
A Planning-based Approach to GUI Testing∗

Atif M. Memon†, Martha E. Pollack, Mary Lou Soffa
Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260 USA
+1 412 624-8850

{atif, pollack, soffa}@cs.pitt.edu

Abstract
Graphical user interfaces (GUIs) have become nearly
ubiquitous as a means of interacting with software sys-
tems. The widespread use of GUIs is leading to the
construction of more and more complex GUIs. With
the growing complexity comes challenges in testing the
correctness of GUIs and the underlying software. Some
of the important challenges include test-case generation,
test-oracle creation, and regression testing. In this pa-
per, we present the design of Planning Assisted Tester
for grapHical user interface Systems (PATHS) – a re-
search project designed with the primary goal of facili-
tating the automation of GUI testing. PATHS uses a
new GUI testing technique based on user event interac-
tion sequences. The key idea is to test the GUI software
using interactions most likely to be exercised in actual
use. A novel feature of PATHS is its reliance on AI
plan generation techniques to generate testing informa-
tion. Given a set of operators, an initial state and a
goal state, a planning system produces a sequence of
operators that transforms the initial state to the goal
state. Using PATHS, GUI test designers can gener-
ate likely user interaction sequences by specifying typ-
ical goals that users of the GUI software might have.
PATHS first analyzes the GUI and derives hierarchical
planning operators from the actions in the GUI. The
test designer determines the preconditions and effects
of the hierarchical operators, which are then input into
a planning system. With the knowledge of the GUI and
the way in which the user will interact with the GUI,
the test designer creates sets of initial and goal states.
Given these initial and final states of the GUI, a hierar-
chical planner produces plans, or a set of test cases, that
enable the goal state to be reached. Our technique has
the additional benefit of associating oracle information
with the test cases automatically. We implemented our
technique by developing the GUI analyzer and extend-

∗ Partially supported by the Air Force Office of Scientific
Research (F49620-98-1-0436) and by the National Science
Foundation (IRI-9619579) (EIA0906525).
† Partially supported by the Andrew Mellon Pre-doctoral
Fellowship, awarded by the Andrew Mellon Foundation.

ing a planner. We generated test cases for Microsoft’s
WordPad to demonstrate the viability and practicality
of the approach.

Keywords
GUI testing, application of planning, GUI regression
testing, automated test-case generation,

1 Introduction
Testing is a critical component of the software develop-
ment process and is required to ensure the safety, ro-
bustness and usability of software. Unfortunately, it is
also labor and resource intensive, accounting for 50%-
60% of the total cost of software development [9, 29].
Hence, there has been significant research aimed at au-
tomating the testing process. Although some success
has been achieved, many problems remain. In particu-
lar, it is not yet clear how to automate the testing of
user interfaces, which constitute an increasingly large
portion of software systems, as much as 45-60% of the
total software code [21, 25]. The most popular form of
user interfaces are direct-manipulation interfaces called
Graphical User Interfaces (GUIs) [26]. GUIs have be-
come an important and accepted way of interacting with
today’s software. As GUIs become more and more pop-
ular, they are increasingly being used in critical systems
[35] and testing them is necessary to avert catastrophes
[26].

Testing the correctness of a GUI is difficult for a num-
ber of reasons. First, the space of possible interactions
with a GUI is enormous. Each sequence of GUI actions
can result in a different state of the combined system
(i.e., the GUI and underlying software). In general, a
GUI action might have different results in each state,
and thus need to be tested in a very large number of
states: the amount of testing required can be enormous
[34]. Related to this is the fact that measures of cov-
erage that have been defined for testing conventional
software systems do not work well for GUIs. For conven-
tional software, coverage is measured using the amount
and type of underlying code exercised. In testing GUIs,
while one must still be concerned with how much of the
code is tested, there needs also to be significantly in-
creased focus on the number of different possible states

in which each piece of code is exercised. Existing metrics
do not allow one to say whether a GUI has been “well-
enough” tested. As a result, GUI testing often relies on
extensive beta testing: for example, Microsoft released
almost 400,000 beta copies of Windows95 targeted at
finding program failures [15].

GUI testing involves several steps. Initially, a set of test
cases must be generated. This is particularly challeng-
ing for GUI testing, because of the difficulties mentioned
above: the set of possible test cases is huge, and con-
ventional metrics for selecting “good” test case sets do
not apply. After test cases are constructed, they must
be executed: this is when the actual “testing” occurs,
to check whether the GUI is performing correctly. An
incorrect GUI state can lead to an unexpected screen,
making further execution of the test case useless because
events in the test case might not match the correspond-
ing GUI components on the screen. Consequently, the
execution of the test case must be terminated as soon
as an error is detected. Verification checks, performed
by using test oracles, must therefore be inserted after
each step, to catch errors as soon as they occur. Yet
another challenge is posed by regression testing, i.e., up-
dating the set of test cases and the verification check af-
ter changes are made to the GUI during development or
maintenance. Regression testing presents special chal-
lenges for GUIs, because the input-output mapping of-
ten does not remain constant across successive versions
of the software [24].

Current GUI testing practices involve a significant
amount of manual effort on the part of the test designer.
Most test designers employ tools that automate certain
aspects of the testing cycle. Most common among such
tools are capture/playback tools [13, 11] used to cap-
ture the user events and GUI screens during an inter-
active session. The recorded sessions are later played
back whenever it is necessary to recreate the same GUI
states. These tools generally store information at a low
level of abstraction, capturing actual mouse positions,
button clicks and storing bit-maps. Representing the
information at such a low level of abstraction makes
it difficult to tailor the recorded session for other test
cases. A popular alternative to using capture/playback
tools is to program a test case generator. Programming
requires that the test designer program all possible deci-
sion points present in the GUI. However, this approach
is time consuming, and is susceptible to missing im-
portant GUI decisions. Moreover, the expected output
must also be determined by the programmer.

In this paper, we present the design of Planning Assisted
Tester for grapHical user interface Systems (PATHS) – a
research project designed with the primary goal of facil-
itating the automation of GUI testing. PATHS is based
on planning – a well developed and used technique in

Artificial Intelligence (AI). Given a set of operators, an
initial state and a goal state, a planning system pro-
duces a sequence of operators that will transform the
initial state to the goal state. The key idea of using
planning as the core of PATHS is that the GUI test de-
signers will often find it easier to specify typical goals
that users of the GUI software might have than to spec-
ify sequences of GUI actions that users might perform
to achieve those goals. Thus we cast GUI testing as an
instance of planning. PATHS has the goals of gener-
ating test cases automatically, incorporating oracle in-
formation into the testing process, and then automati-
cally generating a regression test suite when re-testing
is done.

The main contributions of PATHS are as follows.

• Most of the GUI testing tasks are automated so
that the test designer’s work is simplified as much
as possible.

• The overall testing cycle defined by PATHS is effi-
cient since software testing is usually a tedious and
expensive process.

• PATHS is robust in that whenever the GUI enters
an unexpected state, the testing algorithms detect
the error state immediately, recover from it and
report all information necessary to debug the GUI.

• The testing information generated by PATHS is
portable. Test information (e.g., test cases, oracle
information, coverage report, error report) gener-
ated and/or collected on one platform is usable on
all other platforms on which the GUI can be exe-
cuted.

• Finally, PATHS is general enough to be applied to
a wide range of GUIs.

In the next section, we present a high-level overview of
the design of PATHS. Section 3 presents a discussion
of AI planning. In Section 4, we show how PATHS
automatically models the GUI hierarchically so that a
restricted form of hierarchical planning can be applied
to efficiently generate testing information. In particular,
we show in Section 5 how the hierarchical model is used
to generate test cases. In Section 6, we also indicate
how the hierarchical model is used to create test oracles
and for regression testing. We present a discussion on
related work in Section 7 and conclude in Section 8.

2 Overview of PATHS
PATHS uses a new GUI testing technique based on user
event interaction sequences. The key idea is to test the
GUI software using interactions most likely to be exer-
cised in actual use. The primary function of PATHS is

to generate likely user interaction sequences and then to
test the GUI using these sequences (test cases) as input.
A novel feature of PATHS is its reliance on AI plan gen-
eration techniques to generate test cases. The central
component of PATHS is a planning based test case gen-
erator. In addition to planning algorithms, PATHS is
supplemented with techniques and algorithms for effec-
tive regression testing, coverage evaluation, and incor-
poration of domain specific knowledge. The test case
generator is given a description of the GUI and test sce-
narios consisting of pairs of initial and goal states as
input, and it generates test cases as output. The GUI
description is assumed to provide a complete working of
the GUI. An oracle information augmentation tool as-
sociates additional information with each test case to be
used to verify the state of the GUI during test case ex-
ecution. Currently, the PATHS system is capable of us-
ing GUI specifications to automatically generate a test
suite, exploit the planning model to create test oracles,
execute the test cases and pinpoint errors in the GUI.
Various measures for coverage are undergoing develop-
ment. The coverage evaluation algorithms will measure
the quality of the generated test cases. The regression
testing algorithms will use results from prior testing ses-
sions to guide regression testing. Additional user sup-
plied domain information will be used for increased ef-
ficiency and effectiveness. Actual execution of the test
cases will be done by a GUI exerciser. The high-level in-
teractions between the components of PATHS are shown
in Figure 1. The ovals represent the processes that con-
trol the test case generation and execution. The outputs
include the final test suite, coverage report, and the er-
ror report. Other entities are either generated by the
components or provided as input by the test designer.

3 AI Plan Generation
PATHS makes use of planning for GUI testing. This
section gives a brief introduction to planning and the
different planning techniques.

Automated plan generation has been widely investi-
gated and used within the field of artificial intelligence.
Given an initial state, a goal state, a set of operators,
and a set of objects, a planner returns a sequence of ac-
tions (instantiated operators) to achieve the goal. Many
different algorithms for plan generation have been pro-
posed and developed. Weld presents an introduction
to least commitment planning [32] and a survey of the
recent advances in planning technology [33].

Formally, a planning problem P (Λ,D, I,G) is a 4-tuple,
where Λ is the set of operators, D is a finite set of
objects, I is the initial state, and G is the goal state.
The solution to the planning problem is a plan: a tuple
< S,O,L,B > where S are steps (instances of opera-
tors – typically represented as sets of preconditions and
effects), O are ordering constraints on the elements of

S, L are causal links representing the causal structure
of the plan, and B are binding constraints on the vari-
ables in S. Causal links are triples < Si, c, Sj >, where
Si and Sj are elements of S and c is both an effect of
Si and a precondition for Sj . Typically, the ordering
constraints only induce a partial ordering, so the set of
solutions are all linearizations of S consistent with O.

The output of the planner is a set of actions with cer-
tain constraints on the relationships among them. An
action is an instance of an operator with its variables
bound to values. One well-known action representa-
tion uses the STRIPS1 language [8] which specifies op-
erators in terms of parameterized preconditions and ef-
fects. STRIPS was developed more than twenty years
ago, and has limited expressive power. For instance, no
conditional or universally quantified effects are allowed.
Although, in principle, sets of STRIPS operators could
be defined to encode conditional effects, such encodings
lead to an exponential number of operators making even
small planning problems intractable. A more powerful
representation is ADL [28, 27], which allows conditional
and universally quantified effects in the operators. This
facility makes it possible to define operators in a more
intuitive manner. A more recent representation is the
Planning Domain Definition Language2 (PDDL), used
in the AIPS’98 planning competition. The goals of de-
signing the PDDL language were to encourage empirical
evaluation of planner performance, and the development
of standard sets of planning problems. The language has
roughly the expressiveness of ADL for propositions.

Recently developed planning technology based on
propositionalization of the search space has greatly in-
creased the efficiency of plan generation. A well-known
planner based on this technology is the Interference Pro-
gression Planner (IPP) [19], a system which extends
the ideas of the Graphplan system [2] for plan gener-
ation. Graphplan introduced the idea of performing
plan generation by converting the representation of a
planning problem into a propositional encoding. Plans
are then found by means of a search through a leveled
graph, in which even levels (0, 2, . . . , i) represent all the
(grounded) propositions that might be true at stage i of
the plan, and odd levels (1, 3, . . . i+1) represent actions
that might be performed at time i + 1. The planners
in the Graphplan family, including IPP, have shown in-
creases in planning speeds of several orders of magni-
tude on a wide range of problems compared to earlier
planning systems (but cf. [22]).

IPP uses ADL for the representation of actions in which
preconditions and effects can be parameterized: subse-

1STRIPS is an acronym for STanford Research Institute Prob-
lem Solver
2Entire documentation available at

http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

Test cases and
Oracle Information

from Previous
Version

GUI
Specifications

Planner based Test Case
Generator

Test Cases

Oracle
Information

Augmentation
Tool

Test Suite
(Test Cases +

Oracle Information)

GUI
Exerciser

User
Assertions

Profile
Information

Coverage
Report

Error
Report

GUI

Core

Test Case Generation

Testing

Output

Output

Output

Update for
Regression

Testing

Test
Scenarios

Regression
Testing

Algorithms

Domain
Information

Usage
Algorithms

Coverage
Evaluation
Algorithms

Figure 1: The Components of PATHS.

Up

Select

Figure 2: The Example GUI.

quent processing does the conversion to propositional
form. In fact, IPP generalizes Graphplan precisely by
increasing the expressive power of its representation lan-
guage, allowing for conditional and universally quanti-
fied effects. As is common in planning, IPP produces
partial-order plans.

Planning at one level of abstraction may be impractical
for complex systems which consist of a large number of
objects and operators. Techniques have been developed
to generate plans at multiple levels of abstraction; this is
typically called Hierarchical Task Network (HTN) plan-
ning [36, 6, 5]. In HTN planning, domain actions are
modeled at different levels of abstraction, and for each
operator at level n, one specifies one or more “methods”
at level n − 1. A method is a single-level partial plan
and an action is said to “decompose” into its methods.
HTN planning focuses on resolving conflicts among al-
ternative methods of decomposition at each level.

4 Hierarchical Model of the GUI
In order to efficiently use planning to generate test infor-
mation for GUIs, we first develop an efficient model of
the GUI, based on its structure. In this section, we show
how to create a hierarchical model of the GUI through
an example.

A GUI Example
Figure 2 illustrates a small part of the Microsoft Word-
Pad’s GUI. With this GUI, the user can load text from
files, manipulate the text by cutting and pasting, and
save the text into a file. At the highest level, the GUI
contains a menu bar that allows the user to perform two
possible actions: clicking File and clicking Edit. When
either of these are clicked, other menus open, making

other actions available to the user. We say that a user
performs a GUI action (e.g., clicks the File command),
and thereby generates a GUI event (e.g., opening up a
pull-down menu). For convenience, we sometimes also
speak of the File action, meaning the action of click-
ing File. Note that the user can also generate events
by using the keyboard, e.g., by entering text onto the
screen.

Finally, we also distinguish between two types of win-
dows: GUI windows and object windows. The former
contain only GUI components (labels, buttons, com-
mands, etc.); the “Open” window at the bottom of the
Figure 2 is an example. In contrast, object windows
display and manipulate other, non-GUI objects; an ex-
ample is the MS WordPad window that displays text.

In the example, we include a number of user actions
that involve clicking a component, e.g., clicking File or
clicking Cut. These components have their usual mean-
ings. We also provide labels for two other user actions:
Up, which involves clicking the arrow-in-a-folder icon,
and generating the event of moving one level up in the
directory hierarchy; and Select, which is used to either
enter subdirectories or select files.

Finally, Figure 3 illustrates a planning problem for the
planning-based test-case generator. The initial state,
depicted in part (a), shows the contents of a collection
of files stored in a directory hierarchy. It also shows the
contents of some of those files. The goal state is shown
in part (b) of the figure. The goal is to create a new doc-
ument, with the specified text (“This is the final text.”),
and store it in the file new.doc in the /root/public di-
rectory. Note that the goal can be obtained in various
ways. In particular, to get the text into new.doc, one
could load file Document.doc and delete the extra text,
or could load file doc2.doc and insert text, or could
create the document from scratch by typing in the text.

Deriving Hierarchical Operators
We now describe how PATHS models the GUI hierarchi-
cally thus enabling the application of hierarchical plan-
ning. The modeling process starts with PATHS creat-
ing a list of operators to be used during planning. The
simplest approach would be to list exactly one opera-
tor per GUI action. Although conceptually simple, this
approach turns out to be inefficient, and can be im-
proved upon by exploiting the GUI structure to derive
hierarchical operators that are decomposed during plan-
ning. We use two distinct forms of decomposition. In
the first, system-interaction operators are constructed
to model sequences of GUI events E1, . . . , En such that
for 1 ≤ i ≤ n − 1, Ei makes available the user action
that generates Ei+1. When these operators are used in
a plan, they are later decomposed by a process we call
mapping, which is similar to macro expansion. In the

(a)

(b)

new.doc must be
stored in /root/public

Figure 3: A Task for the Planning System; (a) the Initial
State, and (b) the Goal State.

second, abstract operators are constructed to model GUI
events that lead to sequences of GUI events which are
themselves best viewed as “sub-plans”. These opera-
tors are similar to abstract operators in HTN planning;
when they are used in a plan, they are later decomposed
by an embedded call to the planner. We give examples
of both types of operators below.

The first step in deriving the operators is to partition
the GUI events into three classes, listed below. The
classification is based only on the structural properties
of GUIs and can thus be done automatically by PATHS.

Unrestricted-focus events open GUI windows that
do not restrict the user’s focus; they merely expand
the set of GUI actions available to the user. Often
such events open menus, e.g., the events generated
by clicking File or Edit in our example.

Restricted-focus events open GUI windows that
have the special property that once invoked, they
monopolize the GUI interaction. These win-
dows restrict the the user to a specific range of
GUI actions available within the window; other
GUI actions cannot be performed until the win-
dow is explicitly terminated. An example of a
restricted-focus event is preference setting in many
GUI systems. The user clicks on Edit and then
Preferences, after which a “Preferences” window
opens. The user can them modify preferences, but
cannot interact with the system in any other way

until s/he explicitly terminates the interaction by
either clicking OK or Cancel.

System-interaction events interact with the under-
lying software. Common examples include cutting
and pasting text, saving files, etc.

Note that these three classes are exhaustive and mutu-
ally exclusive.

System-Interaction Operators
Once the GUI events have been classified, two types of
planning operators can be automatically constructed.
The first are system-interaction operators, which repre-
sent sequences of GUI actions that a user might per-
form to eventually interact with the underlying soft-
ware. More specifically, a system-interaction operator
is a sequence of zero or more unrestricted-focus events,
followed by a single system-interaction event. Consider
a part of the example GUI: a menu bar with one option
(Edit), which can be clicked to provided more options,
i.e., Cut and Paste. The complete set of actions avail-
able to the user is thus Edit, Cut and Paste. Edit gen-
erates an unrestricted-focus event, while Cut and Paste
generate system-interaction events. Using this informa-
tion, PATHS would create two system-interaction oper-
ators: Edit Cut and Edit Paste.

The use of system-interaction operators reduces the to-
tal number of operators made available to the planner,
resulting in greater planning efficiency. In our small ex-
ample from the previous paragraph, the events Edit,
Cut and Paste would be hidden from the planner; only
the system-interaction operators namely, Edit Cut and
Edit Paste, would be made available to the planner.
This event-hiding prevents generation of test cases in
which Edit is used in isolation; any test case that in-
cludes an Edit will also include an immediately follow-
ing Cut or with Paste. To overcome this restriction and
to increase coverage, Edit can be tested in isolation,
and/or additional test cases can be created by inserting
Edit at random places in the generated test cases.

When a generated test case includes system-interaction
operators, PATHS must eventually decompose those op-
erators to primitive GUI events, so that the test case
can be directly executed. Thus, PATHS keeps track of
the sequence of GUI events that corresponds to each
system-interaction operator it derives, storing this in-
formation in a a table of operator-event mappings. The
event operator table for the sub-example of the previous
paragraph is shown in Table 1.

Abstract Operators
The second type of operators that are constructed by
PATHS are abstract operators. These are created from
the restricted-focus events, which contain two parts.
The prefix of an abstract operator is a sequence of zero

Operator Name GUI Event Sequence
File New <File, New>
File Save <File, Save>
Edit Cut <Edit, Cut>
Edit Copy <Edit, Copy>
Edit Paste <Edit, Paste>

Table 1: Operator-event Mappings of the System-
interaction Operators for the Example GUI.

or more unrestricted-focus events followed by a single
restricted-focus event. As was the case with system-
interaction operators, PATHS stores an operator-event
mapping for the prefix of each abstract operator. The
suffix of an abstract operator represents the possible
events that may occur while the restricted-focus win-
dow is opened. However, the representation is only in-
direct, specifying the information that is needed for an
embedded call to the PATHS planner.

SaveAs

Save

File

File_Open

File_SaveAs
(a)

Define Abstraction

Define Abstraction

)LOHB2SHQ

6HOHFW 2SHQ

3ODQQHU

��� ���
+LJK�
/HYHO�3ODQ

6XE�3ODQ 8S

(c)

0DSSLQJ

'HFRPSRVLWLRQ

)LOH 2SHQ

Abstract Operator
Prefix: File_Open
Suffix:
•Initial State: determined at run time

•Goal State: determined at run time

•Operator List:
{Up, Select, Open, Cancel}

Abstract Operator
Prefix: File_SaveAs
Suffix:
•Initial State: determined at run time

•Goal State: determined at run time

•Operator List:
{Up, Select, Save, Cancel}

(b)

Figure 4: (a) Restricted Focus Operators: Open and
SaveAs (b) Abstract Operators, and (c) Decomposition
of the Abstract Operator

The idea behind abstract operators can be clarified with
an example. Figure 4 focuses again on a small part of

the running example from Figure 2. This time, the File
menu with two options, namely Open and SaveAs. Open
and SaveAs are both restricted-focus operators, which
cause restricted-focus windows to be opened. Here
PATHS creates two abstract operators: File Open and
File SaveAs. (For convenience, we name each abstract
operator by its prefix.) An operator-event mapping will
be created for each prefix:

File Open = <File, Open>
File SaveAs = <File, SaveAs>.

In addition, PATHS creates a suffix for each operator.
The suffix contains all the information that is required
to define a planning problem π, such that the solution
to π is a sequence of GUI events that could reasonably
occur in the current context, while the the restricted-
focus window is open. The suffix of each abstract op-
erator then is essentially a hierarchical operator, which
is decomposed during planning by a separate call to
the planner itself. The sub-plans thus produced can be
stored and reused, essentially playing the role of meth-
ods in traditional HTN planning.

Figure 4(b) shows the abstract operators that are cre-
ated for the current example. Note that the suffix con-
tains a list of operators that the planner may use in
generating a sub-plan for the restricted-window inter-
action; it also contains slots for the initial state and the
goal state of the embedded planning problem. When
the test-cases are actually being planned, they are cre-
ated one level at a time. At the highest level, a plan is
created using system-interaction operators and abstract
operators; during this stage of planning, the suffixes of
any abstract operators used in the plan will remain un-
decomposed. Subsequently, the system-interaction op-
erators and the prefixes of abstract operators will be
decomposed by direct use of the operator-event map-
pings. The suffixes of abstract operators will be decom-
posed by calls to the planner itself; by the time of these
calls, the initial and goal states for the sub-plan can be
directly derived from the high-level plan.

Part (c) of Figure 4 illustrates the decomposition pro-
cess. At the top is a high-level plan that includes the
abstract operator File Open. Its prefix is decomposed
with an operator-event mapping, to produce the first
two steps in the plan, File and Open. Its suffix is de-
composed with a call to the planner, which produces
the linear plan Up; Select; Open.

At the end of the first step of the setup phase, a set
of system-interaction and abstract operators have been
computed automatically. These are then passed to the
test designer for completion. The planning operators
returned for the complete example in Figure 2 are shown
in Figure 5(b).

GUI Events = {File, Edit,
 New, Open, Save, SaveAs,
 Cut, Copy, Paste,
 Open.Up, Open.Select, Open.Cancel, Open.Open,
 SaveAs.Up, SaveAs.Select, SaveAs.Cancel, SaveAs.Save}.

Planning Operators = {
 File_New, File_Open, File_Save, File_SaveAs,
 Edit_Cut, Edit_Copy, Edit_Paste}.

(a)

(b)

Figure 5: The Running Example GUI: (a) GUI Ac-
tions, and (b) System-Interaction Operators derived by
PATHS.

2SHUDWRU ���(GLWB&XW

3UHFRQGLWLRQV�
∃ 2EM ∈ 2EMHFWV�_�6HOHFWHG�2EM��

(IIHFWV�
∀ 2EM ∈ 2EMHFWV�_ 6HOHFWHG�2EM��⇒

$'' LQ&OLSERDUG�2EM��Λ
'(/ RQ6FUHHQ�2EM��Λ
'(/ 6HOHFWHG�2EM��

Figure 6: An Example of a GUI Planning Operator.

Completing the Planning Operators
In the second step of the setup phase, the test designer
specifies the preconditions and effects for each plan-
ning operator derived in the first step. As is standard,
the preconditions represent all the conditions that must
hold for the event represented by the operator to oc-
cur, and the effects represent the resulting changes to
the environment (i.e., the GUI and/or the underlying
software).

An example is given in Figure 6. Edit Cut is a system-
interaction operator. Its preconditions express that in
order for the user to generate the Cut event (by perform-
ing the actions EDIT followed by CUT), at least one object
on the screen must be selected (highlighted). The effects
express the facts that the selected objects are moved to
the clipboard and removed from the screen.

The language used to define the preconditions and ef-
fects of each operator is provided by the planning sys-
tem. Defining the preconditions and effects is not diffi-
cult, as much of this knowledge is already built into the
GUI structure. For example, the GUI structure requires
that Cut be made active (visible) only after an object is
selected. This is precisely the precondition defined for
our example operator (Edit Cut). Definitions of oper-
ators representing events that commonly appear across

Initial State:
isCurrent(root)
contains(root private)
contains(private Figures)
contains(private Latex)
contains(Latex Samples)
contains(private Courses)
contains(private Thesis)
contains(root public)
contains(public html)
contains(html gif)
containsfile(gif doc2.doc)
containsfile(private

Document.doc)
containsfile(Samples

report.doc)
currentFont(Times

Normal 12pt)
in(doc2.doc This)
in(doc2.doc is)
in(doc2.doc the)
in(doc2.doc text.)
isText(This)
isText(is)

isText(the)
isText(text)
after(This is)
after(is the)
after(the text.)
font(This Times Normal 12pt)
font(is Times Normal 12pt)
font(the Times Normal 12pt)
font(text. Times

Normal 12pt)
…………….
Similar descriptions for
Document.doc and report.doc

Goal State:
in(new.doc This)
in(new.doc is)
in(new.doc the)
in(new.doc final)
in(new.doc text.)
after(This is)
after(is the)
after(the final)
after(final text.)

Figure 7: Initial State and Goal State Describing the
Task of Figure 3.

GUIs, such as Cut, can be maintained in a library and
reused for subsequent similar applications.

5 Test-Case Generation
We now see how the hierarchical GUI model is used
to generate test cases. Once the hierarchical operators
have been derived, test-case generation can begin. First,
the test designer describes a typical user task by spec-
ifying it in terms of initial and goal states. Figure 7
provides an example. In the current version of PATHS,
the test designer models the initial and goal states di-
rectly. However, we plan to develop a tool that would
allow the test designer to visually describe the GUI’s ini-
tial and goal states, and would then translate the visual
representation into a planner encoding.

Once the task has been specified, the system automat-
ically generates a set of distinct test cases that achieve
the goal. An example of one such plan is shown in Fig-
ure 8.3 This is a high-level plan that must be decom-
posed. Figure 9 shows one decomposition; note that it
includes both decomposition by mapping and decompo-
sition by planning.

As we have noted before, it is important to generate al-
ternative plans for each specified task, since these corre-
spond to alternative ways in which a user might interact
with the GUI. We achieve this goal in three ways:

• We run the planner several times, each time pro-
ducing a distinct high-level plan.

3Note that TypeInText() is an operator representing a key-
board event, mentioned in “A GUI Example.” This operator has
its obvious meaning: it represents the event that occurs when the
user types the text to which its parameter is bound.

)LOHB2SHQ
�´SXEOLFµ��
´GRF��GRFµ�

)LOHB6DYH$V
�´SXEOLFµ��
´QHZ�GRFµ�

$EVWUDFW
2SHUDWRU

$EVWUDFW
2SHUDWRU

7\SH,Q7H[W
�´ILQDOµ�

6\VWHP�,QWHUDFWLRQ�
2SHUDWRU
�NH\ERDUG�

Figure 8: A Plan Consisting of Abstract Operators and
a GUI Event.

)LOHB2SHQ
�´SXEOLFµ��
´GRF��GRFµ�

)LOHB6DYH$V
�´SXEOLFµ��
´QHZ�GRFµ�

$EVWUDFW
2SHUDWRU

$EVWUDFW
2SHUDWRU

7\SH,Q7H[W
�´ILQDOµ�

&K'LU
�´SXEOLFµ�

6HOHFW
�´GRF��GRFµ�

6HOHFW�´SXEOLFµ�

3ODQQHU

3ODQQHU

0DSSLQJ

)LOH 2SHQ

0DSSLQJ 3ODQQHU

)LOH 6DYH$V

2SHQ

6HOHFW
�´QHZ�GRFµ�

6DYH

)LOH 2SHQ 6HOHFW�´SXEOLFµ�
6HOHFW

�´GRF��GRFµ�
2SHQ

)LOH 6DYH$V
6HOHFW

�´QHZ�GRFµ�
6DYH

7\SH,Q7H[W
�´ILQDOµ�

'HFRPSRVLWLRQ

'HFRPSRVLWLRQ

Low-level Test Case

Figure 9: Expanding the Higher Level Plan.

• Because we are using a partial-order planner, each
of the high-level plans can potentially be mapped
to more than one distinct linearization.
• Each of the linear plans can potentially be decom-
posed in multiple ways.

This is particularly important, because our experiments
have shown that the bulk of the time spent in test-
case generation is used in generating the highest level
plan. Whenever a plan includes an abstract operator,
we invoke the planner multiple times to produce multi-
ple distinct sub-plans that can serve as decomposition
of the (suffix of the) abstract operator. Unlike typical
HTN planning, the sub-plans in this setting do not in-
teract, because they each take place during a separate
restricted-focus phase; thus the application of plan crit-
ics is not required here. Figure 10 shows an alternative
plan created from the high-level plan in Figure 8. It dif-
fers from the decomposition in Figure 9 in that it uses
a different decomposition of the first abstract operator.

)LOHB2SHQ
�´SXEOLFµ��
´GRF��GRFµ�

)LOHB6DYH$V
�´SXEOLFµ��
´QHZ�GRFµ�

$EVWUDFW
2SHUDWRU

$EVWUDFW
2SHUDWRU

7\SH,Q7H[W
�´ILQDOµ�

&K'LU
�´SXEOLFµ�

6HOHFW
�´GRF��GRFµ�

6HOHFW�´SXEOLFµ�

3ODQQHU

3ODQQHU

0DSSLQJ

)LOH 2SHQ

0DSSLQJ 3ODQQHU

)LOH 6DYH$V

2SHQ

6HOHFW
�´QHZ�GRFµ�

6DYH

)LOH 2SHQ 6HOHFW�´SXEOLFµ�

6HOHFW
�´GRF��GRFµ�

2SHQ

)LOH 6DYH$V
6HOHFW

�´QHZ�GRFµ�
6DYH

7\SH,Q7H[W
�´ILQDOµ�

'HFRPSRVLWLRQ

'HFRPSRVLWLRQ

8S 6HOHFW�´5RRWµ�

8S 6HOHFW�´5RRWµ�

Low-level Test Case

Figure 10: An Alternative Decomposition of the Ab-
stract Operator Leads to a New Test Case.

The decomposition mechanism also aids regression test-
ing, because changes made to one component of the GUI
do not necessarily invalidate all test cases. The higher
level plans can thus often be retained after changes to
the GUI; local changes can instead be made to sub-plans
specific to the changed component of the GUI. Another
advantage to using decomposition is that the operators
can be modeled at a platform-independent level, result-
ing in platform-independent test cases. An additional
layer of mapping-like decomposition can then be added
to produce platform-dependent test cases.

Algorithm for Generating Test Cases
The complete test-case generation algorithm is shown in
Figure 11. The operators are assumed to be available
before making a call to this algorithm. The parameters
(lines 1..5 of the algorithm)4 include the initial and goal
states for the planning problem, and the set of available
operators. An addition parameter specifies a threshold
(T) that determines the number of iterations performed.

The main loop (lines 8..12) contains the explicit call to
the planner (denoted by the function Φ). Each time the
planner is invoked, a distinct plan is generated using
the available operators, and is then stored in Λ. Note
that no decomposition occurs within this loop: the plans

4Each command in the program is given a separate number,
but for space reasons, we sometimes show two commands on one
line.

Lines
Algorithm :: GenTestCases(
Λ = Operator Set; D = Set of Objects; 1, 2

I = Initial State; G = Goal State; 3, 4

T = Threshold) { 5

planList ← {}; c← 0; 6, 7

/* Successive calls to the planner (Φ),
to generate distinct solutions */
WHILE ((p == Φ(Λ,D, I,G)) ! = NO PLAN) 8

&& (c < T) DO { 9

InsertInList(p, planList); 10

Λ ← RecordPlan(Λ, p); c++} 11, 12

linearPlans ← {};/* No linear Plans yet */ 13

/* Linearize all partial order plans */
FORALL e ∈ planList DO { 14

L ← Linearize(e); 15

InsertInList(L, linearPlans)} 16

testCases ← linearPlans; 17

/* decomposing the testCases */
FORALL tc ∈ testCases DO { 18

FORALL C ∈ Steps(tc) DO { 19

IF (C == systemInteractionOperator) THEN { 20

newC ← lookup(Mappings, C); 21

REPLACE C WITH newC IN tc} 22

ELSEIF (C == abstractOperator) THEN { 23

ΛC ← OperatorSet(C); GC ← Goal(C); 24, 25

IC ← Initial(C); DC ← ObjectSet(C); 26, 27

/* Generate the lower level test cases */
newC ← APPEND(lookup(Mappings, C),
GenTestCases(ΛC,DC, IC,GC, T)); 28

FORALL nc ∈ newC DO { 29

copyOftc ← tc; 30

REPLACE C WITH nc IN copyOftc; 31

APPEND copyOftc TO testCases}}}} 32

RETURN(testCases)} 33

Figure 11: The Complete Algorithm for Generating Test
Cases

that are generated are all “flat”. To guarantee that the
planner does not regenerate duplicate plans, we modify
each operator so that it is not used to generate previ-
ously generated plans. The key idea is to make the goal
state unreachable, if the operator instances are used in
a previously generated sequence. Using this approach
to generate alternative plans, instead of backtracking in
the planner’s search space, makes our algorithm planner
independent.

Once a set of distinct plans have been generated, lin-
earizations are created for each one (lines 13..16). Each
linear plan is then decomposed, potentially in multiple
ways. As described earlier, system-interaction steps are
decomposed using the operator-event mappings (lines
20..22), while abstract steps are decomposed using the

mappings for the prefix, and using a recursive call to
the test-case generation algorithm for the suffix (lines
23..28). The initial and goal states for the recursive
planning problem are extracted directly from the high-
level plan, which is available at the recursive call. The
sub-plans obtained as a result of the recursive call are
then substituted into the high-level plans (lines 29..31),
and the new plans obtained are appended to the list
of testCases (line 32). The final outcome of the algo-
rithm is a set of distinct, fully decomposed plans for the
specified task, that can serve as test cases for the GUI
(line 33).

Feasibility Experiments
A prototype of PATHS was developed with IPP [20] as
the underlying planning system. IPP was chosen based
on the results of experiments in which causal-link plan-
ners were compared with propositional planners [22].
The key result of the study was that propositional plan-
ners perform better in domains such as GUI testing,
which contain a small number objects.

We now present several sets of experiments, that were
conducted to ensure that the approach in PATHS is
feasible. These experiments were executed on a Pentium
based computer with 200MB RAM running Linux OS.
A summary of the results of these experiments is given
next.

Generating Test Cases for Multiple Tasks
PATHS was used to generate test cases for Microsoft’s
WordPad. Examples of the generated high-level test
cases are shown in Table 2. The total number of GUI
events in WordPad was determined to be approximately
325. After deriving hierarchical operators, PATHS re-
duced this set to 32 system-interaction and abstract op-
erators, a reduction of roughly 10 : 1. This reduction
in the number of operators helps to speed up the plan
generation process significantly.

Defining preconditions and effects for the 32 operators
was fairly straightforward. The average operator def-
inition required 5 preconditions and effects, with the
most complex operator requiring 10 preconditions and
effects. Since mouse and keyboard events are part of
the GUI, additional operators representing mouse (i.e.,
Select Text()) and keyboard (i.e., TypeInText() and
DeleteText()) events were defined.

Table 3 presents a typical set of CPU execution timings
for this experiment. Each row represents one task. The
first column identifies the task; the second gives the
average time to generate a single high-level plan for the
task and the third shows the time taken to generate a
family of test cases by producing all the decompositions
of the plan. The fourth column gives the total planning
time. As can be seen, the bulk of the time is spent
generating the high-level plan. Sub-plan generation is

Plan Plan Plan

No. Step Action

1 1 FILE-OPEN(“private”, “Document.doc”)

2 DELETE-TEXT(“that”)

2 DELETE-TEXT(“must”)

2 DELETE-TEXT(“be”)

2 DELETE-TEXT(“modified”)

2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)

3 FILE-SAVEAS(“public”, “new.doc”)

2 1 FILE-OPEN(“public”, “doc2.doc”)

2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)

2 DELETE-TEXT(“needs”)

2 DELETE-TEXT(“to”)

2 DELETE-TEXT(“be”)

2 DELETE-TEXT(“modified”)

2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)

3 FILE-SAVEAS(“public”, “new.doc”)

3 1 FILE-OPEN(“public”, “doc2.doc”)

2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)

2 DELETE-TEXT(“to”)

2 DELETE-TEXT(“be”)

2 DELETE-TEXT(“modified”)

2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)

2 SELECT-TEXT(“needs”)

3 EDIT-CUT(“needs”)

4 FILE-SAVEAS(“public”, “new.doc”)

4 1 FILE-NEW(“public”, “new.doc”)

2 TYPE-IN-TEXT(“This”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)

2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)

3 FILE-SAVEAS(“public”, “new.doc”)

Table 2: Some WordPad Plans Generated for the Task
of Figure 3.

Task Plan Sub Total
No. Time Plan Time

(sec) Time (sec)
1 0.40 0.04 0.44
2 3.16 0.00 3.16
3 3.17 0.00 3.17
4 3.20 0.01 3.21
5 3.38 0.01 3.39
6 3.44 0.02 3.46
7 4.09 0.04 4.13
8 8.88 0.02 8.90
9 40.47 0.04 40.51

Table 3: Average Time Taken to Generate Test Cases
for WordPad.

quite fast, amortizing the cost of initial plan generation
over multiple test cases. Plan 9, which took the longest
time to generate, was linearized to obtain 2 high-level
plans, each of which was decomposed to give several
low-level test cases, the shortest of which consisted of
25 GUI events.

The plans shown in Table 2 are at a still at a relatively
high level of abstraction. Many changes that might be
made to a GUI would have no effect on these plans,
making regression testing easier and less expensive. For
example, none of the plans in Table 2 contain any GUI
details such as font or color. The test suite continues
to be useful even in the face of changes to these aspects
of the GUI. The same is true for certain changes that
modify the functionality of the GUI. For example, if
the WordPad GUI were modified to introduce an addi-
tional file opening feature, then most of the high-level
plans remain the same. Changes would only be needed
to sub-plans that are generated by the abstract opera-
tor File Open. Hence the cost of initial plans is again
amortized over a large number of test cases.

6 Creating Test Oracles and Regression Test-
ing

Although we have only presented details of test-case
generation, PATHS is currently being used to gener-
ate testing information for other phases of the testing
process. In particular, we are using PATHS to automat-
ically create test oracles and for regression testing. We
indicate how we achieve this in the next few paragraphs.
A detailed discussion is beyond the scope of this paper.

PATHS automatically generates test oracles to check the
GUI’s state during and after test execution. The key to
oracle creation is to have oracle information integrated
into the test case so that the GUI exerciser knows what
to check at each step. One of the primary motivations
of using planning for GUI testing is that much of the

state can be recovered directly from the planning model.
During plan construction, the planner keeps track of the
intermediate states of the GUI. PATHS extracts these
intermediate states and integrates them with the gener-
ated test case to act as oracles.

PATHS is being supplemented with efficient regression
testing techniques that draw on planning. The hier-
archical decomposition of the GUI done by PATHS
allows identification and isolation of GUI components
that were modified. Changes are then made only to the
effected test cases and oracle information. Moreover,
hierarchical planning aids in retaining most of the test
cases and oracle information defined at the higher lev-
els of abstraction. Changes are made only at the lower
levels.

7 Related Work
The manual creation of test cases and their mainte-
nance and evaluation is in general a very time consum-
ing process. Thus some form of automation is desir-
able. One class of tools that aid a test designer are cap-
ture/playback tools [31, 12]. These tools record the user
events and GUI screens during an interactive session;
the recorded sessions can later be played back when it
is necessary to recreate the same GUI states. Another
technique that is popular for testing conventional soft-
ware involves programming a test-case generator [16], in
which the test designer develops software programs to
generate test cases. This approach requires that the test
designer encode all possible GUI decision points. Pro-
gramming a test-case generator is thus time-consuming
and may lead to a low quality set of test cases if impor-
tant GUI decisions are overlooked.

Several prior research efforts have focused on finite-state
machine (FSM) models have been proposed to generate
test cases [4, 3, 7, 1]. In this approach, the software’s
behavior is modeled as a FSM where each input triggers
a transition in the FSM. A path in the FSM represents
a test case, and the FSM’s states are used to verify
the software’s state during test-case execution. This
approach has also been used extensively for test gener-
ation for testing hardware circuits [10]. For small sized
software, it is easy to specify the software’s behavior in
terms of states. Another advantage of this approach is
that once the FSM is built, the test-case generation pro-
cess is automatic. It is relatively easy to model a GUI
with an FSM; each user action leads to a new state and
each transition models a user action. However, a major
limitation of this approach, which is an especially per-
tinent to GUI testing, is that FSM models have scaling
problems [30]. To aid in the scalability of the technique,
variations such as variable finite state machine (VFSM)
models have been proposed by Shehady et al. [30].

Test cases have also been generated to mimic novice

users [15]. The approach relies on an expert to manually
generate the initial sequence of GUI events, and then
uses genetic algorithm techniques to modify and extend
the sequence. The assumption is that experts take a
more direct path when solving a problem using GUIs
whereas novice users often take longer paths. Although
useful for generating multiple test cases, the technique
relies on an expert to generate the initial sequence. The
final test suite depends largely on the paths taken by
the expert user.

Finally, techniques have been proposed to reduce the
total number of test cases either by focusing the test-
case generation process on particular aspects of the GUI
[7, 15, 17, 18] or by establishing an upper bound on the
number of test cases [34]. Unfortunately, many of these
techniques are not in common use, either because of
their lack of generality or because they are difficult to
use.

As mentioned before, AI planning has been previously
used to generate test cases. In an earlier paper, we de-
scribe a preliminary version of the PATHS system, fo-
cusing on the software engineering aspects of the work
[23]. Howe et al. describe a planning based system for
generating test cases for a robot tape library command
language [14]. Note that in this previous work, each
command in the language was modeled with an distinct
operator. This approach works well for systems with a
relatively small command language. However, because
GUIs typically have a large number of possible user ac-
tions, we had to modify the approach by automatically
deriving hierarchical operators.

8 Conclusions
We have presented a new planning-based technique for
generating test cases for GUI software, which can serve
as a valuable tool in the test designer’s tool-box. Our
technique models test-case generation as a planning
problem. The key idea is that the test designer is likely
to have a good idea of the possible tasks of a GUI user,
and it is simpler and more effective to specify these tasks
in terms of initial and goal state than it is to specify se-
quences of events that achieve them. Our technique is
unique in that we use an automatic planning system
to generate test cases given a set of tasks and a set
of operators representing GUI events. Additionally, we
showed how hierarchical operators can be automatically
constructed from a structural description of the GUI.

We have also provided initial evidence that our tech-
nique can be practical and useful, by generating test
cases for the popular MS WordPad software’s GUI.
The experiments demonstrated the feasibility of the ap-
proach and also showed the value of using hierarchical
operators for efficiently generating multiple plans for a
specified task.

The use of hierarchical operators in test-case genera-
tion also aids in performing regression testing. Changes
made to one part of the GUI do not necessarily invali-
date entire test cases. Often, it is possible simply to per-
form a new decomposition of some abstract operator(s)
in the high-level plan, and replace the prior decomposi-
tion with the new result. Finally, representing the test
cases at a high level of abstraction also makes it possible
to fine-tune the test cases to different implementation
platforms, making the test suite more portable.

One of the tasks currently performed by the human test
designer is the definition of the preconditions and effects
of the operators. Such definitions of commonly used
operators can be maintained in libraries, making this
task easier. We are also currently investigating ways of
automatically generate the preconditions and effects of
the operators from a GUI’s specifications. Additionally,
we are using our plan-based approach throughout the
larger PATHS system, which, in addition to test-case
generation, performs such tasks as oracle creation for
verification, automated execution of test cases, and test
suite management for regression testing.

REFERENCES

[1] P. J. Bernhard. A reduced test suite for protocol con-
formance testing. ACM Transactions on Software En-
gineering and Methodology, 3(3):201–220, July 1994.

[2] A. L. Blum and M. L. Furst. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1–
2):279–298, 1997.

[3] T. S. Chow. Testing software design modeled by finite-
state machines. IEEE trans. on Software Engineering,
SE-4, 3:178–187, 1978.

[4] J. M. Clarke. Automated test generation from a behav-
ioral model. In Proceedings of Pacific Northwest Soft-
ware Quality Conference. IEEE Press, May 1998.

[5] K. Erol, J. Hendler, and D. S. Nau. HTN planning:
Complexity and expressivity. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-94), volume 2, pages 1123–1128, Seattle, Wash-
ington, USA, Aug. 1994. AAAI Press/MIT Press.

[6] K. Erol, D. Nau, and J. Hendler. Toward a general
framework for hierarchical task-network planning. In
Foundations of Automatic Planning: The Classical Ap-
proach and Beyond: Papers from the 1993 AAAI Spring
Symposium, pages 20–23. AAAI Press, Menlo Park,
California, 1993.

[7] S. Esmelioglu and L. Apfelbaum. Automated test gen-
eration, execution, and reporting. In Proceedings of
Pacific Northwest Software Quality Conference. IEEE
Press, Oct 1997.

[8] R. Fikes and N. Nilsson. strips: A new approach to
the application of theorem proving to problem solving.
Artificial Intelligence, 2:189–208, 1971.

[9] J. Gray. What next? a few remaining it problems. Jim
Gray received the 1998 ACM Turing Award at the ACM

awards banquet in NYC on April 15. His Turing award
lecture: What Next? A few remaining IT Problems
was presented at the ACM Federated Research Com-
puter Conference in Atlanta, Georgia, on 4 May 1999.
A refined version of it will be presented at the SIGMOD
conference in Philadelphia in June.

[10] H. Cho, G.D. Hachtel, and F. Somenzi. Redundancy
identification/removal and test generation for sequen-
tial circuits using implicit state enumeration. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 12(7):935–945, July 1993.

[11] M. L. Hammontree, J. J. Hendrickson, and B. W. Hens-
ley. Integrated data capture and analysis tools for re-
search and testing on graphical user interfaces. In Pro-
ceedings of ACM CHI’92 Conference on Human Fac-
tors in Computing Systems, Demonstration: Analysis
Tools/Multimedia Help, pages 431–432, 1992.

[12] M. L. Hammontree, J. J. Hendrickson, and B. W. Hens-
ley. Integrated data capture and analysis tools for
research and testing an graphical user interfaces. In
P. Bauersfeld, J. Bennett, and G. Lynch, editors, Pro-
ceedings of the Conference on Human Factors in Com-
puting Systems, pages 431–432, New York, NY, USA,
May 1992. ACM Press.

[13] J. H. Hicinbothom and W. W. Zachary. A tool for au-
tomatically generating transcripts of human-computer
interaction. In Proceedings of the Human Factors and
Ergonomics Society 37th Annual Meeting, volume 2
of SPECIAL SESSIONS: Demonstrations, page 1042,
1993.

[14] A. Howe, A. von Mayrhauser, and R. T. Mraz. Test
case generation as an AI planning problem. Automated
Software Engineering, 4:77–106, 1997.

[15] D. J. Kasik and H. G. George. Toward automatic gen-
eration of novice user test scripts. In M. J. Tauber,
V. Bellotti, R. Jeffries, J. D. Mackinlay, and J. Nielsen,
editors, Proceedings of the Conference on Human Fac-
tors in Computing Systems : Common Ground, pages
244–251, New York, 13–18 Apr. 1996. ACM Press.

[16] L. R. Kepple. The black art of GUI testing. Dr. Dobb’s
Journal of Software Tools, 19(2):40, Feb. 1994.

[17] M. Kitajima and P. G. Polson. A computational model
of skilled use of a graphical user interface. In Proceed-
ings of ACM CHI’92 Conference on Human Factors in
Computing Systems, Modeling the Expert User, pages
241–249, 1992.

[18] M. Kitajima and P. G. Polson. A comprehension-based
model of correct performance and errors in skilled,
display-based, human-computer interaction. Interna-
tional Journal of Human-Computer Studies, 43(1):65–
99, 1995.

[19] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopoulos.
Extending planning graphs to an ADL subset. Lecture
Notes in Computer Science, 1348:273, 1997.

[20] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopou-
los. Extending planning graphs to an ADL subset. In
S. Steel and R. Alami, editors, Proceedings of the 4th

European Conference on Planning (ECP-97): Recent
Advances in AI Planning, volume 1348 of LNAI, pages
273–285, Berlin, Sept.24 –26 1997. Springer.

[21] R. Mahajan and B. Shneiderman. Visual & textual
consistency checking tools for graphical user interfaces.
Technical Report CS-TR-3639, University of Maryland,
College Park, May 1996.

[22] A. M. Memon, M. Pollack, and M. L. Soffa. Comparing
causal-link and propositional planners: Tradeoffs be-
tween plan length and domain size. Technical Report
99-06, University of Pittsburgh, Pittsburgh, Feb. 1999.

[23] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using
a goal-driven approach to generate test cases for GUIs.
In Proceedings of the 21st International Conference on
Software Engineering, pages 257–266. ACM Press, May
1999.

[24] B. A. Myers. Why are human-computer interfaces diffi-
cult to design and implement? Technical Report CS-93-
183, Carnegie Mellon University, School of Computer
Science, July 1993.

[25] B. A. Myers. User interface software tools. ACM Trans-
actions on Computer-Human Interaction, 2(1):64–103,
1995.

[26] B. A. Myers, J. D. Hollan, and I. F. Cruz. Strategic
directions in human-computer interaction. ACM Com-
puting Surveys, 28(4):794–809, Dec. 1996.

[27] E. Pednault. Toward a Mathematical Theory of Plan
Synthesis. PhD thesis, Dept of Electrical Engineering,
Stanford University, Stanford, CA, Dec. 1986.

[28] E. P. D. Pednault. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Pro-
ceedings of KR’89, Toronto, Canada, pp 324-331, May
1989. (extended version submitted to Artificial Intelli-
gence, special issue on KR’89).

[29] W. Perry. Effective Methods for Software Testing. John
Wiley & Sons, Inc., New York, N.Y., 1995.

[30] R. K. Shehady and D. P. Siewiorek. A method to au-
tomate user interface testing using variable finite state
machines. In Proceedings of The Twenty-Seventh An-
nual International Symposium on Fault-Tolerant Com-
puting (FTCS’97), pages 80–88, Washington - Brussels
- Tokyo, June 1997. IEEE.

[31] L. The. Stress Tests For GUI Programs. Datamation,
38(18):37, Sept. 1992.

[32] D. S. Weld. An introduction to least commitment plan-
ning. AI Magazine, 15(4):27–61, 1994.

[33] D. S. Weld. Recent advances in AI planning. AI Mag-
azine, 20(1):55–64, Spring 1999.

[34] L. White. Regression testing of GUI event interactions.
In Proceedings of the International Conference on Soft-
ware Maintenance, pages 350–358, Washington, Nov.4–
8 1996. IEEE Computer Society Press.

[35] D. T. Wick, N. M. Shehad, and A. R. Hajare. Testing
the human computer interface for the telerobotic as-
sembly of the space station. In Proceedings of the Fifth

International Conference on Human-Computer Inter-
action, volume 1 of II. Special Applications, pages 213–
218, 1993.

[36] R. M. Young, M. E. Pollack, and J. D. Moore. Decom-
position and causality in partial order planning. In Sec-
ond International Conference on Artificial Intelligence
and Planning Systems, 1994. Also Technical Report
94-1, Intelligent Systems Program, University of Pitts-
burgh.

