
Covering Array Sampling of Input Event Sequences for
Automated GUI Testing

Xun Yuan
Dept. of Computer Science

University of Maryland
College Park, MD, USA
xyuan@cs.umd.edu

Myra B. Cohen
Dept. of Computer Science

and Engineering
University of Nebraska -

Lincoln
Lincoln, NE 68588-0115, USA

myra@cse.unl.edu

Atif M. Memon
Dept. of Computer Science

& Institute for Advanced
Computer Studies

University of Maryland
College Park, MD, USA
atif@cs.umd.edu

ABSTRACT
This paper describes a new automated technique to generate
test cases for GUIs by using covering arrays (CAs). The key
motivation is to generate long GUI event sequences that are
systematically sampled at a particular coverage strength.
CAs, to date, have not been effectively used in sampling
event driven systems such as GUIs which maintain state.
We leverage a “stateless” abstraction of GUIs that allows us
to use CAs. Once the CAs have been generated, we reuse
the abstractions to reinsert ordering relationships between
GUI events, thereby creating executable test cases. A feasi-
bility study on a well-studied GUI-based application shows
that the new technique is able to detect a large number of
previously undetected faults.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
GUI Testing, Event Driven Software, Covering Arrays

1. INTRODUCTION
The ubiquitousness of graphical user interfaces (GUIs)

makes it the most important (and in many cases the only)
means used to interact with today’s software [5]. As an
end user interacts with GUI-based software by performing
sequences of events (e.g., Click-on-Cancel-Button, Type-in-
Text) on GUI widgets (e.g., Cancel-Button, Text-box), the
software responds in one of several ways which may include
a change of the state of some GUI widgets. Because of
this strategic role in a software system, ensuring the quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 . . .$5. 00.

of GUIs is paramount for ensuring the quality of the over-
all software. Over the last eight years, we have developed
a number of techniques to test GUI-based applications for
functional correctness [6, 8]. Most of these techniques em-
ploy software models to generate sequences of GUI events,
which are replayed automatically as test cases.1

To date, our most successful automated model-based GUI
testing solution uses a directed graph model of the GUI
called an event-interaction graph (EIG) [4]. This solution re-
quires generating test cases, each covering a single directed
edge (a pair of events) in the EIG. These test cases are
referred to as 2-way covering because each test targets a
unique pair of EIG events [4]; in fact, we generate each 2-
way covering test case by picking the two events (ex, ey)
connected by an edge and use graph traversal algorithms
to generate an event sequence to “reach” event ex from a
member of the set of events that are available when the GUI
application is first launched. This ensures that the resulting
test case is executable in the GUI’s start state. The 2-way
covering sequences have a distinct advantage over testing
each event in isolation – they expand the number of states
or contexts in which a particular event is executed, improv-
ing the likelihood that a fault is detected. Our previous
empirical studies have demonstrated that these test cases
reveal a large number of GUI faults. However, there is a
class of faults which, we term EIG2++ faults that are missed
by 2-way test coverings. In fact, these faults may only be
detected by executing 3-, 4-, or t-way test cases between
certain events [4, 8]. A 3-way covering test case is an event
sequence < e1; e2; e3 > such that (e1, e2) and (e2, e3) are di-
rected edges in the EIG; similarly, a 4-way covering test case
< e1; e2; e3; e4 > covers edges (e1, e2), (e2, e3), and (e3, e4);
and so on up to t. However, as we increase the number of
events in a sequence, the size of the test suite grows pro-
hibitively large, preventing us from using sequences longer
than 3 or 4 in most cases.

In this paper we focus on this subset of EIG2++ faults and
leverage covering arrays [2] (see Section 2) to develop a new
automated technique for generating GUI test cases. The key
motivation behind using covering arrays is to generate longer
sequences that are systematically sampled at a particular
coverage strength. By using covering arrays we maintain t-
way coverage, but we can use any length sequence of at least
t. Furthermore we gain additional coverage by testing all t-
way sequences from a variety of start states, since covering

1http://guitar.cs.umd.edu

405

arrays ensure that a given 2-, 3-, 4-, or t-way relationship is
maintained between GUI events in all possible combinations
of t-locations in the sequence.

In order to use covering arrays effectively, we employ an
EIG model that eliminates the need for ordering relation-
ships between GUI events. This model is then used to ob-
tain the covering arrays. During testing, the rows of the
arrays are mapped back to the GUI’s original input space
in which ordering relationships are reinserted and used to
generate test cases. We demonstrate and evaluate our new
technique via a feasibility study on one application. The
results of our study show that the covering array approach
is able to detect a large number of EIG2++ faults.

The next section gives an overview of covering arrays. Sec-
tion 3 presents the major steps of our techniques via a fea-
sibility study. Finally, Section 4 concludes with a discussion
of future work.

2. COVERING ARRAYS
A covering array, CA(N ; t, k, v), is an N × k array on v

symbols with the property that every N × t sub-array con-
tains all ordered subsets of size t of the v symbols at least
once [2]. In other words, any subset of t-columns of this
array will contain all t-combinations of the symbols. We use
this definition to define the GUI event sequences.2 To see
how this can be applied to GUI event sequences, suppose we
want to test sequences of length four and each location in
this sequence can contain exactly one of three events (Clear
Canvas, Draw Circle, Refresh) as is shown in Figure 1. Test-
ing all combinations of these sequences requires 81 test cases.
We can instead sample this system, including all sequences
of shorter size, perhaps two. We model this sequence as a
CA(N ; 2, 4, 3) (lower portion of Figure 1). The strength of
our sample is determined by t. For instance we set t = 2 in
the example and include all pairs of events between all four
locations. If we examine any two columns of the covering
array, we will find all nine combinations of event sequences
at least once. In this example there are 54 event sequences
of length two which consider the sequence location. This
can be compared with testing only the nine event sequences
which would be used in our prior generation technique for a
2-cover (top portion of Figure 1)

The number of test cases required for the t-way property,
is N . In our example, we can generate a CA(9; 2, 4, 3). Since
the primary cost of running the test case is the setup cost, we
cover many more event sequences for almost the same cost
as our 2-way cover. In general we cannot guarantee that the
size of N will be the same as a shorter sequence, but it will
grow logarithmically in k rather than exponentially as does
number of all possible sequences of length k [1].

3. FEASIBILITY STUDY
We now demonstrate the main steps of our approach via

a feasibility study. The study is designed to compare the
fault detection effectiveness (FDE) of t-way covering array
sampling with that of same and stronger t-way coverage on
shorter sequences.

2A more general definition for a covering array, a mixed level
covering array, can be defined that allows each location in
the array to have a different number of symbols. This type
of array is not necessary for this study, since we have the
same number of events in each of the k positions.

Events: {Clear Canvas, Draw Circle, Refresh}

2-way covering
1. <Clear Canvas, Clear Canvas>
2. <Clear Canvas, Draw Circle>
3. <Clear Canvas, Refresh>
4. <Draw Circle, Draw Circle>
5. <Draw Circle, Refresh>
6. <Draw Circle, Clear Canvas>
7. <Refresh, Refresh>
8. <Refresh, Clear Canvas>
9. <Refresh, Draw Circle>

Covering Array: CA(9;2,4,3)

Clear CanvasRefreshDraw CircleRefresh

RefreshClear CanvasRefreshRefresh

Draw CircleDraw CircleClear CanvasRefresh

Clear CanvasDraw CircleRefreshDraw Circle

Draw CircleClear CanvasDraw CircleDraw Circle

RefreshRefreshClear CanvasDraw Circle

RefreshDraw CircleDraw CircleClear Canvas

Draw CircleRefreshRefreshClear Canvas

Clear CanvasClear CanvasClear CanvasClear Canvas

Figure 1: 2-way Covering and Covering Array

(1) Generate GUI

Event Graph

(2) Partition

GUI Events

(4) Generate Covering Array Sample

(6) Run Test Cases
(5) Generate Executable

 Tests
(7) Determine Missing

Coverage

Feedback Loop

Output Fault

Report

(3) Identify Constraints

Figure 2: Test Generation Process Using Covering
Array Sampling

We use the TerpPaint application for this study [6]. The
application was hand seeded with 263 faults by several grad-
uate students in the University of Maryland testing team.
Since this study is concerned primarily with the fault detec-
tion effectiveness of event sequences longer than two in order
to detect EIG2++ faults, only the seeded faults which were
not detected by the existing 2-way covering EIG test cases
were used in this study. There are a total 115 faults out of
the original 263 seeded faults that fall into this category.

3.1 Process
Our test process consists of seven steps (see Figure 2). It

begins by creating an EIG which is then partitioned into
groups of interacting events. Next reachability constraints
are identified and used to generate an unordered abstract
model for testing. We continue with a feedback loop that
generates covering array samples, runs the test cases and
determines t-way coverage. If coverage is incomplete we may
repeat these steps. We discuss each step in more detail below
in relation to our feasibility study.

Step One - Create EIG model: The GUIRipper tool [3]
is used to create the EIG model for TerpPaint. The EIG
contains System-Interaction events (those that interact with
the underlying system rather than manipulate the GUI’s
structure) and Terminal events (those that close windows)
[4]. Other events such as Open Window and Open Menu
events are omitted from the EIG to improve efficiency. Some
of the other events may be inserted back into the final event

406

Groups 1 2 3 4 5
Description Tool Mgt. Image Settings Clipboard Ops. Layer Manip. File Ops.
#Events 27 35 11 11 6

Event Space 2710 3510 1110 1110 610

CA CA(N ; 2, 10, 27) CA(N ; 2, 10, 35) CA(N ; 3, 10, 11) CA(N ; 3, 10, 11) CA(N ; 4, 10, 6)
#Test Cases (N) 1055 1783 2870 2870 3428

Table 1: Test Cases Generated by Covering Array Algorithm

sequences in Step 5 if they are needed to reach particular
system-interaction events.

Step Two - Partition the GUI events: This step, parti-
tions the events by functionality and is done manually. The
numbers of events for five groups are shown in Table 1.

Step Three - Identify constraints: This step creates our
abstract event model. Once the event graphs and groups
have been identified, it is necessary to specify constraints
on events such that the generated event sequences are ex-
ecutable. This is necessary because some events may not
be executable without a set of prior set-up events or must
occur only after another event has been fired. The abstract
constraint model creates aggregate events for these. For in-
stance, in the events of Figure 1 the Draw Circle event may
require that an event Set Ink Color occurs first. Although
this event may not have been of interest in the original EIG
graph, it will be needed to reach the event Draw Circle and
the new aggregate event will have these two events concate-
nated together. This will be retained as a single abstract
event Draw Circle in our model. The output of this phase
is the full set of aggregate events which can be expanded in
later steps into test sequences.

Step Four - Generate long test cases using covering array
sampling: We construct covering array samples for each of
the groups independently. We have chosen coverage crite-
ria for each group based on the number of events. Through
previous experimentation, we have determined that abstract
sequences of length 10, are about the maximum length se-
quences that run without failure. We have fixed our se-
quence length at 10 for this study. Each of the 10 locations
in our event sequence can contain any one of the events
from this group. This follows the model shown in Figure
1. We determine the strength (or t) for each covering array
using a heuristic that generates the highest covering array
strength, for each group, that will complete within two days
given our current computational resources. This number is
approximately 20,000.

Table 1 provides data on the covering array sampling for
each group. The #Events row shows the total number of
events in each group, the Event Space row, shows the num-
ber of sequences that would be required to cover all 10-way
combinations of the group. The CA row gives the cover-
ing array definition that was used for each group and the
#Test Cases row provides the number of test cases in the
final covering array sample generated. The covering arrays
were created using a simulated annealing program [2].

Step Five - Generate executable event sequences: Each
test case will be mapped back to executable event sequences
through the abstract event model identified in step three.

Step Six - Execute test sequences: The test cases are exe-
cuted on TerpPaint. The validity of test cases are identified
and the execution time is recorded. To gather oracles (used
to determine whether a test case failed or not) for our exper-

Group 3 4 Total
#Regenerated Test Cases 881 1536 2417

#Success 298 222 520
Percent Accum.

t-way Cov. 96.1 77.7 NA

Table 2: Regenerated Test Cases

iments, all tests are run on the original, non-faulty version of
TerpPaint. This collects the expected GUI run-time states
as each test executes.

Step Seven - Regenerate test cases to cover missing event
interactions: In the first two groups all tests executed suc-
cessfully to completion, i.e., we had 100 percent coverage
modeled by the covering array. In the last three groups,
however, we had failed test sequences that required a return
to step four in the feedback loop For groups three and four,
we re-generated covering arrays by identifying which of the
3-sets were already tested These were passed back into our
covering array algorithm as an optional argument. We did
not do this for the second group during our feasibility study
because only 9 tests failed providing almost 100 percent of
interaction coverage. In the last group, Group 5, we found
that there was a very strict ordering requirement between
GUI events, not captured in our abstract model. This may
be related to the large number of additional events needed
for reachability. Only a small set of the test cases ran to
completion (1.8% of the 4-way coverage was achieved). Since
the probability of generating new valid test cases was very
low, we decided not to re-generate more sequences for this
partition. Future work will involve further constraints and
better abstract models to avoid these types of problems.

Table 2 shows the lengths of the sequences and achieved
accumulated coverage after re-generating and running more
sequences. In both of these cases we were unable to achieve
100 percent coverage after 2 iterations of testing. Since the
second set of test sequences in Group 3 and 4 did not un-
cover any new faults, we chose not to continue with our
feedback loop and re-generate another set of test sequences.

Control Group: As a control group, we ran a test suite
T (orig) that uses the EIG algorithm to generate longer test
cases of complete t-way coverage. (In previous work this
has been the most effective test generation algorithm). It
includes two separate test suites T (same) and T (stronger).
T (same) includes test cases with the corresponding t-way
coverage for each group as the CA, T (cov). For T (stronger),
due to the enormous number of test cases that will be gen-
erated for each group in full t-way coverage, we generated
test cases which were only one-way longer than than the
coverage criteria used in the covering array sampling gener-
ation. For instance, in Group 2, T (stronger) is a 3-cover
(all 3-sequences) and for Group 3 T (stronger) is a 4-cover.

407

Table 3 shows the length of the T (stronger) test cases for
each group as well as the number of test cases.

Groups 1 2 3 4 5
Length
(t-way) 3 3 4 4 5
#Test
Cases 19683 42875 14641 14641 7776

#Success 19682 42806 13157 11321 281
Percent
t-way
Cov. 99.9 99.8 89.9 77.3 3.6

Table 3: T (stronger) Test Case Sizes

3.2 Results
Table 4 shows the fault detection effectiveness or FDE for

the covering arrays, sequences, T (cov), using both the orig-
inal arrays (T1) and regenerated arrays (T2), vs. two sets
of T (orig) test sequences, T (same) and T (stronger). FDE
is measured as the number of unique faults detected divided
by the total number (115). We can see that the number
of faults detected by T (cov) is much higher than that de-
tected by the T (stronger). The FDE increased by 17%. For
all groups, the covering array-based test cases detected the
same or more faults using a much smaller number of test
cases.

Test Suite
T (orig) T (cov)

T (same) T (stronger) T1 T2
Group 1 0 49 69 NA
Group 2 0 4 4 NA
Group 3 6 8 8 8
Group 4 0 0 0 0
Group 5 0 5 5 NA

Total(unique) 6 62 82
FDE 5.22% 53.91% 71.3%

Table 4: Fault Detection Effectiveness

4. CONCLUSIONS AND FUTURE WORK
This paper presented a new technique to improve GUI

test-case generation for EIG2++ faults. The technique uses
covering arrays to generate long event sequences that are
systematically sampled at a particular coverage strength.
This work is novel in its use of covering arrays to sample
sequences for state-based event-driven systems, an abstrac-
tion of the GUI that enables efficient use of covering arrays,
and empirical demonstration that certain faults can only be
detected by using long event sequences. A feasibility study
on a well-studied GUI-based application showed that the
new technique is able to detect faults that were previously
undetected.

Although the results of this first attempt at running a
sample of longer sequences that also constitute a shorter
t-way covering have been promising, it has also created a
number of interesting directions for future research. We are
preparing additional subject applications to further evalu-
ate the technique. We have started to examine the automa-
tion of the identification of event partitions (Step Two of
our process). Currently we perform this task manually; the

partitions are based on event functionality. A possible au-
tomated solution might be based on grouping events using
the event-semantic interaction relation that we have defined
in earlier work [8], which is based on how events modify
GUI widgets. We are also exploring the automation of Step
Three, i.e., specification of constraints. We feel that these
constraints may be automatically inferred from user profiles,
i.e., sequences of actual usage of the GUI. We already have
access to this data for TerpOffice. This data may also be
able to help us weed out unexecutable test cases.

We also see many opportunities to improve the cover-
ing array sequences used in this study. We are working on
adding temporal constraints that will allow the ordering of
specific abstract events to play a role in sequence generation,
and are looking at using covering arrays of varying strength
[7] to generate test cases. We believe this may further im-
prove overall fault detection. Finally, we feel there may be
an opportunity to improve early fault detection through or-
dering of test cases within the covering array samples.

Acknowledgments
This work was partially supported by the US National Sci-
ence Foundation under NSF grant CCF-0447864 and the
Office of Naval Research grant N00014-05-1-0421 and an
EPSCoR FIRST award.

5. REFERENCES
[1] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.

Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997.

[2] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge. Constructing test suites for interaction
testing. In Proceedings of the International Conference
on Software Engineering, pages 38–48, May 2003.

[3] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI
ripping: Reverse engineering of graphical user interfaces
for testing. In Proceedings of The 10th Working
Conference on Reverse Engineering, November 2003.

[4] A. M. Memon and Q. Xie. Studying the fault-detection
effectiveness of GUI test cases for rapidly evolving
software. IEEE Trans. Softw. Eng., 31(10):884–896,
2005.

[5] B. A. Myers. User interface software tools. ACM
Transactions on Computer-Human Interaction,
2(1):64–103, 1995.

[6] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for GUI-based software
applications. ACM Transactions on Software
Engineering and Methodology, 16(1):4, 2007.

[7] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20–34, 2006.

[8] X. Yuan and A. M. Memon. Using GUI run-time state
as feedback to generate test cases. In ICSE’07,
Proceedings of the 29th International Conference on
Software Engineering, pages 396–405, Minneapolis,
MN, USA, May 23–25, 2007.

408

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

