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Abstract

Daily builds and smoke regression tests have become
popular quality assurance mechanisms to detect defects
early during software development and maintenance. In
previous work, we addressed a major weakness of current
smoke regression testing techniques, i.e., their lack of abil-
ity to automatically (re)test graphical user interface (GUI)
event interactions – we presented a GUI smoke regression
testing process called Daily Automated Regression Tester
(DART). We have deployed DART and have found several
interesting characteristics of GUI smoke tests that we em-
pirically demonstrate in this paper. We also combine smoke
tests with different types of test oracles and present guide-
lines for practitioners to help them generate and execute the
most effective combinations of test-case length and test or-
acle complexity. Our experimental subjects consist of four
GUI-based applications. We generate 5000-8000 smoke
tests (enough to be run in one night) for each application.
Our results show that (1) short GUI smoke tests with cer-
tain test oracles are effective at detecting a large number of
faults, (2) there are classes of faults that our smoke test can-
not detect, (3) short smoke tests execute a large percentage
of code, and (4) the entire smoke testing process is feasible
to do in terms of execution time and storage space.

1 Introduction

Most of today’s software applications are developed and
maintained by multiple programmers, often geographically
distributed, who work on parts of the overall application
code. While leading to improved code churn rates, this
practice also leads to problems, often affecting programmer
productivity. For example, developers may not realize that
they have inadvertently broken parts of the code. To help

sustain programmer productivity, quality assurance mecha-
nisms are integrated into the development and maintenance
cycle. One such mechanism requires executing smoke re-
gression tests together with nightly/daily building of the
software. In recently reported work [24], we addressed an
important weakness of current smoke testing techniques,
i.e., their inability to automatically and efficiently smoke
test the graphical user interface (GUI) front-end part of the
software – we defined GUI smoke tests and described a pro-
cess called Daily Automated Regression Tester (DART) that
re-tests frequent builds of GUI software.

We have implemented and successfully deployed DART.
The key to the success of DART is that developers can work
on the code during the day; DART automatically launches
the application under test (AUT) at night, builds it and runs
GUI smoke test cases (sequences of GUI events). Coverage
and bug reports are e-mailed to developers, who can quickly
fix the bugs. DART automates everything required for GUI
smoke testing including structural GUI analysis (which we
refer to as GUI ripping [25]), test case generation [29, 27],
test oracle creation [28], code instrumentation, test execu-
tion, coverage evaluation [30], regeneration of test cases,
and their re-execution. Together with the operating system’s
task scheduler (e.g., MS Windows task scheduler, Unix cron
job), DART can execute frequently with little input from the
developer/tester to smoke test the GUI software.

Since the deployment of DART, we have identified im-
portant characteristics of GUI smoke tests that we describe
and experimentally demonstrate in this paper. We also de-
scribe two important, previously ignored, aspects of auto-
mated GUI smoke testing, i.e., test oracles and code cover-
age. During the testing process, as test cases are executed
on the AUT, test oracles are used to determine whether
the AUT executed as expected [11]. In previous work,
we developed several types of automated GUI test oracles
[26, 28]. Our work showed that the overall effectiveness of



the testing process depends not only on the number and type
of test cases used, but also on the type of test oracle used.
We now develop 5 different oracles of varying complexity
for GUI smoke test cases. Finally, we present guidelines for
practitioners who perform smoke testing of GUI-based soft-
ware to help them generate and execute the most effective
combination of test-case length and test oracle complexity.

Our experimental subjects consist of four GUI-based ap-
plications. We create 200 versions of each application by
artificially seeding them with 200 faults. We generate and
execute 5000-8000 smoke test cases (enough to be run in
one night) using the structure of each application. In all, we
report results of more than 5000×200×4 = 4, 000, 000 test
runs. Our results show that (1) short GUI smoke tests with
certain test oracles are effective at detecting a large num-
ber of faults, (2) there are classes of faults that our smoke
test cannot detect, (3) short smoke tests execute a large per-
centage of code, and (4) the entire smoke testing process is
feasible to do in terms of execution time and storage space.

The specific contributions of this work include:
• A first empirical study evaluating the strengths and

weaknesses of GUI smoke tests.
• Five new test oracles for GUI smoke tests, their relative

strengths and costs.
• Relationship between GUI smoke tests and coverage

of the underlying code.
• Classification of faults that can and cannot be detected

by GUI smoke tests.

In the next section, we present background and related
work. In Section 3, we give a brief overview of the DART
process, and in Section 4 an overview of all its parts rele-
vant to the experiments described in Section 5. Finally, we
conclude in Section 6 with a discussion of future work.

2 Background & Related Work

Nightly/daily builds and smoke tests [18, 21, 32]
have become widespread [34, 15]. Software that use
daily/nightly builds and smoke tests include WINE [9],
Mozilla [6], AceDB [2], and openwebmail [7]. During
nightly builds, a development version of the software is
checked out from the source code repository tree, com-
piled, linked and “smoke tested” (“smoke tests” are also
called “sniff tests” or “build verification suites” [19]). Typ-
ically unit tests [34] and sometimes acceptance tests [12]
are executed during smoke testing. Such tests are run
to (re)validate the basic functionality of the system [19].
Smoke tests exercise the entire system; they don’t have to
be an exhaustive test suite but they should be capable of
detecting major problems. A build that passes the smoke
test is considered to be “a good build”. Bugs are reported,
usually in the form of e-mails to the developers [34], who

can quickly resolve the bugs. Frequent building and re-
testing is also gaining popularity because new software de-
velopment processes (XP [14, 35]) advocate a tight devel-
opment/testing cycle [33]. A number of tools support daily
builds; some of the popular tools include CruiseControl [1],
IncrediBuild [3], Daily Build [8], and Visual Build [5].

Four different approaches are used to handle GUI soft-
ware when performing smoke testing. First, and most pop-
ular, is to perform no GUI smoke testing at all [19], which
either leads to compromised software quality or expensive
GUI testing later. Second is to use test harnesses that “by-
pass” the GUI and invoke methods of the underlying busi-
ness logic as if initiated by a GUI. This approach not only
requires major changes to the software architecture (e.g.,
keep the GUI software “light” and code all “important” de-
cisions in the business logic [20]), it also does not perform
testing of the end-user software. Third is to use existing
tools to do limited GUI testing [13, 36]. Examples of some
tools used for GUI testing include extensions of JUnit such
as JFCUnit, Abbot, Pounder, and Jemmy Module1 and cap-
ture/replay tools [17] such as WinRunner2 that provide very
little automation [23], especially for creating smoke tests.
Developers/testers who employ these tools typically come
up with a small number of smoke tests [21]. Finally, the
most comprehensive and complete solution is provided by
our own work [24] that addresses the needs of smoke test-
ing of software applications that have a GUI. We give an
overview of our approach next.

3 Overview of DART
As discussed in Section 1, the main design goal of DART

is to automate GUI smoke testing. We have developed the
DART process that realizes this automation. In this section
we present the steps of the DART process. The goal is to
provide the reader with a high-level picture of the operation
of DART. These steps are also summarized in Table 1. Note
that the names of the modules of DART are highlighted in
bold-face and described later in Section 4.

1. The developer (or test designer) identifies the AUT.
2. DART analyzes the AUT’s GUI structure (using the

GUI ripper) by automatically traversing all the win-
dows of the GUI and identifying all the GUI objects
(widgets) and their properties. It then computes the
total number of possible smoke test cases (event se-
quences).

3. The developer chooses a subset of these test cases by
specifying the number of test cases of each length (i.e.,
the number of events in the sequence) to generate. We
advocate running at least all test cases of length 1 and
2 for smoke testing. In our experiments (Section 5),

1http://junit.org/news/extension/gui/index.htm
2http://mercuryinteractive.com



Phase Step Developer/tester DART
Identification 1 Identify AUT  

Analysis 2  Analyze AUT’s GUI

3 Choose test cases

4  Generate test cases 

5  Generate expected output

Modification 6 Modify AUT  

7  Instrument code

8  
Execute test cases and 
compare with expected 
output

9  Generate execution report

10  Generate coverage report

11  E-mail reports

12
Examine reports and fix 
bugs

 

13
Specify additional test 
cases

 

14  
Generate additional test 
cases

15  
Generate additional 
expected output

Test 
Generation

Analysis and 
Regeneration

Regression 
Testing

Table 1. The DART Process

we generate 5000-8000 test cases since they can easily
be executed in one night.

4. DART uses an automated test case generator to gen-
erate the smoke test cases.

5. A test oracle generator is used to automatically create
an expected output for the next version of the AUT.
The smoke test suite for subsequent versions is now
ready.

6. The development team modifies the AUT.
7. The operating system’s task scheduler launches

DART, which in turn launches the AUT. DART auto-
matically instruments the AUT’s source code using a
code instrumenter (e.g., Instr [4]).

8. Test cases are executed (using a test case executor) on
the AUT automatically and the output is compared to
the stored expected output (from Step 5).

9. An execution report is generated in which the executed
test cases are classified as successful or unsuccessful.

10. The coverage and bug reports are generated.
11. These results are e-mailed to the developers.
12. The next morning, the developers examine the reports

and fix the bugs. They also examine the unsuccessful
test cases. Note that a test case may be unsuccessful
because (1) it crashed the software, (2) the expected
output did not match the actual output; if the expected
output is found to be incorrect, then the test oracle
generator is used to automatically update the expected
output for the modified AUT, or (3) an event in the

GUI
Representation

Objects & Properties & Values

Test case
Generator

Test Oracle
Generator

Coverage
Evaluator

Code
Instrumenter

Test
Executor

GUI Ripper

Figure 1. Modules of DART

test case had been modified (e.g., deleted) preventing
the test case from executing. These test cases can no
longer be run on the GUI and are deleted.

13. Using the coverage reports, the developers identify
new areas in the GUI that should be tested. They spec-
ify additional test cases to generate.

14. The new test cases, and
15. oracle information are generated.

Steps 7 through 15 are repeated throughout the devel-
opment cycle of the AUT.

The developer may also include code-based smoke test
cases in the above cycle to improve overall test effective-
ness.

4 Modules of DART
We now briefly describe each module mentioned in the

previous section. Note that due to lack of space, we provide,
for each module, only the details needed to understand the
experiments and interpret the results. Additional details and
algorithms are available in [24, 22, 28, 30, 29].

Representation: Figure 1 shows the primary modules
of DART and their interaction. All modules interact with
each other via the GUI representation. We represent a GUI
as a set of objects O = {o1, o2, . . . , om} (e.g., widgets,
windows, frames) and a set of properties P = {p1, p2, . . . ,
pl} of those objects (e.g., background-color, font,
caption). Each GUI uses certain types of objects with
associated properties; at any specific point in time, we rep-
resent the state of the GUI in terms of all the objects that it
contains, and the values of all their properties.

GUI ripper: “GUI Ripping” is a dynamic process in
which the software’s GUI is automatically “traversed” by
opening all its windows and extracting all their widgets



(GUI objects), properties, and values. The extracted infor-
mation is then verified by the test designer.

Test Case Generator: Users interact with the GUI by
performing events {e1, e2, . . . , en} on some widgets, such
as clicking on a button, opening a menu, and dragging a
file. During GUI testing, test cases, consisting of sequences
of events are executed on the GUI.

The output of the GUI ripper is used to automatically
generate event-flow graphs (EFG), which are used as the
basis for generating test cases. Intuitively, an EFG contains
nodes that represent events and edges. An edge from node
n1 to n2 means that the event represented by n2 can be per-
formed immediately after the event represented by node n1.
To generate test cases, we start from a known initial state of
the GUI and use a graph traversal algorithm, enumerating
the nodes during the traversal, on the EFGs. If the event
requires text input, e.g., for a text-box, then its value is read
from a database, initialized by the software developer. Se-
quences of events e1; e2; . . . ; en are generated as output that
serve as a GUI test case.

Definition: A test case for a GUI is e1; e2; e3; ...; en where
ei+1 can be performed immediately after ei. 2

We then classify event sequences by length. Length 1
event sequences consist of all events in the software’s EFGs.
Length 2 event sequences are all possible subsequences of
the form < ei, ej >, where there is an edge from ei to ej in
an EFG. For smoke testing, we require that all length 1 and
2 event sequences be executed although the final choice of
smoke tests lies with the developer. Note that all test cases
of length 1 and 2 execute all GUI events and all pairs of
events. Some events in the GUI may not be executable us-
ing length 1 and 2 event sequences because of the structure
of the GUI, e.g., they may be in a window that needs several
events to be executed before it can be opened. In such cases,
we generate a prefix sequence of events to launch the win-
dow. The final test case is obtained by concatenating the
prefix with the event sequence of interest. We will ignore
the length of the prefix in the rest of the paper. In our ex-
periments, we will also ignore the code coverage and faults
detected, if any, by the events in the prefix.

Test Executor: The test executor is capable of executing
an entire test suite automatically on the AUT. It performs
all the events in each test case and invokes the test oracle to
compare the actual output with the expected output. Events
are triggered on the AUT using the native OS API. For ex-
ample, the windows API SendMessage is used for windows
applications and Java API doClick for Java applications.

Test Oracle Generator: As mentioned earlier, test ora-
cles are used to determine whether or not the AUT executed
correctly during testing. In GUIs, we design test oracles that
compare the expected output (called oracle information) in-
cluding objects, properties, and values to the actual GUI

output. Our model of the GUI in terms of objects/properties
is used to represent the oracle information of the GUI after
the execution of an event.

For any test case < e1; e2; . . . en >, the oracle infor-
mation is represented by a sequence of states S1; S2; . . . Sn

that capture the complete (or partial) state of the GUI after
each event. Depending on the resources available, DART
can collect and compare oracle information using the fol-
lowing parts of the GUI.3

Complete: all the properties of all the objects of all the
windows in the GUI.

Complete visible: all the properties of all the objects of all
the visible windows in the GUI. Note that by the term
“visible windows”, we mean all windows for which
the isVisible property is TRUE. Windows that are
“hidden” behind other overlapping windows are also
considered visible, if their isVisible property is
TRUE.

Active window: all the properties of all the objects of the
active window in the GUI.

Widget: all the properties of the object (in the current win-
dow) on which the current event is being performed.

Later, in the experiments (Section 5), we show that hav-
ing more details in the oracle information improves the
overall test effectiveness of a smoke test suite.

The comparison of the expected and actual states can be
done as frequently as once after each event of the test case
or less frequently, e.g., after the last event. We expect that
reducing the frequency of comparison will reduce the test
case execution time as well as space required to store the
oracle information (since only the relevant state(s) of the
GUI need(s) to be stored). In Section 5, we show that the
fault-detection effectiveness of the test suite is not impacted
by changing the frequency of comparison.

Using the combination of oracle information and fre-
quency of comparison, we define 5 types of oracles for
GUI smoke testing. Oracles L1, L2, L3, and L4 represent
comparing the widget, active window, complete visible, and
complete oracle information after each event of the test case
with the actual GUI respectively. Oracle L5 represents com-
paring the complete oracle information after the last event
of the test case with the actual GUI.

Coverage Evaluator and code instrumenter: Al-
though smoke tests are not meant to be exhaustive, we feel
that coverage evaluation serves as a useful guide to addi-
tional testing, whether it is done for the next build or for
future comprehensive testing. In DART, we evaluate con-
ventional code coverage in terms of statements, branches,
methods, classes, packages, and files. To collect the cover-
age information, we use source-level code instrumenters.

3The need for these levels is explained in detail in earlier reported work
[28, 26].



5 Experiments

Having described the DART process and the modules
that make up DART, we now present details of experiments
using actual software subjects and smoke test cases to study
important characteristics of GUI smoke test cases. We are
interested in answering the following questions:

1. What is the fault detection ability of GUI smoke tests?
2. Are GUI smoke tests especially suited to detect certain

classes of faults? Are there classes of faults that cannot
be detected by smoke test cases?

3. Does the level of detail in the oracle information have
any impact on the fault detection effectiveness of a test
case?

4. During test case execution, is there any benefit to fre-
quent comparison of expected and actual states?

5. What is the relationship between smoke test cases and
the coverage of the underlying code? Since smoke test
cases are short (1-3 events), are there large parts of the
code that remain unexecuted?

5.1 Experimental Process

To answer the questions we follow the following steps:

1. Choose software subjects with GUI front-ends,
2. Generate smoke test cases and associated oracle infor-

mation,
3. Use fault seeding techniques to artificially seed faults

in the software subjects,
4. Execute all test cases on the software subjects. During

execution, compare the actual GUI state to the oracle
information,

5. Measure the variables: (1) Number of Faults Detected:
We record the total number of faults detected by test
case, the level of detail that was needed to detect the
fault, and the position in the test case when the fault
was detected. (2) Code Coverage: For each test case,
we record statement, branch, method, class, package,
and file coverage.

6. Each test case and oracle has different time and space
requirements, primarily because of the level of detail
of the oracle information and frequency of compari-
son. We measure the space required to store different
levels of oracle information and time to compare.

Subject Applications: The subject applications for our
experiments are part of an open-source office suite devel-
oped at the Department of Computer Science of the Uni-
versity of Maryland by undergraduate students of the se-
nior Software Engineering course. It is called TerpOf-
fice4 and consists of six applications out of which we use

4www.cs.umd.edu/users/atif/TerpOffice

Subject Application Windows Widgets LOC Classes Methods Branches
TerpWord 11 132 4893 104 236 452

TerpSpreadSheet 9 165 12791 125 579 1521
TerpPaint 10 220 18376 219 644 1277
TerpCalc 1 92 9916 141 446 1306
TOTAL 31 609 45976 589 1905 4556

Table 2. TerpOffice Applications

Subject Application 1 2 3 1 2 3
TerpWord 126 1140 12461 126 1140 3880

TerpSpreadSheet 162 2742 56076 126 2742 2318
TerpPaint 215 8077 502133 215 8077 0
TerpCalc 87 7366 623702 87 7366 0
TOTAL 590 19325 1194372 590 19325 6198

Potential Test Cases
Length Length

Actual Generated Test Cases

Table 3. Number of Smoke Tests Generated

four – TerpWord (a small word-processor), TerpSpread-
Sheet (a spreadsheet application), TerpPaint (an image edit-
ing/manipulation program), and TerpCalc (a scientific cal-
culator with graphing capability). They have been imple-
mented using Java. Table 2 summarizes the characteristics
of these applications. Note that these applications are fairly
large with complex GUIs. The number of widgets listed in
the table are the ones on which user events can be executed
(e.g., text-labels are not included).

Test Cases: We used DART to automatically generate
5000-8000 smoke test cases for each application. The ex-
act number of test cases for each application is shown in
Table 3. The table shows, for each application, the total
number of test cases that could have been generated and the
number of test cases that were actually generated. We chose
not to generate all length 3 test cases for some applications
since we would not be able to run them on one machine in
one night, thus defeating the purpose of smoke testing. The
total number of test cases for all four applications was 590,
19325, 6198 of lengths 1, 2, and 3 respectively. In practice,
if multiple machines are available, the test cases could be
distributed. Another way to reduce time is to partition the
test suite and run one partition each night.

Oracle Information: We used an automated tool (de-
tails beyond the scope of this paper) to generate the oracle
information. The key idea of the technique employed by
this tool is that it automatically executes a given test case
on a software and captures its state (widgets, properties, and
values) automatically. By running this tool on the four sub-
ject applications for all test cases, we obtained the oracle
information. Note that the tool extracted all four levels of
oracle information.

Fault Seeding: Fault seeding is a well-known tech-
nique used to evaluate fault detection techniques. During
fault seeding, known faults are artificially introduced into



Reported Fault in Bug Database Corrected Code
if (contentArea.getSelectedText() != null) if (contentArea.getSelectedText() == null)

(a) (b)

Fault #1 Fault #2
if (orientation != SwingConstants.HORIZONTAL) if(!printJob.printDialog())

(c) (d)

Table 4. Seeding GUI Faults

the subject programs. Care is taken so that the artificially
seeded faults are similar to faults that naturally occur in real
programs due to mistakes made by developers [31, 16].

We define a GUI fault as one that manifests itself on the
visible GUI at some point of time during the software’s ex-
ecution. We seeded 200 faults in the TerpOffice applica-
tions to create 200 faulty versions for each application. We
adopted an observation-based approach to seed the faults,
i.e., we observed “real” GUI faults in TerpOffice. During
the development of TerpOffice, a bug tracking tool called
Bugzilla5 was used by the developers to report and track
faults in TerpOffice version 1.0 while they were working
to extend its functionality and developing version 2.0. The
reported faults are an excellent representative of faults that
are introduced by developers during implementation. Ta-
ble 4(a) shows an example of a fault reported in our Bugzilla
database and Table 4(b) shows the (later) corrected segment
of the same code. Table 4(c) and 4(d) show examples of
faults seeded into this code.

We seeded exactly one fault in each version. This model
is useful to avoid fault-interaction, which can be a thorny
problem in these types of experiments and also simplifies
the computation of the variable “Number of Faults De-
tected”; now we can simply count the faulty versions that
led to a mismatch between the executing GUI state and the
oracle information.

Test Executor: We executed all the smoke tests on all
200 versions of the subject applications. When each appli-
cation was being executed, we extracted its run-time state
and compared it with the stored oracle information. A mis-
match was reported as a fault. Note that we ignored widget
positions during this process since the windowing system
launches the software in a different screen location each
time it is invoked. Table 5 shows the total number of ob-
jects (O) and their properties (P) that were checked by all
the smoke test cases. Note that the oracle L1 examined only
100K GUI widgets during the execution. L4, on the other
hand, examined more than 100 times that number. As can
be imagined, L4 takes longer to execute and requires more
space to store the expected output.

Each test case required approximately 5 seconds to exe-
cute. The time varied by application and the number of GUI
events in the test case. The total execution time for each

5bugzilla.org

Oracle
Subject Application O P O P O P O P O P

TerpWord 28K 333K 1016K 12192K 1824K 21889K 1843K 22121K 370K 4437K
TerpSpreadSheet 21K 253K 1115K 13385K 2211K 26532K 2604K 31243K 626K 7507K

TerpPaint 27K 322K 2801K 33607K 3243K 38921K 3271K 39254K 949K 11382K
TerpcCalc 24K 288K 2361K 28337K 2365K 28385K 3146K 37756K 951K 11417K

TOTAL 100K 1196K 7293K 87521K 9644K 115726K 10865K 130375K 2895K 34743K

L5L4L3L2L1

Table 5. Number of Objects and Properties

Subject Application Total Execution Time (sec)
TerpWord 416047
TerpSheet 309411
TerpPaint 129756
TerpCalc 120200
TOTAL 975414

Table 6. Total Execution Time

application is shown in Table 6. The execution included
launching the application under test, replaying GUI events
from a test case on it and analyzing the resulting GUI states.
The analysis consisted of recording the actual GUI states of
the faulty version and determining the result of the test case
execution. The test cases executed on four machines (Pen-
tium 4, 2.2GHz, each with 256MB RAM) simultaneously
for almost a week. Although much of the execution was au-
tomated, we had to restart some machines (and test scripts)
because of problems with the JVM.

5.2 Threats to Validity
Threats to external validity are conditions that limit the

ability to generalize the results of our experiments to indus-
trial practice. We have used four GUI-based Java applica-
tions as our subject programs. Although they have different
types of GUIs, this does not reflect a wide spectrum of pos-
sible GUIs that are available today. We note that all our
applications are extemely GUI-intensive, i.e., most of the
code is written for the GUI. The results will be different for
applications that have a complex underlying business logic
and a fairly simple GUI. Moreover, all our subject programs
were developed in Java. Although our abstraction of the
GUI maintains uniformity between Java and Win32 appli-
cations, the results may vary for Win32 applications.

Threats to internal validity are conditions that can affect
the dependent variables of the experiment without the re-
searcher’s knowledge. We have used an observation-based
approach for seeding faults in the GUI applications. This
may have affected the detection of faults by the test cases.
Faults not exercised by any test case will go undetected.
We made an effort to make the faults as close as possible to
naturally occurring faults. Some of these faults might not
manifest themselves through the GUI.

Threats to construct validity arise when measurement in-
struments do not adequately capture the concepts they are
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Figure 2. Number of Faults Detected

supposed to measure. For example, in this experiment one
of our measures of cost is time. Since GUI programs are
often multi-threaded, and interact with the windowing sys-
tem’s manager, our experience has shown that the execution
time varies from one run to another. One way to minimize
the effect of such variations is to run the experiments multi-
ple number of times and report average time.

The results of our experiments, presented next, should be
interpreted keeping in mind the above threats to validity.

5.3 Results

Total faults detected. Conclusion: Smoke tests are able
to detect more than 60% of the faults for most applica-
tions. The column graph in Figure 2 summarizes our re-
sults. The x-axis shows the subject applications and the y-
axis shows the total number of faults detected. The figure
shows that, with the exception of TerpSpreadSheet, smoke
tests detected a large number of faults.

We visually examined the execution of the smoke tests
on TerpSpreadSheet and found that the weakness was in
our test oracle, not the smoke test cases. The smoke test
cases executed the lines in which the faults were seeded and
the faults manifested themselves on the screen. However,
our test oracle did not examine the attributes (e.g., contents,
style, font) of the individual cells of the spreadsheet, thereby
leading to missed faults. In the future, we will develop new,
specialized test oracles for TerpSpreadSheet to detect these
missed faults. These test oracles will be domain dependent
(i.e., for TerpSpreadSheet); we will develop mechanisms to
incorporate them into DART.

There were other faults that could not be detected be-
cause they were seeded in dead code. Some other faults
were seeded in code that was part of exception handlers.
Our current smoke tests do not specifically target execp-
tions, although we are extending the test cases to use fault

injection [10] techniques that would lead to exceptions.
Smoke tests and code coverage. Conclusion: Short

smoke tests execute a large percentage of code. In order to
better understand our above results, we examined the code
coverage of the smoke tests. The results are shown in Fig-
ure 3. The figure shows four line graphs, one for each ap-
plication. There are 5 lines in each graph for statement,
branch, method, class, and file coverage. The x-axis shows
the length of the test case and the y-axis shows the per-
centage coverage. The results show that our smoke tests
were able to execute more than 60% of the statements, 40%
of branches, 60-75% methods, and 75% classes. Note that
some percentage of code is executed even though no events
(test case length 0) are performed on the GUI.

We manually examined the code to find reasons why
some parts were not covered. These reasons also helped
us to identify classes of faults and their locations that we
could not detect. First, we found that that we were unable
to execute code related to widgets (e.g., the close button in
all windows) that were not ripped by GUI Ripper. We are
currently extending the ripper to handle these widgets. Sec-
ond, as mentioned earlier, we did not generate exceptions,
which accounted for a large percentage of missed code. We
are currently studying how to generate exceptions using our
smoke test cases. Third, since our test cases are replayed
using an API that directly communicates with the applica-
tion, mouse and keyboard events are not generated during
replay. Event handlers (e.g., right-click event handler) for
such events are not executed. Fourth, since we run our test
cases in a controlled environment, i.e., we reset the environ-
ment variables (e.g., list of recently accessed files) before
executing each test case. Code related to these variables is
never executed. Finally, there are events in the GUI that
are enabled only after some other event sequence has been
executed. If the required event sequence is longer than 3
events, our smoke test cases cannot execute code associated
with the disabled events.

Faults detected and test case length. Conclusion:
Longer event sequences are able to detect more faults than
shorter ones. We noted from the code coverage analysis
that length 2 and 3 event sequences don’t substantially add
to the code coverage. We wanted to see whether the length
has any impact on fault-detection effectiveness. Our results
are summarized in Figure 4. The x-axis shows the length
of the test case and the y-axis shows the number of faults.
There are four lines in the graph, one for each application.
The results show that the number of faults detected grows
with test case length. For TerpSpreadSheet, we detected
less faults with length 3 test cases than with length 2 test
cases because we had chosen a small subset of length 3 test
cases for smoke testing (Table 3).

Faults detected, test oracle, and test case length. Con-
clusion: The test oracle has a significant impact on the
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Figure 3. Code Coverage of the Smoke Tests
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Figure 4. Faults vs. Test Length

fault-detection effectiveness of the smoke tests. Our lack
of ability to automatically recognize the TerpSpreadSheet
faults led us to study the effects of test oracles on the overall
effectiveness of the smoke test cases. We show the results
in Figure 5. The figure contains four line graphs, one for
each subject application. For each graph, the x-axis shows
the length of the test case, and the y-axis shows the number
of faults detected. There are 5 lines in each graph, one for
each oracle. The results show that oracle L1 was least ef-
fective at fault detection, L2 was better than L1, and L3, L4,
and L5 were the best and they all performed equally well.
Table 5 provides some explanation for this behavior. Exam-
ining Table 5, we see that L2 examined significantly more
objects than L1 during test case execution. L3 and L4 exam-
ined almost the same number of objects because our subject
applications don’t have many invisible windows. L5 per-
formed as well as L3 and L4 because of the nature of faults
and the GUIs. Most of the faults were “persistent”, i.e., once
they manifested themselves, they remained “detectable” un-
til the end of test case execution, thereby enabling L5 to
detect them.

Smoke testing cost. Conclusion: L5 provides the best
combination of cost and fault-detection effectiveness. Given
the above results of test oracles in terms of fault-detection
effectiveness, we wanted to observe the cost of deploying
each oracle, in terms of time and disk space. Note that we
were unable to accurately measure the time for L1. Since
the Java Swing API did not allow direct access to the cur-
rent widget and its properties, our implementation of L1
required accessing the active window, travering the wid-
gets and locating the current widget, and then examining
its properties. The time that we obtained was more than
that required for L2, which we feel is misleading. Hence
we omit reporting the time required for L1. The results are
summarized in Tables 7 and 8. The results clearly show
that L5 was much cheaper than L2, L3, and L4. As Table 7
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Figure 5. Fault Detection by Oracle

Subject Application L2 (ms) L3 (ms) L4 (ms) L5 (ms)
TerpWord 22933 51526 78293 32010

TerpSpreadSheet 18009 33206 59588 21263
TerpPaint 274000 622739 1034536 398611
TerpCalc 89317 103612 126543 44104
TOTAL 404259 811083 1298960 495987

Table 7. Time Required for Each Oracle

L1(MB) L2 (MB) L3 (MB) L4 (MB) L5 (MB)
Subject Application

TerpWord 0.21 7.63 13.71 13.85 2.78
TerpSpreadSheet 0.24 12.63 25.04 29.49 7.09

TerpPaint 0.29 29.89 34.61 34.91 10.12
TerpCalc 0.34 33.19 33.25 44.22 13.38
TOTAL 1.08 83.34 106.61 122.47 33.37

Table 8. Space Required for Each Oracle

shows, the time needed to execute L5 was comparable to
that of L2 and the space required was less than that required
by L2; L5 detected many more faults than L2.

6 Conclusions
In previous work, we had presented the design of DART,

that automatically smoke tested GUI event interactions. In
this paper, we extended our previous work and demon-
strated, via experiments, several characteristics of GUI
smoke tests. We also combined smoke tests with different
types of test oracles. Our experimental subjects consisted of
four GUI-based applications. We generated 5000-8000 test
cases for each application. We showed that (1) short GUI
smoke tests with certain test oracles are effective at detect-
ing a large number of faults, (2) there are classes of faults
that our smoke test cannot detect, (3) short smoke tests ex-
ecute a large percentage of code, and (4) the entire smoke
testing process is feasible to do in terms of execution time
and storage space.

We are currently designing a custom test orcle for Terp-
SpreadSheet that will examine the contents of the individual
cells, hence helping to improve the fault-detection effective-
ness of the smoke tests for that application. In the future,
we will design an interface for DART that will allow for
the definition of such domain-specific test oracles. We will
study fault injection techniques for GUIs and incorporate
them into our smoke test cases. We will also examine the
effects of the execution environment on the fault detection
effectiveness of the smoke test cases.

We feel that the GUI-based smoke test cases should be
used together with code-based smoke tests. We will study
the characteristics of both these types of test cases, evaluate
their strengths/weaknesses and devise a mechanism to com-
bine their strengths. We will develop techniques to partition



large smoke test suites, thus enabling the test designer to
run one part each night, and combine the individual results.
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