features severely
impair the applicability of techniques that rely on static
analysis or the availability of language- and/or format-
specific instrumentation tools. Thus, we believe that
GUI-intensive software poses new challenges for

coverage-based testing that require the development of
new solutions.

In previous work [9], we presented the call-stack
coverage criterion for single-threaded, non-event-
driven applications. In this work, we extend our
definition of call stack coverage to address new
challenges introduced by modern GUI applications.
Unlike criteria such as line (statement) or branch
coverage, call stack coverage has the benefit of
encapsulating valuable context information. And
unlike other traditional coverage criteria such as
dataflow/def-use pairs [15], call stack coverage is
easily captured in a multi-language application, and
with or without the availability of source code. We
apply our modified technique to three multi-threaded
GUI applications written in Java. We present an
empirical evaluation showing that call stack coverage-
based test suite reduction produces better results for
GUI applications compared to traditional techniques.
Contributions: This paper makes the following
contributions to the field of test-suite reduction:

1. Extends our previous definition of call stack
coverage to account for multi-threaded runtime
environments.

2. Discusses practical considerations for the
implementation of call stack collection in the domain
of modern GUI applications.

3. Empirically evaluates call stacks versus
several traditional coverage criteria for use in test
suite reduction in modern GUI applications.

The remainder of the paper is structured as follows:

In the next section, we provide definitions and a brief
summary of prior work using call stack coverage for
test suite reduction. Section 3 discusses our solutions
to specific problems that arise in modern GUI
applications. In Section 4, we provide details about the
implementation of our tool suite. Section 5 describes
our empirical evaluation and presents results. In
Section 6, we survey related work. We discuss our
conclusions and future directions in Section 7.

2. Background

In this section, we present some background and
definitions relating to test suite reduction and call
stacks. Additional details may be found in [9].

2.1. Test Suite Reduction
Informally, the goal of test suite reduction is to reduce
the size of a given test suite while preserving as much
of its fault-detecting ability as possible. Most
approaches to this problem are based on eliminating
test cases that are redundant relative to some coverage

criterion, such as program-flow graph edges [16],
dataflow [19], or dynamic program invariants [4]. The
test suite reduction problem is closely related to test
case prioritization [2], because any reduction technique
can be turned into a prioritization technique by
repeated application of the reduction algorithm to the
remainder of the suite. In our previous work, we
proposed the coverage of call stacks as an effective
new criterion to apply to test suite reduction.

2.2. Call Stacks
A call stack is the sequence of active calls associated
with each thread in a stack-based architecture.
Methods are pushed onto the stack when they are
called, and popped when they return or when an
exception is thrown (where supported, as in Java or
C++). An example of a call stack from a simple Java
program appears in Figure 1.

Each method may be represented using its name, the

types of its parameters, and return value. Thus a call
stack is an ordered sequence of named methods.

An efficient data structure for recording call stacks
on a given thread is the calling context tree, or CCT
[1]. In a CCT, each node represents a method, the root
is the entry point of the thread, and each edge
represents a method call.

3. Call Stacks in Modern GUI Applications

GUI applications present a number of interesting
challenges for call-stack-coverage-based analysis,
including multithreading, heavy use of third-party
libraries and frameworks, object-oriented language
features, and management of coverage data.

3.1. Multithreading

Our earlier work focused on a conventional single-
threaded application written in C, which required us to
monitor and record the state of a single stack.
However, modern GUI applications are all

(Ljava/lang/Object;ILjava/lang/Object;II)V
Ljava/lang/System;arraycopy
([BII)V Ljava/io/BufferedOutputStream;write
([BII)V Ljava/io/PrintStream;write
()V Lsun/nio/cs/StreamEncoder$CharsetSE;writeBytes
()V Lsun/nio/cs/StreamEncoder$CharsetSE;implFlushBuffer
()V Lsun/nio/cs/StreamEncoder;flushBuffer
()V Ljava/io/OutputStreamWriter;flushBuffer
()V Ljava/io/PrintStream;newLine
(Ljava/lang/String;)V Ljava/io/PrintStream;println
([Ljava/lang/String;)V LHelloWorldApp;main

Figure 1: Example Call Stack in Java

multithreaded. Indeed, all Java applications are
multithreaded, if for no other reason than the presence
of the garbage collector. Here we extend our call stack
coverage technique from [9] to make it practical and
useful in GUI applications.
 Definitions: Each running thread in a multi-threaded
application has a current stack of active method calls,
where the most recently called method is at the top of
the stack. Each thread generates a set of current stacks
over its lifetime. Let the set of all unique stacks
generated by a thread t be denoted as C(t). If c = <m1,
m2, … mn> is a call stack of depth n, we define a
substack cs (denoted by a subscript s) and a superstack
cs (denoted by a superscript s) as the following ordered
sequences, which are themselves call stacks:

(1) cs = <m1, m2, … mi>, i < n

(2) cs = <m1,m2, … mn, … mi>, i > n

For a given call stack c in any thread t, there is
associated with c a set of substacks C(t)s and a set of
superstacks C(t)s. We define the set of deepest, or
maximum depth, stacks C(t)max in a thread t as follows:

 (3) C(t)max = {c ∈ C(t) | Cs = ∅}

where ∅ is the empty set. Since each maximum depth
stack implies the existence of all of its substacks in C,
Cmax is a more compact representation of the set of all
unique call stacks generated by a thread.

To characterize the behavior of an entire multi-
threaded program, we combine call stack observations
made on each thread that took part in a given program
execution. We define the set of threads that existed
during execution:

(4) T = <t1, t2, … tn>

The set of unique call stacks for a given program
execution χ is:

(5) χ = ∪ { C(t)max | t ∈ T }
 χ is the set of maximum-depth stacks observed on
each thread, and each element of χ is a coverage
requirement in our reduction technique. Note that the
definition of χ allows for the possibility that a
maximum-depth stack on one thread is a substack of a
maximum-depth stack on another, and both stacks
would appear in χ. Therefore, χ is not necessarily a
set of unique maximum-depth stacks. Although this
may cause our technique to produce less size reduction
than it might otherwise, we allow this for practical
reasons, as checking for substack relationships across
all stacks in every C(t)max is very computationally
expensive and of marginal benefit.
Implementation: Our implementation approach to
collecting unique call stacks is to create a separate CCT

for each thread as it is created, and then maintain that
CCT over the thread’s lifetime as methods are entered
and exited. Ignoring recursion for the time being,
traversing each path to a leaf in the CCT gives us
precisely the set of unique maximum-depth call stacks
needed for our analysis. When a thread exits, its CCT
is traversed to calculate the set of unique call stacks
seen on that stack, and the unique stacks are
synchronously merged into a master list of unique
stacks seen on all threads. This approach allows for
greater application concurrency than the alternative,
which is a single CCT shared and maintained by all
threads. A potential drawback is that an application
with many short-lived threads may stall frequently for
processing of the CCTs, but this was not an issue in our
studies.

3.2. Libraries and Frameworks

Another important factor not fully addressed in our
original work is the use of third-party libraries and
frameworks. Libraries and frameworks are essential to
modern software development in general and GUI
applications in particular. Many test coverage
techniques only collect coverage element data based on
instrumentation of first-party application source or
object code. The reasons for this include the
unavailability of necessary third-party source code and
the impracticality under most techniques of
instrumenting an entire large framework such as the
Java 2 SDK. By making this tradeoff, coverage
techniques potentially overlook vast amounts of
interesting behavior induced in library code by the
application.

For example, consider the program in Figure 2a. If
no library code is instrumented, every execution of this
program against integral input will satisfy statement,
branch, and dataflow coverage. Thus, when used in
test suite reduction, each of those coverage approaches
would potentially drop all tests that exercise the code
with integral input greater than or less than zero,
thereby missing the array-index-out-of-bounds
exception that occurs with such input.
In contrast, our call stack coverage technique includes
the library calls that appear on application-generated
call stacks. Therefore, it preserves at least one test that
displays the abnormal control flow triggered by the
exception. In this work, we aim to further show
empirically that this information is both valuable and
practically obtained. In general, writing a tool to
collect call stack coverage information only requires
method entry and exit hooks, which already exist on
most compilers or runtime platforms to enable the
construction of call profilers.

3.3. Object-Oriented Language Features
Our prior work focused on a procedural program

written in C. Modern GUI application frameworks –
usually implemented in languages like C++, Java, and
C# -- make extensive use of object-oriented language
features such as virtual function calls, reflection, and
callbacks for event handlers. It is not possible in
general to statically determine which methods will be
invoked by a program execution. Dynamic analysis
based on call stacks is ideal in such an environment
because the stack contains the actual methods invoked
in all cases.

Consider the program in Figure 2b, which takes two
parameters: A method name presumed to be
toUpperCase or toLowerCase, and a string argument to
pass to the method via reflection. The call stacks
generated by various executions of this program will
differ based on the method name parameter, which is
clearly behavior that should be captured for the
purposes of test suite reduction. But the use of
reflection makes determining this statically impossible.
Modern GUI and server applications are often built
using frameworks that employ reflection-based
component models where the types and methods to be

used are not known until runtime. Call stacks are ideal
for recording test coverage in reflection scenarios.

3.4. Coverage Data Size

In our earlier work with the space application [17],
we observed 453 unique maximum-depth call stacks
which became our test coverage requirements. Due to
heavy use of libraries and the runtime environment
itself, even an extremely simple Java application may
generate thousands of call stacks. Indeed, in the
version of Java used in this work, the simple program
in Figure 2c generated 803 call stacks; a GUI
application built with Java Swing such as one of our
subject applications can easily generate hundreds of
thousands. We will show in this paper that call stack
data collection and test suite reduction remains feasible
in that realistic environment.

4. Tools for Call Stack Coverage and Test
Suite Reduction

4.1. Collecting Call Stacks

To illustrate our technique’s ability to work without
source-level instrumentation, we built a Java Virtual
Machine Tool Interface (JVMTI) agent to collect the
CCT data necessary for a call stack coverage analysis.

a)
public class ArrayTest {

 public static void main(String args[]) {

 String[] strings = {"first"};

 int index = Integer.parseInt(args[0]);

 System.out.println(strings[index]);

 }

}

c)
public class HelloWorldApp {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

}

b)
import java.lang.reflect.*;

public class ReflectionTest {

 public static void main(String args[])

 throws ClassNotFoundException,

 NoSuchMethodException,

 SecurityException,

 IllegalAccessException,

 InvocationTargetException

 {

 if(args.length != 2 ||

 !(args[0].equals("toUpperCase") ||

 args[0].equals("toLowerCase"))) {

 throw new IllegalArgumentException();

 }

 String command = args[0];

 Class str = Class.forName("java.lang.String");

 Method m = str.getMethod(command, null);

 Object result = m.invoke(args[1], null);

 System.out.println(result.toString());

 }

}

Figure 2: Sample Programs for Call Stack Analysis

We made use of the JVMTI hooks for method entry
and method exit to maintain a CCT for each thread.
Recursive invocations are permitted in our tool but are
only captured to a depth of one. As threads die and at
the end of an execution, the coverage information from
each CCT is merged and processed into a set of unique
call stacks which are finally written to the file system.
Qualitatively, the applications we use as our
experimental subjects remain quite responsive in the
presence of this instrumentation. This suggests that
call stack coverage may be practical to capture in
certain fielded GUI applications, which may be a
subject of future work.

Since we collect coverage for each thread, we are by
definition collecting data on system threads where the
subject program is not even on the stack. Since activity
on system threads (such as the one on which the
garbage collector runs, or the one that pumps GUI
events in the Java Swing libraries) is somewhat
environmentally dependent and may vary from run to
run, this introduces a potential element of non-
determinism into our data collection and, by
consequence, which tests we select in the reduction
process. However, this could be considered a positive
result, as certain test cases may be more likely than
others to induce fault-indicating activity on the
aforementioned system threads.

The output of our JVMTI agent consists of two
files: The first file represents the observed call stacks
as a list of tab-delimited method identifiers. We store
Java Native Interface (JNI) method identifiers instead
of full method signatures in order to save space.
However, method identifiers are assigned by the JVM
and are not necessarily consistent across different
executions of the same program. So our second output
file contains a map of JNI method identifiers to the full
method signatures. When calculating the set of unique
call stacks across two or more test cases, we use the
maps to create a canonical form based on the method
signatures.

4.2. Reducing Test Suites

As in our previous work, we use a C#
implementation of the ReduceTestSuite heuristic
presented in [5]. In our implementation,
ReduceTestSuite begins by including all test cases that
cover a single call stack. Then it picks a test case that
covers the most call stacks from the subsets of cases
with the next lowest cardinality, marking all of the
subsets that contain this case. This process occurs
repeatedly for higher cardinality subsets until all
subsets are marked and, therefore, all call stacks are

covered. For an analysis of the runtime of this
algorithm, see [5].

5. Experiments

We implemented the call stack collection and
reduction algorithms and ran two experiments to
evaluate our test suite reduction technique.

5.1. Research Questions

We sought to evaluate the call stack reduction
technique in terms of the size and fault detection
effectiveness of the resulting test suites. Specifically,
we wanted to directly compare the call-stack based
technique to reduction based on four different types of
coverage: event (E1), event-pairs (E2), line (statement)
(L), and method (M). Line coverage has probably the
widest support of any coverage technique among
commercial and open source tools due to its balance
between precision and practicality. Event coverage
[13] is specially tailored for use in GUI applications,
which can be modeled as sequences of events. In E1,
each event in isolation is a coverage requirement, while
in E2, unique pairs of events are included as coverage
requirements. We also wanted to investigate whether
test suites created by call stack reduction preserved
more fault-detecting ability than randomly reduced
suites of the same size. To that end, we designed two
experiments that we present next: (1) Experiment 1, in
which we compared call stack based reduction with
event, event-pair, line, and method-based reduction,
and (2) Experiment 2, in which we compared call stack
reduction to randomly selected suites of the same size.
5.2 Subject Applications

We used three applications from the TerpOffice
Suite [14] as our experimental subjects. TerpOffice is
a business productivity suite written in Java by senior
software engineering students over a period of years.
The three applications we study are TerpPaint (TP),
TerpWord (TW), and TerpSpreadsheet (TS). Table 1
shows key metrics for these applications’ test suites.
Each application is associated with a large universe of
test cases generated from the event flow criterion [10],
a set of single-fault versions, and a set of faults known
to be detected by each test case.
Application TerpPaint

(TP)
TerpWord
(TW)

TerpSpreadsheet
(TS)

Test Universe
Size

1500 1000 1000

Detectable
Faults
(Versions)

43 18 101

Table 1: TerpOffice Applications

5.3. Measured Variables

As in [9], we measured fault detection effectiveness
on a per-test-suite basis, i.e., two test suites were
considered to be equally effective at detecting a
specific fault if they each contain at least one case that
exposes the fault. This is the approach adopted in [19].
For each reduction experiment, we captured the
percentage size reduction:

(1) 100 * (1 – SizeReduced / SizeFull)

And percentage fault detection reduction:
(2) 100 * (1 – FaultsDetectedReduced / FaultsDetectedFull)

Since we dealt with a fairly small number of discrete
faults in our experiments, we took averages of these
quantities over large numbers of suites.

5.4. Threats to Validity

Threats to external validity are factors that may
impact our ability to generalize our results to other
situations. Our main threat to external validity in this
study is the small sample size. In this study, we only
run our data collection and test suite reduction process
on three programs, which we chose for their
availability. These programs were constructed in a
similar manner and may not be representative of the
broader population of programs. An experiment that
would be more readily generalized would include
multiple programs of different sizes and from different
domains. Additionally, we would expect the
effectiveness of the call stack minimization process to
vary depending on aspects of the programming style
used in the target application. In particular, when the
application is composed of many small functions, call
stacks provide finer-grained dynamic state information.
Our subject applications are GUI-event-driven and thus
contain many small event-handling methods. This
should increase the effectiveness of our minimization
technique relative to what it could do against an
application that implemented the same behavior using
relatively fewer or more monolithic functions.
(Consider the pathological case where a program is
composed of a single large function, which would have
but a single call stack for all executions.) Finally,
characteristics of original test suites (such as their fault
detecting ability and how they were constructed) play a
role in the size and fault detection reduction results.
This threat can be addressed in future work by
choosing original test suites adequate for a variety of
coverage criteria.

Threats to construct validity are factors in the
experiment design that may cause us to inadequately
measure concepts of interest. In our experiments, we

made several simplifying assumptions in the area of
costs. In test suite reduction, we are primarily
interested in two different effects on costs. First, there
is the cost savings obtained by running fewer test cases.
In this study, we assume that each test case has a
uniform cost of running (processor time) and
monitoring (human time). These assumptions may not
hold in practice. The second cost of interest is the cost
of failing to find faults during testing as a result of
running fewer test cases. Here we assume that each
fault contributes uniformly to the overall cost, which
again may not hold in practice. These assumptions are
commonly made in other studies of test suite reduction
[[16][19]].

5.5. Data Collection Step

Using the JavaGUIReplayer application [14], we
executed each test case in each test pool against the
fault-free versions of the subject programs, collecting
the unique call stacks generated by each test case. We
repeated this process for line (statement) coverage
using jcoverage [6] as our instrumentation tool.
Method coverage was derived from the call stack
coverage data. Because our tests were event-based, we
knew their event coverage a priori. Our coverage
statistics aggregated over the entire test pool for each
application appear in Table 2.

Application Includes
Library
Data?

Terp

Paint

(TP)

Terp

Word

(TW)

Terp

Spreadsheet

(TS)

Call
Stacks
Observed

Yes 413166 569933 333882

Methods
Observed

Yes 12277 12665 11103

Events N/A 181 219 110

Lines1 No 11803 9917 5381

Classes1 No 330 197 135

Methods1 No 1253 1380 746

Table 2: TerpOffice Static and Dynamic Program
Elements

As noted earlier, our instrumentation process for
call stack coverage incorporates the induced coverage
of the supporting Java libraries. Because we used our
raw call stack coverage data as the basis for method
coverage, our method coverage approach also includes
Java framework methods. However, it was not feasible

1 Of TerpOffice source, as determined by jcoverage
instrumentation.

to instrument the entire Java SDK for line coverage, so
our line coverage data is based solely on the
TerpOffice source. Because of this, between the two
approaches M and L, it is possible (and in fact the case)
that we may cover more methods than lines.

The data gathered during this step allowed us to
create any number of test suites composed of the
previously executed test cases and know the set of
unique coverage elements and faults detected by the
suite with no further execution of the program. Hence,
it was not necessary to run each test suite under study
against each version of the subject program. This
simulation approach is similar to one used in [3] to
evaluate adequacy criteria and test effectiveness.

5.6. Reduction Approach

Before reducing a test suite, we use the individual
test case coverage information from step 5.2 to
calculate the full set of unique call stacks that an
execution of the full suite can be expected to generate.
The full set is computed by merging the unique
maximum-depth call stacks observed by each test case
in the suite.

Here we must consider the situation where a
maximum-depth call stack from one test case is not
maximum-depth in another. For example, Test Case 1
(tc1) may generate the call stack c1 = <f1, f2, f3>, and
Test Case 2 (tc2) may generate c2 = <f1, f2>. The call
stack c2 is not maximum-depth in a test suite
containing both tc1 and tc2. In our prior work [9], we
addressed this issue by computing substack
relationships between each pair of unique maximum-
depth call stacks across the suite. In the example, this
would lead to a selection of just tc1, because it covers
both stacks c1 and c2. However, computing the
substack relationships across an entire test suite with
hundreds of thousands of unique (and deep) call stacks
is very computationally expensive. Therefore, in this
paper, we adopt a different approach, which is to forgo
the computation of substack relationships and consider
uniqueness of maximum-depth call stacks on a per-test-
case basis. This approach is analogous to how we treat
maximum-depth stacks across threads as discussed in
Section 3.1. So in the example, this would lead to the
inclusion of both tc1 and tc2. The consequence of this
decision is that we forgo some potential size reduction
in exchange for better runtime performance of the
reduction process. Future work may quantify the delta
in size reduction in practice.

TP - % Size Reduction

0

10

20

30

40

50

60

70

80

90

50 100 150 200 250 300 350 400

Original Suite Size

Av
g

%
 R

ed
uc

tio
n

O
ve

r
25

 S
ui

te
s

CS
M
L
E1
E2

TS - % Size Reduction

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

Original Suite Size

Av
g

%
 R

ed
uc

tio
n

O
ve

r 2
5

Su
ite

s

CS
M
L
E1
E2

TW - % Size Reduction

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

Original Suite Size

Av
g

%
 R

ed
uc

tio
n

O
ve

r
25

 S
ui

te
s

CS
M
L
E1
E2

Figure 3: Percentage Size Reduction

After merging the unique maximum-depth call

stacks from each test case in a given test suite, we
apply the ReduceTestSuite heuristic [5] to compute the
reduced test suite. Finally, we evaluate the size and
fault detection capability of the reduced suite.

5.7. Experiment 1: Comparing Coverage-
Based Reduction

The goal of our first experiment was to reduce
randomly generated test suites of various sizes based
on call stack coverage (CS) and four other coverage

criteria: event (E1), event-pairs (E2), line (L), and
method (M). From the test universe, we evaluated
suites ranging in size from 50 to 400, with 25 suites of
each size. We reduced based on each of the five
criteria and compared the percentage size reduction
and percentage fault detection reduction metrics.

Size Reduction

Percentage size reduction results for the three
applications TP, TS, and TW appear in Figure 3. We
see similar behavior in suite size reduction for all three
applications. E2 displays very little size reduction in
all cases, which is expected because the original test
cases were generated using an algorithm based on
event flow. E1, M, and L are very close except in TW,
where E1 results in less size reduction than M and L
(but still notably more than CS). The CS technique
strikes a middle ground between E2 (and no reduction)
and the other three techniques, yielding 38-50%
reduction for the largest suite size.

Fault Detection Reduction

Percentage fault detection reduction results for TP,
TS, and TW appear in Figure 4. (The RAND
technique will be discussed with Experiment 2 below.)
The graphs are jagged due to the relatively small-
magnitude and discrete nature of the fault data and the
high sensitivity to the selection of specific test cases
that may detect multiple faults. Nonetheless, some
trends are clearly visible. As with percentage size
reduction, there is no clear difference between M and L
(recalling again that M includes methods from libraries
and L does not). But call stack-based reduction is
clearly favored over M, L, and E1, losing fault
detection effectiveness in the 0-5% range for all
applications and original suite sizes. Indeed, CS
performs comparably to E2 even though E2-based
reduction yields almost no size reduction in our
empirical scenario. By comparison, using the
traditional (non-GUI) space application as our test
subject in [9], we observed percent fault detection
reduction in the 12-16% range using both edge-
coverage-adequate and randomly generated original
suites. Clearly more subject applications need to be
studied in future work, but this result suggests that call
stack coverage analysis may be particularly applicable
to GUI applications.

TP - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200 250 300 350 400

Original Suite Size

Av
g

%
 R

ed
uc

tio
n

O
ve

r
25

 S
ui

te
s

CS
RAND
M
L
E1
E2

TS - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

Original Suite Size

Av
g

%
 R

ed
uc

tio
n

O
ve

r
25

 S
ui

te
s

CS
RAND
M
L
E1
E2

TW - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

Original Suite Size

Av
g

%
 R

ed
uc

tio
n

O
ve

r
25

 S
ui

te
s

CS
RAND
M
L
E1
E2

Figure 4: Percentage Fault Detection Reduction

5.8. Experiment 2: Controlling for Size of
Reduced Suites

Our first experiment showed that call stack coverage
excelled at preserving the fault detection effectiveness
of reduced test suites. However, call stack-reduced
suites were substantially larger than suites reduced by
other criteria except for length-2 event sequences.
Thus, it seemed possible that call stack coverage may
have been preserving more fault detection solely on the
basis of including more test cases. The goal of our
second experiment was to evaluate this hypothesis.

Keeping the call stack-reduced suites from Experiment
1, we paired them with random suites of the same size
(the RAND technique in Figure 4) and compared their
fault detection effectiveness.

Referring back to Figure 4, RAND loses fault
detection effectiveness comparable to L and M, thus
performing considerably worse than CS. Considering
that the RAND suite sizes are equal to those of CS, we
conclude that call stack coverage contains valuable
information that preserves fault detecting ability of test
suites under reduction.

5.9. Discussion

In our experiments, call stack coverage-based
reduction resulted in considerably larger reduced suite
sizes than approaches based on method, line, or simple
event flow coverage. In exchange for the larger
reduced suite size, the call stack approach performed
substantially better at retaining the fault detection
capabilities of the original test suite. In practice, this
may or may not be advantageous. For example, in a
time-sensitive regression testing scenario, if there is
sufficient time to run a call stack-reduced test suite in
its entirety, our work suggests that it would be
advisable to do so in order to obtain greater fault
detection effectiveness. If time is more critical, a
subset of the call stack reduced suite may be executed
instead.

The feasibility of collecting call stack coverage in
large multi-threaded and multi-language applications is
a great benefit of the approach. However, where fault
detection effectiveness is concerned, we believe that
call stacks derive most of their power from their
context sensitivity, capturing valuable information that
most other coverage criteria miss. In future work, we
will perform a missed-faults analysis across the
techniques to quantify this conjecture.

6. Related Work

Rountev et al. [18] also consider the problem of
“call chain” (call stack) coverage, beginning with a
static analysis of potentially feasible call chains and
dynamically measuring test coverage against it. They
use the results of this analysis to guide the
augmentation of a test suite to achieve higher coverage.
Because the static analysis is conservative and
therefore imprecise, achieving 100% coverage by these
criteria is not in general possible. Unlike our work,
they do not address the impact of this type of coverage
on test suite reduction.

There have been numerous studies of test suite
reduction and its relationship to fault detection
effectiveness, including [[4], [16], [19]]. Jeffery and

Gupta [7] present a test suite reduction approach that
combines two different coverage criteria (“primary”
and “secondary”) to achieve improved reduced suite
fault detection effectiveness with “selective
redundancy”. Call stack coverage would be an
interesting choice as a participant in this technique,
perhaps as a secondary participant with one of the
simpler but context-insensitive criteria such as
statement or branch coverage. Leon and Podgurski [8]
apply clustering algorithms to the test suite reduction
problem instead of the traditional coverage
maximization approach. Again we feel that the
context-preserving nature of call stack coverage would
make it an excellent criterion on which to cluster test
cases.

The Rostra framework [20] collects method
sequences on a given object in an object-oriented
system. The sequences are then used as coverage
criteria for test suite reduction (among other
applications). Unlike Rostra, our call stack technique
is global and makes no assumptions about the threading
behavior of test case executions.

7. Conclusions and Future Work

In this paper, we presented tools and techniques that
allow us to dynamically collect call stacks in
multithreaded GUI applications, including entries from
the libraries that they use. And we empirically
demonstrated the feasibility and effectiveness of using
dynamically collected call stacks as a coverage
criterion for GUI applications.

We have shown that event-driven GUI applications
are sufficiently different from traditional applications
to require new coverage criteria [12]. In future work,
we plan to further generalize our results for coverage
criteria that are effective for GUI testing scenarios.

Although we were able to successfully analyze
complete call stack coverage data for the TerpOffice
applications, the data volume for even larger
applications may become unwieldy. Thus, we intend to
look for techniques that reduce the number of coverage
requirements generated by a complete call stack data
collection while still retaining call stack coverage’s
desirable qualities. One idea is to limit the depth of
calls into library routines. Another strategy is to define
a “similarity metric” for call stacks such that different
stacks with a certain similarity value may be considered
redundant and therefore be discarded.

To further explore the notion that the context
provided by call stacks is valuable in test suite
reduction, we will perform a missed-faults analysis. By
inspecting code related to faults found by call stack
reduced suites but missed by other reduced suites, it

may be possible to qualify the importance of calling
context.

Finally, we believe there is a need to better quantify
the tradeoffs between fault detection effectiveness
reduction and size reduction. We will develop, apply,
and evaluate new metrics to assist practitioners when
considering test suite reduction approaches.

Acknowledgements

The authors thank the anonymous reviewers of this
paper whose feedback and comments played an
important role in reshaping the experimental results and
analyses. This work was partially supported by the US
National Science Foundation under NSF grant CCF-
0447864 and the Office of Naval Research grant
N00014-05-1-0421.

9. References
[1] G. Ammons, T. Ball, and J.R. Larus. Exploiting

hardware performance counters with flow and context
sensitive profiling. SIGPLAN ’97 Conf. on
Programming Language Design and Implementation,
1997.

[2] S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical studies. IEEE
Transactions on Software Engineering Volume 28, no.
2, February, 2002, pages 159-182.

[3] P. G. Frankl and O. Iakounenko. Further empirical
studies of test effectiveness. ACM SIGSOFT Sixth
International Symposium on the Foundations of
Software Engineering, Nov. 1998.

[4] M. Harder, J. Mellen, and M. D. Ernst. Improving test
suites via operational abstraction. Proceedings of the
25th International Conference on Software
Engineering, pp. 60-71, 2003, Porland, Oregon, United
States.

[5] M. J. Harrold, R. Gupta, and M. L. Soffa. A
methodology for controlling the size of a test suite.
ACM Transactions on Software Engineering and
Methodology (TOSEM) July 1993 Volume 2 Issue 3.

[6] jcoverage information on the web at
http://www.jcoverage.com/, April, 2006.

[7] D. Jeffrey and N. Gupta. Test suite reduction with
selective redundancy. IEEE International Conference
on Software Maintenance (ICSM) 2005, pages 549-558,
Budapest, Hungary, 2005.

[8] D. Leon and A. Podgurski. A comparison of coverage-
based and distribution-based techniques for filtering and
prioritizing test cases. Proceedings of the 14th IEEE
International Symposium on Software Reliability
Engineering (ISSRE 2003), November 2003, Denver,
Colorado, United States.

[9] S. McMaster and A. Memon. Call stack coverage for
test suite reduction. IEEE International Conference on
Software Maintenance (ICSM) 2005, pages 539-548,
Budapest, Hungary, 2005.

[10] A. Memon, A. Nagarajan, and Q. Xie. Automating
regression testing for evolving GUI software. Journal of
Software Maintenance and Evolution: Research and
Practice, 17(1):27.64, 2005.

[11] A. Memon, M. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. SIGSOFT Eighth International
Symposium on the Foundations of Software
Engineering (2000), pages 30-39, San Diego,
California, USA, 2000.

[12] A. Memon, M. Pollack, M. L. Soffa. Hierarchical GUI
test case generation using automated planning. IEEE
Transactions on Software Engineering 27(2), pages
144-155, (2001).

[13] A. Memon, M. L. Soffa, and M. Pollack. Coverage
criteria for GUI testing. ESEC / SIGSOFT FSE 2001,
pages 256-267, Vienna, Austria, 2001.

[14] A. Memon and Q. Xie. Studying the fault-detection
effectiveness of GUI test cases for rapidly evolving
software. IEEE Transactions on Software Engineering,
vol. 31, no. 10, pp. 884-896, October, 2005.

[15] S. Rapps. and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions
on. Software Engineering. 11, 4 (Apr. 1985), 367-375.

[16] G. Rothermel, M. J. Harrold, J. von Ronne, and C.
Hong. Empirical studies of test-suite reduction.
Journal of Software Testing, Verification, and
Reliability, V. 12, no. 4, December, 2002.

[17] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.
Test case prioritization. IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929-948, October,
2001.

[18] A. Rountev, S. Kagan, and M. Gibas, Static and
dynamic analysis of call chains in Java. ACM SIGSOFT
International Symposium on Software Testing and
Analysis (ISSTA’04), pages 1-11, July 2004.

[19] W. E. Wong, J. R. Horgan, S. London, A. P. Mathur.
Effect of test set minimization on fault detection
effectiveness. Proceedings of the 17th International
Conference on Software Engineering, p.41-50, 1995,
Seattle, Washington, United States.

[20] T. Xie, D. Marinov, and D. Notkin. Rostra: A
framework for detecting redundant object-oriented unit
Tests. 19th IEEE International Conference on
Automated Software Engineering, Sep. 2004, pp. 196-
205, Linz, Austria.

