
Relationships Between Test Suites, Faults, and Fault Detection in GUI Testing

Jaymie Strecker
University of Maryland
College Park, MD, USA

strecker@cs.umd.edu

Atif M Memon
University of Maryland
College Park, MD, USA

atif@cs.umd.edu

Abstract

Software-testing researchers have long sought recipes
for test suites that detect faults well. In the literature, em-
pirical studies of testing techniques abound, yet the ideal
technique for detecting the desired kinds of faults in a given
situation often remains unclear. This work shows how un-
derstanding the context in which testing occurs, in terms of
factors likely to influence fault detection, can make evalu-
ations of testing techniques more readily applicable to new
situations. We present a methodology for discovering which
factors do statistically affect fault detection, and we per-
form an experiment with a set of test-suite- and fault-related
factors in the GUI testing of two fielded, open-source appli-
cations. Statement coverage and GUI-event coverage are
found to be statistically related to the likelihood of detect-
ing certain kinds of faults.

1. Introduction

A fundamental question in software testing is how to
build a good test suite. It is a complicated question, since
the term “good” unpacks into so many competing qualities:
quick to create, quick to execute, easy to maintain, effec-
tive at detecting faults, and many more. From the results
of myriad empirical studies, we have accrued a wealth of
data points (e.g., inV seconds, techniqueW detects on av-
erageX faults in versionY of applicationZ). However, the
data points come from many different test suites, faults, and
applications, and differences among the study subjects may
have affected the results in ways we do not yet understand.
This makes us hesitate to predict from the existing data how
well a technique will perform in a new situation—for exam-
ple, on a new application.

To make the problem of building good test suites even
more complex, a data point may mean different things qual-
itatively to people in different contexts. Some research has
addressed this by employing metrics that account for such
qualitative factors as fault severity [4]. But because fault
severity is a subjective measure, results in these terms can-

not reliably be generalized to a wider range of contexts. On
the other hand, the common research practice of assuming
that all faults are equally severe and finding how many of
a “representative” sample of faults a testing technique de-
tects (e.g., [6, 14, 16, 18]) also ties the results to a spe-
cific context, since it is not clear what a truly representa-
tive fault set looks like or what class of contexts it would
represent [1, 7, 13, 17].

Thus, it is unclear how data points from software-testing
studies relate quantitatively to each other, and it is un-
predictable how they relate qualitatively to real situations.
This work addresses both issues. We show how to evalu-
ate testing techniques so that the results can be more read-
ily generalized to new test subjects and interpreted in new
situations. The key is, first, to understand the influences
on testing techniques’ effectiveness that can vary across
testing instances and, second, to characterize the environ-
ment in which an evaluation is performed with respect to
those influences. A researcher or practitioner in a differ-
ent environment—with a different test subject or different
assumptions about fault severity, for example—could then
better predict, based on the differences between the two en-
vironments, how the evaluated technique would perform in
her case.

Some past work has started in this direction by studying
how certain characteristics of the application under test and
its coverage during testing influence fault detection [3, 12].
Overall, however, the relationship between application and
test-suite characteristics has been sparsely explored. Partic-
ularly obscure is the way characteristics of the faults within
an application and characteristics of a test suite interactto
affect fault detection. With few exceptions (e.g., [2, 7]),
empirical studies of testing techniques typically report num-
bers of faults detected and faults missed but do not charac-
terize those faults. Yet testers could benefit from such an
analysis.

The following example, based on a study by Basili and
Selby [2], shows one way that testers could benefit. An em-
pirical study finds that techniquesT1 andT2 each detect, on
average, 54%-55% of a sample of faults. A break-down of



the results by fault class shows thatT1 detects fewer faults
of classC1 thanT2 does (42.8% vs. 66.7%), but more faults
of classC2 (46.7% vs. 30.7%). Suppose that a tester wants
to know which ofT1 andT2 would likely reveal more faults
in a certain application. In earlier versions, faults of class
C1 caused twice as many user-reported failures as faults of
classC2. Considering these facts, the tester opts forT2. If
the tester had not understood how her environment differed
from the study’s, she could easily have missed out on the
advantages ofT2.

Of course, this example makes some assumptions. For
the tester to truly benefit from the break-down of results by
fault class, the fault classification must be automatable (un-
like the classification on which the example is based [2]),
and the relationship between fault classesC1 andC2 and
test suites produced by techniquesT1 andT2 must be known
to persist from the study’s context to the tester’s context.
More generally, for conclusions about fault detection drawn
from a sample of faults and a sample of test suites to be
generalizable to other sets of faults and other test suites,(1)
measurable characteristics of faults and test suites that may
be related to fault detection must be identified, (2) the in-
fluence of these characteristics, independently or jointly, on
fault detection must be validated in a small set of contexts,
and (3) the influence on fault detection must be established
empirically or analytically (or preferably both) on a large
set of contexts.

This work makes progress on (1) and (2), focusing on
GUI testing, in which test cases consist of sequences of
events that a user might perform on a GUI. First, we iden-
tify a set of characteristics of faults and test suites that we
expect may affect fault detection: for faults, branch points
nearby, probability of detection by other techniques, and
type of mutant (method- or class-level); and for test suites,
length of test cases, size, event-pair coverage, and event-
triple coverage. We emphasize that this study is a first step
in a direction requiring much future research, so the set of
characteristics studied is not meant to be comprehensive,
only sufficient to demonstrate a methodology for studying
such characteristics. Second, we statistically analyze the re-
lationship between these characteristics and fault detection
for two fielded, open-source, Java applications, using logis-
tic regression analysis to isolate the effect of each. The re-
sults show that a fault’s detectability by statement-coverage-
adequate test suites and, for one application, a fault’s mu-
tant type, a test suite’s event-triple coverage, and the inter-
action between mutant type and detectability by statement-
coverage-adequate suites, are significantly related to the
probability of fault detection by GUI test suites.

Although this work focuses on GUI testing so that our
experimental infrastructure can sit atop the existing GUI
Testing Framework (GUITAR) [18], our approach is not
limited to this domain. In fact, this work makes several

contributions to research on software testing and software
defects, including:
• a methodology for studying statistical relationships be-

tween test-suite and fault characteristics and fault de-
tection and

• an experiment that uses the methodology to show
which of a set of test-suite and fault characteristics are
statistically related to fault detection for two fielded
applications.

The next section catalogues prior work relevant to this
study. In Section 3, we build upon prior work in identifying
the set of test-suite and fault characteristics to investigate
experimentally. Section 4 describes the experiment design.
Section 5 presents the results, while Section 6 discusses
their implications. In Section 7, we state our conclusions
and point to opportunities for future research.

2. Related work

When applying a testing technique to a piece of software,
a tester may be surprised to find that the test suite produced
performs better or worse than she had expected, based on
experience with the technique in other contexts. This sec-
tion discusses variables that have been shown or conjectured
to influence a test suite’s effectiveness and efficiency at de-
tecting faults.

2.1. Test-suite variables

Probably the most studied way that test suites can dif-
fer is in the technique used to make or vet them. In many
studies, a sample of test suites yielded by a technique is
used to evaluate the technique empirically against other test-
ing or validation techniques. Techniques that have been
compared in this way include code reading, functional test-
ing, and structural testing [2]; data-flow- and control-flow-
based techniques [9]; regression test selection techniques
[6]; variations of mutation testing [14]; and strong and weak
test oracles for GUIs [11].

Even when produced by the same testing technique, test
suites can differ in important ways. Rothermel et al. [16]
investigate how two test-suite characteristics, in addition to
testing technique, affect the number of faults detected. One
characteristic isgranularity, a measure of the amount of in-
put given by each test case. The other,grouping, describes
the content of each test case and its meaning to testers (e.g.,
functional grouping, random grouping). For the applica-
tions studied, granularity significantly affects the number of
faults detected. Grouping (functional vs. random) may also
have an effect, though weaker.

Xie and Memon [18] investigate granularity and other
test-suite traits in the arena of GUI testing. The variablesof
interest are the number of test cases and granularity of test
cases, which they calltest-suite sizeand test-case length,
respectively. Test-suite size is found to affect the number



of faults detected, while test-case length affects the kindof
faults detected: some faults can only be reached by longer
test cases. The authors conjecture thatshallow faults, those
that can be detected by shorter test cases, lie in event han-
dlers with less complex branching thandeep faults, those
that can only be detected by longer test cases.

In another study of GUI testing, McMaster and
Memon [10] show that the coverage criterion used in test-
suite reduction affects the size of the reduced test suites
and the number of faults they detect. The effect on fault-
detection effectiveness may be indirect, however, because
the criteria that produce more effective test suites also pro-
duce larger test suites. The study shows that test suites re-
duced using call-stack coverage detect many more faults
than randomly reduced suites of the same size. Whether
the same is true for the other criteria studied (statement,
method, event, and event-pair coverage) for GUI-based ap-
plications remains to be studied.

A study by Elbaum et al. [3] applies principal compo-
nent analysis and regression analysis to a large set of test-
suite characteristics related to regression testing. Of the
characteristics studied, two related to coverage—themean
percentage of functions executed per test caseand theper-
centage of test cases that reach a changed function—best
explain the variance in fault detection. The other character-
istics studied (which include the number of test cases in the
suite, the number of functions and statements executed per
test case, and the number of changed functions and state-
ments executed per test case) turn out to be less influential.

2.2. Application variables

In the study by Elbaum et al. [3] described above, char-
acteristics of the application under test are also investigated.
The characteristics describe the size and complexity of ap-
plications and changes made to them. Of the characteristics
studied, themean function fan-outand thenumber of func-
tions changedtogether explain the most variance in fault
detection.

Morgan et al. [12] also investigate how application char-
acteristics and test-suite characteristics jointly influence
fault detection. Here, the variables of interest aretest-suite
size, proportion of application units(blocks, decisions, and
variable uses)covered, and application sizemeasured in
lines and application units. In quadratic models fit to the
data set, each characteristic by itself (i.e., linear term in the
model) and some squares or products of characteristics (i.e.,
quadratic terms) are found to contribute to the variance in
fault detection, although the influence attributed to test-suite
size alone is slight.

A study by Ostrand et al. [15] of several sizable software
systems suggests another way in which application and test-
suite characteristics can interact. In this study, a statistical
model whose parameters are properties of individual files in
the system (e.g., file age, number of lines of code, number

of faults found in earlier versions of the file) predicts which
files contain the greatest number or highest density of faults.
If a test suite targets those files, rather than spreading cover-
age evenly across the system, then it is likely to detect more
faults.

2.3. Fault variables

Section 1 argued that empirical evaluations of testing
techniques are often more generalizable if the reported re-
sults for fault detection are broken down by fault type. A
few studies do this, including Basili’s and Selby’s [2] com-
parison of code reading, structural testing, and functional
testing. Two orthogonal fault taxonomies are used to char-
acterize the faults studied. One classifies faults as either
omissive or commissive; the other, as initialization, control,
data, computation, interface, or cosmetic faults. In some
cases, like the example given in Section 1, the validation
technique and the fault type appear to interact in their influ-
ence on fault detection.

In a study comparing data-flow and mutation testing,
Harrold et al. [7] classify detected faults using a different
taxonomy. In it, classes of faults are distinguished by their
effect on the program dependence graph, a representation
of the data and control dependencies in the application un-
der test. At a coarse level, the taxonomy classifies faults as
eitherstructural—altering the structure of the program de-
pendence graph—orstatement-level—altering a statement
but leaving the graph structure unchanged. Unfortunately,
to our knowledge, no tools that implement this analysis for
Java applications are currently available.

Offutt and Hayes [13] recommend that faults be charac-
terized by theirsemantic size, which can be thought of as the
probability that a random test case detects the fault. Similar
measures have been used in empirical studies by Andrews
et al. [1] and Rothermel et al. [16] to characterize faults’
ease of detection with respect to the test pools used in the
studies. This study leaves out semantic size because it is
confounded with test-suite size: the greater a fault’s seman-
tic size, the more likely that smaller suites detect it.

3. Variables of interest

As Section 1 noted, this work focuses on GUI testing
so that we can take advantage of existing infrastructure for
performing empirical studies. In GUI-based applications,
a user sends input by performing GUIevents(e.g., click-
ing on a button, typing in a text box) and receives output in
the form of changes to the visible GUI windows and wid-
gets, whose properties together make up the GUI state. The
portion of the application code that executes in response toa
GUI event is called theevent handler. As in prior work [18],
we define a test case to be a sequence of GUI events and its
output to be the sequence of GUI states that the application
passes through. The GUI state is checked after each GUI



event. A test case detects a fault if the actual state is not as
expected at any of those checks. GUI test cases are actually
system tests, as they exercise the whole software, including
non-GUI code.

As research into factors affecting fault detection ma-
tures, we hope that a paradigm for selecting characteristics
to study will emerge. But for now, while our selection is
rooted in the literature, it must remain somewhat ad hoc.
To make our work more replicatable, we chose characteris-
tics that could be measured objectively, automatically, and
without special artifacts such as specifications [17].

Section 2.1 named several characteristics of GUI test
suites that can affect the number and kinds of faults a
suite detects. This study examines four such characteris-
tics: length of test cases (Len), size (Size), event-pair cov-
erage divided by test-suite size (E2Cov), and event-triple
coverage divided by event-pair coverage (E3Cov). These
are summarized in Table 1. The length of a test case is
the number of events it contains; in our study, all of the
test cases in a suite have the same length. (This assump-
tion would not necessarily hold for real test suites, but it
allows us to isolate length as a variable for the purposes of
the experiment.) The size of a test suite is the total num-
ber of events the test suite executes, counting duplicates;
the suite size of ten length-two test cases would be twenty.
Event-pair coverage and event-triple coverage are the num-
bers of unique length-two and length-three event sequences,
respectively, in the test cases that comprise a suite. These
two variables are normalized by test-suite size and event-
pair coverage, respectively, to avoid confounding their in-
fluence on fault detection with that of test-suite size and of
each other. We could have looked at coverage of length-
four and longer event sequences but chose not to until we
had verified that coverage of shorter sequences was related
to fault detection. Since all test suites in the study contain
each event at least once, no information about the events,
such as their complexity or content, is included among the
variables.

We also investigate the influence of fault variables on a
fault’s chances of detection. Table 1 summarizes the fault
variables studied. As Section 2.1 mentioned, it has been
speculated that the number of branch points in an event han-
dler (Branch) together with test-case length is related to the
probability that a fault in the event handler is detected. In
prior work [17], we have asserted that an effective way to
characterize the faults detected by a testing technique is in
terms of their detection by other techniques. Hence, we con-
sider the ability of statement-coverage-adequate test suites
(StmtDet) to detect a fault. The faults used in this study are
generated by class-level and method-level mutation opera-
tors, which change the structure of the program differently
in ways that may affect fault detection, so we classify each
fault accordingly (Mut).

Table 1. Study variables
Abbrev. Description

Test
suite

Len Length of test cases
Size Size (number of events)

E2Cov Event-pair coverage/ size
E3Cov Event-triple coverage/ event-pair cov-

erage

Fault
Mut Mutant type (method- or class-level)

Branch Branch points in faulty method’s byte-
code

StmtDet Estimated probability of detection by
statement-coverage-adequate test suite

4. Study design
We want to know which of the variables listed in Ta-

ble 1 affect the likelihood that fault detection occurs in a
〈test suite, fault〉 pair. In doing this analysis, there are sev-
eral tricky points. First, to isolate the effect of each indi-
vidual variable, the values of the remaining variables must
be accounted or controlled for in some way. This presents
a challenge because several of the variables (e.g.,E2Cov)
can take on hundreds of values (theoretically), and any cat-
egorization of these values (e.g., into “low”, “medium”, and
“high” event-pair coverage) would be artificial. Second,in-
teraction effectsamong variables may occur. For example,
increasing the values of two variables at once may either
amplify or suppress the variables’ individual effects on the
dependent.

These points have led us to conduct our study by collect-
ing a random sample of〈test suite, fault〉 pairs; measuring
the values of the variables in Table 1, as well as fault de-
tection (a boolean value) for each pair; and analyzing the
data set with logistic regression to test hypotheses about the
independent variables. We now explain each of these steps
in turn.

4.1. The Sample of 〈Test Suite, Fault〉 Pairs

Subject applications. Two open-source applications
from SourceForge1 serve as subjects for this study: Cross-
wordSage (CWS), a crossword-design tool; and FreeMind
(FM), a tool for creating documents called “mind maps”.
Both are implemented in Java and have a GUI. These appli-
cations’ availability to the public and their use in previous
research [19] make them attractive candidates for this study.
Table 2 gives each application’s size in non-commented,
non-blank lines of code (LOC) and in classes (Cls.).

GUITAR. The 〈test suite, fault〉 pairs in this study are
built from test cases that execute the subject applications
and faults that are embedded inside the subject applications.
Tools in the GUI Testing Framework (GUITAR) [18] auto-
mate the creation and execution of test cases and the com-
parison of test outputs (i.e., the oracle procedure). GUITAR

1http://sourceforge.net



enables us to produce much larger data sets than would be
feasible using other, more labor-intensive approaches such
as capture-replay tools. Since GUITAR itself contains some
faults, we manually examine the test results to weed out
many of GUITAR’s false reports of test-case failure.

Sample size. The sample of〈test suite, fault〉 pairs must
be large enough to provide the desired levels of significance
(α = 0.05) and power (1 − β = 0.80) when the inde-
pendent variables’ influence on the dependent variable is
not too faint. The faintest detectable influence is a func-
tion of theeffect size, the minimum coefficient magnitude
of interest in the logistic regression model (Section 4.3).
Typically, a researcher fixes the effect size at the smallest
value of practical significance. Having no precedent in the
software-testing literature, we select an effect size of 0.3,
which seems reasonable and results in a feasible sample
size. The levels of significance and power limit the prob-
abilities of Type I and Type II errors to0.05 and0.20, re-
spectively. Both errors have to do with “unlucky” samples.
A Type I error occurs when a relationship in the sample data
can be found, but no such relationship exists in the popula-
tion (i.e., the null hypothesis is spuriously rejected). A Type
II error occurs when a relationship does exist in the popula-
tion, but it cannot be found in the sample (i.e., the researcher
erroneously fails to reject the null hypothesis) [5].

The necessary sample size is estimated by applying the
procedure outlined by Hsieh et al. [8] to data from a pilot
study. In the pilot study, a sample of 100〈test suite, fault〉
pairs is analyzed for one subject application, CWS, follow-
ing procedures for test-pool generation, test-suite construc-
tion, and fault seeding similar to those described in the rest
of this section. From this data, for the significance level,
power, and sample size noted above, the sample size turns
out to be 146. Details of the sample-size calculation are
given in Appendix A.

Test pool. As just explained, over 100 test suites must
be run for each subject. A test suite can consist of hundreds
of test cases, and each length-twenty test case takes a few
minutes to run. If each additional test suite in the study re-
quired hundreds of additional test cases to be selected from
the test-case domain and run, evaluation of the 100-plus test
suites would be infeasible. The task is made feasible by re-
stricting the test-case domain to a relatively small set called
the test pool. The test pool must be small enough that all
of its test cases can be executed in a reasonable amount
of time, yet large enough that test suites picked from the
pool are sufficiently different from one another. The latter
requirement depends on the number of test cases per test
suite. Table 2 lists the minimum and maximum number of
test cases per test suite (TS(↓) and TS(↑)) for each applica-
tion.

Figure 1 shows the algorithm used to construct the test
pool, which results in nineteen “buckets” of test cases, one

Table 2. Size of applications, test suites, and
test pools.

App. LOC Cls. TS(↓) TS(↑) TP(2) TP(20)
CWS 3220 36 8 46 402 226
FM 24665 858 117 424 1093 455

for each length. Test cases do not exceed twenty events
because GUITAR often fails spuriously from timing prob-
lems with longer test cases. The minimum test-case length
is set at two, rather than one, because we anticipated that
the sufficient test-pool size for some applications would ex-
ceed the number of possible length-one test cases—yet we
wanted each bucket in the test pool to initially contain an
equal number of test cases with no duplicates. The test cases
are built such that each length-two to length-nineteen test
case is a prefix of a length-twenty test case, which permits
a time-saving shortcut in test-case execution: we need only
run the length-twenty test cases, checking the GUI state af-
ter each intermediate event, to obtain results for the length-
two to length-nineteen test cases as well. The number of it-
erations,iters, was chosen to limit the probability that two
test suites picked from the pool would share more than a
small percentage of test cases. After the test cases were ex-
ecuted, however, the pool size was reduced: test cases that
failed spuriously on theith event (as determined by exam-
ining statement coverage of lines with seeded faults) were
removed frombucketi to bucket20. Table 2 shows the re-
sulting number of length-two and length-twenty test cases
in the pool (TP(2) and TP(20)).

Test suites. Each test suite is constructed by randomly
selecting test cases from some fixed, randomly chosen
bucket in the test pool until the test suite covers all GUI
events that the test pool covers. A test case is only added to
the suite if it contains some event that the suite does not yet
cover.

Faults. So far, we have explained how the test suites in
the〈test suite, fault〉 pairs are generated. To obtain a set of
faults, experimenters typically use one of three approaches:
identifying actual faults inserted by the developers of the
subject application, seeding faults by hand, or seeding faults
programmatically. Each approach has its pros and cons, dis-
cussed more thoroughly elsewhere [1].

Because of the large number of faults needed for this
study, we opt for the third approach, automatic seeding,
using MuJava2. The oracle problem—classifying a test-
case execution as “passed” or “failed”—is made tractable
by creating multiple faulty versions of the application, each
seeded with just one fault. If the output of a test case dif-
fers when it is run on a faulty version and on the “clean”

2http://www.ise.gmu.edu/˜ofut/mujava/



Algorithm 1 Algorithm for constructing the test pool.
succs(event) is the set of successors of the event in the
EFG. For a test case inbucketi, last(testCase) is theith
(i.e., last) event in the test case. andcovSuccs(testCase)
is the set of events such thattestCase◦event ∈ bucketi+1.

1: bucket1 ← {all events in application}
2: i← 0
3: while i <itersdo
4: for tc ∈ bucket1 do
5: tc′ ← tc
6: for i from 2 to 20do
7: uncov ← succs(last(tc′))− covSuccs(tc′)
8: if uncov = ∅ then
9: covSuccs(tc′)← ∅

10: uncov ← succs(last(tc′))
11: end if
12: e← random event inuncov
13: covSuccs(tc′)← covSuccs(tc′) ∪ e
14: tc′ ← tc′ ◦ e
15: bucketi ← bucketi ∪ tc′

16: end for
17: end for
18: i← i + 1
19: end while

version (in which no faults are seeded), then we say that
the test case detects the fault. For each subject applica-
tion, all possible mutants are created (9458 for CWS and
53860 for FM); from these, mutants are randomly selected
for the〈test suite, fault〉 pairs. Thus, the numbers of mutants
of different types found in the pairs are proportional to the
numbers of opportunities for seeding those mutants, making
the fault set biased in the sense that some mutant types are
better represented than others. MuJava creates two kinds
of mutants: “traditional” or method-level (e.g., inserting a
decrement operator at a variable use) and class-level (e.g.,
changing the type of a data member).

4.2. Measurement of 〈Test Suite, Fault〉 Pairs

Several of the characteristics of〈test suite, fault〉 pairs
listed in Table 1 can be observed before any test cases are
executed. This is true of all of the test-suite variables, which
are straightforward to measure.Mut is easily obtained from
the output of MuJava.

Once the test pool has been executed on the clean ver-
sion and on each faulty version of the subject application—
a task requiring hundreds of hours of computation time,
made feasible by running test cases on the distributed sys-
tem Condor3—GUITAR’s output (an XML representation
of the GUI state after each event is executed) from the clean
and faulty application versions is compared for each test
case to determine if it detected the fault. When it is known
which faults each test case detects,Det, the fault-detection

3http://www.cs.wisc.edu/condor/

value for each〈test suite, fault〉 pair (1 if the test suite de-
tects the fault, 0 otherwise), is straightforward to compute.

This leaves two of the fault variables,Branch andStmt-
Det. Branch is found by noting in which method (if any) a
fault occurs and analyzing the control-flow graph created
by Sofya4 for that method. StmtDet is calculated using
statement-coverage traces recorded by Instr5 as each test
case is run on the clean version of the application. One hun-
dred length-twenty test suites are constructed using a proce-
dure similar to the one described in Section 4.1, except that
the coverage criterion used here is “100%” statement cover-
age. The percentage is in quotes because ensuring that ev-
ery executable statement is covered is a hard problem; we
merely require that each test suite cover all statements that
are exercised at least once by the test pool.

4.3. Logistic Regression Analysis

For statistical analysis in a study such as this, with a mix-
ture of continuous and categorical independent variables
and a boolean dependent variable, logistic regression is an
obvious choice. Logistic regression models are a variation
of linear regression models (e.g., best-fit lines) in which the
logit of the dependent’s probability, rather than the proba-
bility itself, is expressed as a linear function of the indepen-
dents.

The logit function is

logit(x) = log

(

x

1 − x

)

Whenx ranges from 0 to 1, as bothDet andPr(Det = 1)

do, logit(x) ranges from−∞ to ∞. Let ~I be the vector of
independents:

~I = [Len, Size, E3Cov, E2Cov, Mut, Branch, StmtDet]

The logistic regression model of interest, then, is

logit(Pr(Det = 1)) = α + ~β · ~I

whereα is a constant and~β is the vector of coefficients
for ~I. Given a data set of~I andDet values, a maximum
likelihood estimation algorithm finds values forα and ~β.
This is calledfitting the model to the data. In this study,
the R software environment6 is used to do model-fitting and
other statistical analysis.

In a model that fits the data well, the coefficients~β in-
dicate the magnitude and direction of their respective inde-
pendent variables’ influence on the logit of the dependent
variable. Usually, logistic regression coefficients are inter-
preted by transforming them intoodds ratios. If an event
occurs with probabilityp, theoddsof its occurrence are

odds(p) =
p

1 − p

4http://sofya.unl.edu
5http://www.glenmccl.com/instr/index.htm
6http://www.r-project.org



This is the ratio of the probability that the event occurs to the
probability that it does not occur. It is alsoexp(logit(p)).
The odds ratio for~Ii,

ORi(∆) = exp(~βi∆)

is the factor by whichodds(Pr(Det = 1)) increases when
~Ii is increased by∆ and all other independents are held
constant. (For dichotomous independents such asBranch,
∆ must be 1.)

To evaluate how well the computed logistic regression
models fit our data, we perform achi-square test of good-
ness of fit. This statistical test determines whether the mag-
nitude of error is acceptably low. Byerror, we mean the
discrepancy between the predicted values ofPr(Det = 1),
as computed by plugging values of~I from the data into the
model, and the actual values ofDet in the data. For logistic
regression models, the error metric used is called thelike-
lihood ratio. The likelihood ratio “reflects the significance
of the unexplained variance in the dependent” [5] and is
computed by the R application during model-fitting. If the
model fits well, then the distribution of the likelihood ra-
tio approximates a chi-square distribution. The chi-square
test of goodness of fit assesses how much the likelihood ra-
tio deviates from the expected chi-square distribution. Ifthe
deviation is small enough, implying that the model fits well,
then the chi-square test tells us as much: it isnotstatistically
significant.

The significance of individual variables in the model can
be assessed in a similar way. In this case, two models are
fit to the data, one that includes the variable in question (the
full model) and one that does not (thereduced model). Ex-
cept for the variable in question, the two models must in-
clude the same set of variables, so that the reduced model
is nested within the full model. Alikelihood ratio testis a
chi-square test of the difference between the two models’
likelihood ratios. If the outcome of this test isnot statisti-
cally significant, indicating that the two models are approx-
imately equivalent, then the variable in question is superflu-
ous in the full model and can be dropped from it.

5. Results
Table 3 gives an overview of the data collected for CWS,

while Table 4 shows the same for FM. Although the two
applications’ data sets have many similarities, one notable
difference is that FM’sSize values are much larger.

CWS. Table 5 shows the fitted model when all indepen-
dent variables but no interactions between variables are in-
cluded. In this and other figures, variables significant at the
0.05 level are italicized. Recall from Section 4.3 that each
coefficient estimates the log of the odds ratio of the inde-
pendent variable’s effects on the dependent. BecauseMut
has just two possible values,class-levelor method-level—
encoded as 0 and 1, respectively—its coefficient indicates

Table 3. CWS: Data summary.
Variable Min. Q1 Med. Q3 Max.
StmtDet 0.0000 0.0000 0.0000 1.0000 1.0000
Branch 1 3 12 16 21
E3Cov 0.7619 1.1206 1.1922 1.2421 1.3480
E2Cov 0.6937 0.7956 0.8520 0.9491 2.6875
Size 16 253 330 391 551
Len 2 7 11.5 17 20

Variable Values
Class-level (0) Method-level (1)

Mut
86 60

Undetected (0) Detected (1)
Det

88 58

Table 4. FM: Data summary.
Variable Min. Q1 Med. Q3 Max.
StmtDet 0.0000 0.0000 0.9800 1.0000 1.0000
Branch 1 4 11 19 26
E3Cov 0.3970 0.8643 0.9418 0.9916 1.0430
E2Cov 0.7736 0.8906 0.9065 0.9134 0.9260
Size 824 1468 1772 2130 2580
Len 2 6 10 15 20

Variable Values
Class-level (0) Method-level (1)

Mut
63 83

Undetected (0) Detected (1)
Det

70 76

how much more likely it is thatDet = 1 for method-level,
as opposed to class-level, mutants.

When variables are iteratively removed from the model
(using likelihood ratio tests) and the reduced models
are re-evaluated until only significant variables remain,
the reduced model in Table 6 results. This model
estimates that the odds of fault detection increase by
exp(0.75095) = 2.1190 whenStmtDet increases by 10%
and byexp(0.76295) = 2.1446 when theE3Cov increases
by 10%. Further, the odds of detecting a method-level mu-
tant areexp(0.6475) = 1.9108 times the odds of detecting
a statement-level mutant. For both the full and the reduced
model, the chi-square test of goodness of fit gives a non-
significant result, indicating that the models fit the data well.

Table 7 shows the model that results when a model in-
cluding all two-way interactions is fit to the data and non-
significant terms are iteratively dropped, as just described.
Again, a chi-square test of goodness of fit indicates that the
model fits adequately.

FM. Table 8 shows the model built from all main ef-
fects, while Table 9 shows the model obtained by iteratively
reducing the full model until only significant terms remain,
as was done for CWS. The reduced model estimates that
whenStmtDet increases by 10% the odds of fault detection



Table 5. CWS: All main effects.
Term Coef. Std. err. p

Intercept -19.320275 11.197035
Mut 0.845414 1.006531 0.043
StmtDet 8.605552 1.802348 9.276e-32
Branch -0.005935 0.057449 0.688
E3Cov 10.124242 11.051126 0.006
E2Cov 1.575090 3.083643 0.451
Size -0.009948 0.017290 0.696
Len 0.302461 0.250067 0.209

Table 6. CWS: Reduced main effects.
Term Coef. Std. err. p

Intercept -13.8436 3.7367
Mut 0.6475 0.9406 0.043
StmtDet 7.5095 1.2689 9.276e-32
E3Cov 7.6295 2.8486 0.005

increase byexp(0.60941) = 1.8393. Table 10 shows the
reduced model created similarly from a model that includes
all two-way interactions between variables. For all of these
models, a chi-square test of goodness of fit shows that they
fit the data adequately.

6. Discussion
For both CWS and FM, one dominant factor affecting a

fault’s probability of detection in this experiment is, perhaps
not surprisingly, its probability of detection by statement-
coverage-adequate test suites (StmtDet). This validates the
common use of statement coverage in practice, but with a
caveat: statement coverage in this study may be correlated
with false reports of fault detection by GUITAR, as noted
in the threats to validity below. In this study, all faults were
mutations of single source lines and most occurred inside
method bodies. Future work will investigate our hypothe-
sis that statement coverage is less tightly coupled with fault
detection for other kinds of faults.

For CWS, several additional factors are found to influ-
ence fault detection: mutant type (Mut), the ratio of event-
triple coverage to event-pair coverage (E3Cov), and the
interaction betweenMut andStmtDet. The results show
that, while class-level mutants are more likely to be detected
overall, the combination of being method-level and having a

Table 7. CWS: Reduced interactions.
Term Coef. Std. err. p

Intercept -13.482 3.944
Mut -4.457 4.651 0.043
StmtDet 6.202 1.198 9.276e-32
E3Cov 8.276 3.122 0.005
Mut:StmtDet 7.496 6.425 0.046

Table 8. FM: All main effects.
Term Coef. Std. err. p

Intercept -51.632032 33.409756
Mut -1.871670 1.060126 0.283
StmtDet 8.286633 1.560292 7.662e-34
Branch -0.087791 0.064158 0.069
E3Cov -11.276352 15.762959 0.628
E2Cov 76.814515 48.580206 0.125
Size -0.008781 0.007747 0.862
Len 0.613092 0.464744 0.170

Table 9. FM: Reduced main effects.
Term Coef. Std. err. p

Intercept -3.1243 0.5858
StmtDet 6.0941 0.8067 3.46e-33

highStmtDet value increases a mutant’s odds of detection.
According to the model in Table 7, increasing a test suite’s
event-triple coverage by 10% while holding other variables
constant increases the suite’s odds of detecting a given fault
by a factor about 2.3, and a fault that is 10% more likely to
be detected by a statement-coverage-adequate test suite has
about 1.9 times greater odds of detection by GUI testing.

There are at least two alternate explanations for class-
level mutants’ overall propensity for detection in CWS.
One is that class-level mutants located outside of method
bodies (e.g.,member variable initialization deletion) may
be exposed by executing any of several statements, unlike
method-level mutants, which affect just one statement. An-
other is that, since coverage of mutants outside methods
is not directly observable from statement-coverage traces,
such coverage may be correlated with false reports of fault
detection. In either case, the suspected influence of extra-
method mutants accounts for the fact thatMut is significant
for CWS, which has thirteen extra-method mutants, but not
for FM, which only has three. The positive coefficient of
Mut × StmtDet for CWS may compensate, in a sense, for
the negative coefficient ofMut.

ThatE3Cov does not bear a relationship to fault detec-
tion in FM’s data suggests that the state spaces of FM and
CWS differ in some important way. More of CWS’s events
may interact semantically with each other (as defined by
Yuan and Memon [19]) perhaps making it more likely that a
particular sequence of events, rather than some single event,
must be executed to expose a randomly placed fault.

Table 10. FM: Reduced interactions.
Term Coef. Std. err. p

Intercept -3.1494 0.5939
StmtDet 11.8639 3.5034 3.46e-33
StmtDet:Branch -0.3023 0.1508 0.003



The lack of relationship between test-case length (Len)
and fault detection partly confirms earlier results by Xie
and Memon [18] and Rothermel et al. [16], which show
that test-case length/granularity affects which, but not how
many, faults are detected. In our results, test-case lengthis
not found to affect fault detection, but neither are any qual-
ities of faults in tandem with test-case length. In particular,
our hypothesis that the level of branching in the method sur-
rounding the fault is one of these qualities (inspired by the
conjecture of Xie and Memon [18]) is not confirmed by the
data, although threats to validity may have interfered. Ap-
parently, if some variable or variables affect which faults
are detected with different-length test cases, they remainto
be found.

Threats to validity. Threats to internal validity concern
factors other than the independent variables that may ac-
count for study results. Because the GUITAR framework
used to generate and run test cases is an evolving research
tool, it sometimes generates invalid test cases or fails to run
valid ones. We tried to minimize this threat by checking
GUITAR’s results against statement coverage and discount-
ing spurious failures (Section 4.1). This correction itself
may have biased the results to some degree, since test cases
with certain characteristics (e.g., covering a certain event)
may be more likely to spuriously fail. Some GUITAR-
reported failures that did not contradict statement-coverage
traces may still have been spurious, so easily-covered faults
may be correlated with false reports of fault detection.

Threats to external validity limit the generalizability of
study results. Like any study whose sample of test suites
and faulty applications is limited, this study does not enable
us to predict with any confidence what would happen with
other, different test suites and faulty applications. But,as
Section 1 explained, this experiment is a starting point for
studies of a much broader sample of testing techniques and
software.

Threats to construct validity are discrepancies between
the variables conceptually of interest and the variables ac-
tually measured in the study. The study variableBranch is
the number of branch points in thebytecodeof the faulty
method, but it serves as a proxy for the number of branch
points in thesource codeof the faultyevent handler(Sec-
tion 3). The latter value is hard to measure, since it is not
clear how to map source-code lines to event handlers.

Threats to conclusion validity are problems with the way
the study employs statistics. The two main threats here arise
from assumptions of logistic regression analysis that may
have been violated. First, all relevant variables are assumed
to be included in the model. Of course, one goal of this
research is to identify the variables that are relevant. Sec-
ond, the data set of〈test suite, fault〉 pairs must be chosen
by independent sampling. Building the test suites from a
test pool, though necessary to make the experiment feasi-

ble, may violate this assumption, though negligibly if the
test pool is large enough [5].

7. Conclusions and future work
This work explored the relationship between properties

of a 〈test suite, fault〉 pair and the likelihood that the test
suite detects the fault. We think research on this topic will
not only supplement the body of empirical software-testing
studies, but also prove valuable to practitioners. Of the test-
suite and fault properties studied in this work—mutant type,
detectability with statement-coverage-adequate test suites,
branch points, GUI-event-pair and event-triple coverage,
test-suite size, and test-case length—a software tester could
reasonably measure most with existing tools; in principle,
measurement of all properties could be automated. Our
experiments with two GUI-based applications support the
hypothesis that certain of these properties can influence
fault detection—specifically, detectability with statement-
coverage-adequate test suites, event-triple coverage, mutant
type, and the interaction between the first and third of these.
When these results have been replicated in a broader set of
testing situations, a software tester will be able to predict
with some confidence how changes to a test suite would af-
fect its ability to detect the kinds of faults most likely to be
present. Further, understanding the similarities and differ-
ences between her context and the context in which some
empirical study is performed, the software tester would bet-
ter understand how to interpret the results of the study in her
own context.

Much future work remains. This includes addressing
threats to validity encountered in this work, improving the
statistical model relating characteristics of testing situations
to fault detection, and providing techniques and tools to
practitioners.

Many of the threats to validity in this work can be miti-
gated by performing similar experiments with different ap-
plications, different kinds of faults, and different testing
techniques. If statistical models constructed from differ-
ent data sets vary widely, then additional model parameters
may need to be sought to explain the variation. In fact, we
do not expect the set of model parameters used here to be
complete; they were just a starting point that allowed us to
demonstrate a general methodology for evaluating model
parameters. In the future, model parameters for classes of
software other than GUI-based, including the closely re-
lated class of event-driven software, will need to be selected
and evaluated.

8. Acknowledgments
This work was partially supported by the US National

Science Foundation under NSF grant CCF-0447864 and the
Office of Naval Research grant N00014-05-1-0421. The au-
thors thank Jeff Offutt for his help with using MuJava.



A. Calculation of Sample Size

The following formulas are due to Hsieh et al. [8] and
were implemented by this paper’s authors in the R software
environment. The sample sizen required to test one inde-
pendentX in the presence of the other independents is

n =
n1

1 − R2

wheren1 is the sample size that would be required to test
X if it were the only independent.

For continuous independent variables,

n1 =
(Z1−α/2 + Z1−β)2

rX̄(1 − rX̄)β∗2

whereZu is theuth percentile of the standard normal distri-
bution andβ∗ is the effect size. The value ofrX̄ , the proba-
bility of fault detection at the mean value ofX , is estimated
by fitting a logistic regression model to the pilot-study data
for X and the dependent variable, then plugging the sample
mean ofX in for X .

For dichotomous (boolean) independent variables,

n1 =
(Z1−α/2V

1/2 + Z1−βW 1/2)2

(r0 − r1)2(1 − s1)
, where

V =
r(1 − r)

s1

W = r0(1 − r0) +
r1(1 − r1)(1 − s1)

s1

In these formulas,s1 is the proportion of the pilot-study data
with X = 1; r0 andr1 are the empirical probabilities of
fault detection whenX = 0 andX = 1, respectively; and
r = (1 − s1)r0 + s1r1 is the overall empirical probability
of fault detection.

This takes care ofn1, leavingR2, the squared multiple
correlation coefficient relatingX to the rest of the indepen-
dents. In the R environment,R2 is calculated as a side effect
of fitting a linear model, in whichX is predicted by the rest
of the independents, to the pilot-study data.

Finally, to obtain a sample size for our study, we find
n for each independent variable and take the maximum of
these.

References

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? InProceedings of
ICSE ’05, pages 402–411, 2005.

[2] V. R. Basili and R. W. Selby. Comparing the effective-
ness of software testing strategies.IEEE Trans. Softw. Eng.,
13(12):1278–1296, 1987.

[3] S. Elbaum, D. Gable, and G. Rothermel. Understanding and
measuring the sources of variation in the prioritization ofre-
gression test suites. InProceedings of METRICS ’01, pages
169–179, Apr. 2001.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorpo-
rating varying test costs and fault severities into test case
prioritization. InProceedings of ICSE ’01, pages 329–338,
2001.

[5] G. D. Garson. Statnotes: Topics in multivariate analysis,
2006. http://www2.chass.ncsu.edu/garson/
PA765/statnote.htm .

[6] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test se-
lection techniques. ACM Trans. Softw. Eng. Methodol.,
10(2):184–208, 2001.

[7] M. J. Harrold, A. J. Offutt, and K. Tewary. An approach to
fault modeling and fault seeding using the program depen-
dence graph.J. Syst. Softw., 36(3):273–295, 1997.

[8] F. Y. Hsieh, D. A. Bloch, and M. D. Larsen. A simple
method of sample size calculation for linear and logistic
regression.Statistics in Medicine, 17(14):1623–1634, July
1998.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. InProceedings of ICSE ’94,
pages 191–200, 1994.

[10] S. McMaster and A. Memon. Call stack coverage for GUI
test-suite reduction. InProceedings of ISSRE ’06, pages 33–
44, 2006.

[11] A. M. Memon and Q. Xie. Studying the fault-detection ef-
fectiveness of GUI test cases for rapidly evolving software.
IEEE Trans. Softw. Eng., 31(10):884–896, 2005.

[12] J. A. Morgan, G. J. Knafl, and W. E. Wong. Predicting fault
detection effectiveness. InProceedings of METRICS ’97,
page 82, 1997.

[13] A. J. Offutt and J. H. Hayes. A semantic model of program
faults. InProceedings of ISSTA ’96, pages 195–200, 1996.

[14] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant opera-
tors.ACM Trans. Softw. Eng. Methodol., 5(2):99–118, 1996.

[15] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting
the location and number of faults in large software systems.
IEEE Trans. Softw. Eng., 31(4):340–355, 2005.

[16] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri,
and X. Qiu. On test suite composition and cost-effective
regression testing. ACM Trans. Softw. Eng. Methodol.,
13(3):277–331, 2004.

[17] J. Strecker and A. M. Memon. Faults’ context matters. In
Proceedings of SOQUA ’07; co-located with ESEC/FSE ’07,
Sept. 2007.

[18] Q. Xie and A. Memon. Studying the characteristics of a
”good” GUI test suite. InProceedings of ISSRE 2006, Nov.
2006.

[19] X. Yuan and A. M. Memon. Using GUI run-time state as
feedback to generate test cases. InProceedings of ICSE ’07,
pages 396–405, May 2007.


