
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 1

Generating Event Sequence-Based Test Cases
Using GUI Run-Time State Feedback

Xun Yuan, Member, IEEE, and Atif M Memon, Member, IEEE

Abstract —This paper presents a fully automaticmodel-driven technique to generate test cases for Graphical user interface-based
applications (GUIs). The technique uses feedback from the execution of a “seed test suite,”which is generated automatically using
an existing structural event-interaction graphmodel of the GUI. During its execution, the run-time effect of each GUI event on all other
events pinpoints event-semantic interaction(ESI) relationships, which are used to automatically generate new test cases. Two studies
on eight applications demonstrate that the feedback-based technique (1) is able to significantly improve existing techniques and help
identify serious problems in the software and (2) the ESI relationships captured via GUI state yield test suites that most often detect
more faults than their code-, event-, and event-interaction-coverage equivalent counterparts.

Index Terms —GUI testing, automated testing, model-based testing, GUITAR testing system.

✦

1 INTRODUCTION

Automated test case generation (ATCG) has become increas-
ingly popular due to its potential to reduce testing cost and
improve software quality [1]. A typical approach used for
ATCG is to create an abstract model (e.g., state-machine model
[2], [3], event-flow model [4]) of the application under test
(AUT) and employ the model to generate test cases. While
successful at reducing overall testing cost, in practice, ATCG
continues to be resource-intensive, especially to create and
maintain the model. A few researchers have recognized that
these tasks may be aided by leveraging the execution resultsof
some existing test cases. Consequently, they have developed
automated feedback-based techniquesto augment the models
[5]–[14]. These techniques require an initial test case/suite to
be created, either manually or automatically, and executedon
the software. Feedback from this execution is used to augment
a preliminary model of the AUT andautomaticallygenerate
additional test cases. The nature of feedback depends largely
on the goal of the ATCG algorithm. A common example
of feedback is a code coverage report used to automati-
cally generate additional test cases that improve overall test
coverage [8]–[11], [13], [14]. Few techniques use feedback
from the AUT’s run-time stateto generate additional test
cases,e.g., in the form of outcomes of programmer-supplied
predicates in the code to cover all non-isomorphic inputs [12],
operational abstractions to cover increased program behaviors
[6], [7], and non-exception-throwing method-call sequences to
generate longer sequences [15].

This paper presents a new feedback-based technique for au-
tomated testing of graphical user interfaces (GUIs). GUIs lend
themselves to the feedback-based approach for a number of

• X. Yuan is currently a Software Engineer in Test at the GoogleKirkland
office.
E-mail: xyuan@cs.umd.edu

• A M Memon is with the Department of Computer Science, University of
Maryland, College Park, MD 20742.
E-mail: atif@cs.umd.edu

reasons. First, existing fully automatic model-based GUI test-
case generation algorithms produce test cases that exhaustively
test onlytwo-way interactionsbetween GUI events; these test
cases are called smoke tests [4]; they form the seed suite.
Systematically generating 3-, 4-, 5-, and above multi-way test
cases remains an open area of research. Second, existing tools
are easily adapted to monitor and store the run-time state of
the GUI. Finally, GUI testing is extremely important because
GUIs are used as front-ends to most software applications and
constitute as much as half of software’s code [16]. A correct
GUI is necessary for trouble-free execution of the application’s
underlying “business logic” [2], [3], [17].

The new feedback-based technique has been used in a
fully automatic end-to-end process for a specific type of GUI
testing. The seed test suite (in this case the smoke tests)
is generated automatically using an existingevent-interaction
graph (EIG) model of the GUI, which representsall possible
sequencesof events that may be executed on the GUI. The
smoke suite is executed on the GUI using an automatic test
case replayer. During test execution, the run-time state ofGUI
widgets is collected and used to automatically identify an
Event Semantic Interaction(ESI) relationship between pairs
of events. This relationship captures how a GUI event is
related to another in terms of how it modifies the other’s
execution behavior. Informally, eventex is ESI-related toey

iff ex influences the run-time behavior ofey, where “run-time
behavior” is evaluated in terms of properties of GUI widgets.
The ESI relationships are used to automatically construct a
new model of the GUI, called theEvent Semantic Interaction
Graph (ESIG). Because the seed suite is generated from the
EIG (a structural model) and the ESI relationship is obtained
in terms of event execution (a dynamic activity), the ESIG
captures certain structural and dynamic aspects of the GUI.
The ESIG is used to automatically generate new test cases.
These test cases have an important property – each event
is ESI-related to its subsequent event,i.e., it was shown to
influence the subsequent event during execution of the seed
suite.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 2

This entire process, including the scripts required to set up,
execute, and tear down test cases, has been implemented and
executes without human intervention. Two independent studies
have been conducted on eight GUI-based Java applications to
evaluate and understand this new approach. In an earlier report
of this work [5], we described the first study, which used
four well-tested and popular applications downloaded from
SourceForge; the study demonstrated that the feedback-based
technique improves existing techniques with little additional
cost. The ESI relationship is successful at identifying complex
interactions between GUI event handlers that lead to serious
failures. We presented details of some failures, emphasizing
on why they were not detected by the earlier techniques.
The failures were reported on the SourceForge bug reporting
site;1 in response, the developers fixed some of the bugs. The
developers had never detected our reported failures before
because their own tools and testing processes were unable to
comprehensively and automatically test the applications.

We now extend the research with the second study, con-
ducted on four fault-seeded Java applications developed in
house; this study shows that (1) the automatically identified
ESI relationships between events help to generate test suites
that detect more faults than their code-, event-, and event-
interaction-coverage equivalent counterparts, (2) certain char-
acteristics of the seeded faults prevent their detection bythe
earlier technique, but not the new technique, (3) several of
our missed faults remain undetected because of limitations
with our automated GUI-based test oracle (a mechanism that
determines whether a test case passed or failed), and (4)
several of the remaining undetected faults require long event
sequences.

Finally, we note that the use of software models to generate
sequences of events (commands, method calls, data inputs)
for software testing is not new. Numerous researchers have
developed techniques that employ state machine models [18]–
[22], grammars [23]–[25], AI planning [26], [27], genetic al-
gorithms [28], probabilistic models [29], architecture diagrams
[30], and specifications [31] to generate such sequences. All
of these techniques are useful, in that they can be used to
generate different types of test cases for different domains. All
of them are based on manually created models. Our research
presented in this paper is orthogonal to the other model-based
techniques; we focus on enhancing an existing model (in our
case the model is obtained automatically) via test execution
feedback. We feel that this approach may be used for the
other model-based techniques mentioned above – these other
models may also be enhanced with software execution and test
execution feedback.

The main contributions of this work include:

• extension of work on automated, model-based, systematic
GUI test-case generation,

• definition of new relationships among GUI events based
on their execution,

• utilization of run-time state to explore a larger input space
and improve fault-detection,

1. For example, https://sourceforge.net/tracker/?func=detail&atid=535427&aid
=1536078&groupid=72728.

• immersion of the feedback-based technique into a fully
automatic end-to-end GUI testing process and demon-
stration of its effectiveness on fielded and fault-seeded
applications,

• empirical evidence tying fault characteristics to types of
test suites, and

• demonstration that certain faults require well-crafted
combinations of test cases and oracles.

The next section discusses related literature. Section 3
introduces basic GUI concepts and reviews the EIG model that
forms the basis of the new ESIG model. Section 4 defines the
ESI relationship and uses it to define an ESIG. Sections 5 and 6
evaluate the new feedback-based technique. Finally, Section 7
concludes with a discussion of future work.

2 RELATED WORK

To the best of our knowledge, this is the first work that utilizes
run-time information as feedback for model-based GUI test-
case generation. However, run-time information has previously
been employed for various aspects of test automation, and
model-based testing has been applied to conventional software
as well asevent-driven software(EDS). This section presents
an overview of related research in the areas of model-based
and EDS testing, GUI testing, and the use of run-time infor-
mation as feedback for test generation.

2.1 Model-based & EDS Testing

Model-based testing automates some aspect of software test-
ing by employing a model of the software. The model is
an abstraction of the software’s behavior from a particular
perspective (e.g., software states, configuration, values of
variables, etc.); it may be at different levels of abstraction,
such as abstract states, GUI states, internal variable states, or
path predicates.
State Machine Models: The most popular models used for
software testing arestate machine models. They model the
software’s behavior in terms of its abstract or concrete states;
they are typically represented as state-transition diagrams.
Several types of state machine models have been used for
software testing, such asFinite State Machine Models(FSM)
[32]–[35], UML Diagram-based Models[36] and Markov
Chains[37].

Various extensions of FSMs have also been used for testing.
These extensions use variables to representcontextin addition
to states; the goal is to reduce the total number of states
by using an orthogonal mechanism, in the form of explicit
variables, to select state transitions. For example, anextended
finite state machine(EFSM) makes use of a data state along
with the input for state transformation [35]; this EFSM is used
by a tool called TestMaster to generate test cases by traversing
all paths from the start state to the exit state.

Because test cases for EDS are sequences of events, many
practitioners and researchers have found it natural to use
state machine models for testing EDS [38]–[40]. The EDS
is modeled in terms of states; events form transitions between
states. Algorithms traverse these machine models to generate
sequences of events. For example, Campbellet al.have applied



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 3

state machine models to test object-oriented reactive systems
[38]. Object states are modeled in terms of instance variable
values; transitions are obtained from method invocations;test
cases are sequences of method calls and are generated by
traversing the model.

2.2 GUI Test Case Generation

Several automated techniques have been developed for GUI
test case generation. All of them use a model of the software;
algorithms generate test cases from the model.
State-Based Techniques: Finite state machines have been
used to model GUIs [3], [41]. A GUI’s state is represented
in terms of its windows and widgets; each user event triggers
a transition in the FSM. A test case is a sequence of user
events and corresponds to a path in the FSM. As is the case
for conventional software, FSMs for GUIs also have scaling
problems; this is due to the large number of possible states
and user events in modern GUIs. Several GUI-domain-specific
attempts have been made to handle the scalability issue. For
example, Belli [41] converted a GUI FSM into simplified
regular expressions. The regular expressions were used to
generate event sequences. Shehadyet al. [2] proposed variable
finite state machine (VFSM), which augmented an FSM for
a GUI with global variables that can assume a finite number
of values during the execution of a test case. The value of
each variable is used to determine the next state and output in
response to an event.

AI planning has also been used to manage the state-space
explosion by eliminating the need for explicit states [26].A
description of the GUI is manually created by a tester; this
description is in the form ofplanning operators, which model
the preconditions and effects (post-conditions) of each GUI
event. Test cases are automatically generated from tasks (pairs
of initial and goal states) by invoking a planner which searches
for a path from the initial to the goal state.
Genetic Algorithms: Test cases have been generated using
genetic algorithms to mimic novice users [28]. The approach
uses an expert to generate an initial event sequence manually
and then uses genetic techniques to generate longer sequences.
The assumption is that experts take a direct path when per-
forming a task via the GUI, whereas novice users take longer,
indirect paths.
Directed Graph Models: In order to reduce manual work,
several new systematic techniques based on graph models of
the GUI have recently been developed. They are based on
Event Flow Graphs(EFG) [4] andEvent Interaction Graphs
(EIG). Because of its central role in this paper, we discuss the
EIG model in Section 3.

2.3 Execution Feedback for Test Case Generation

Execution feedback refers to information that is obtained
during test execution and used to guide test case generation.
This is calleddynamic test case generationand, to the best
of our knowledge, was originally proposed by Miller and
Spooner [14]. In their technique, the software source code
is instrumented to obtain execution feedback. The overall test
case generation process starts by executing an initial test. The

execution feedback is collected and analyzed. The results are
used to evaluate the “closeness,” according to some criterion,
of the execution to the desired outcome; the model used to
generate test cases is then modified accordingly; a new test
case is generated and executed. This loop stops when the
“closeness” evaluation is satisfied.

Since then, several researchers have used the same principle
for dynamic test generation.
Object Properties: Xie et al. [7] have developed a frame-
work that uses feedback in the form ofoperational ab-
stractions(summaries of program run-time state) and object
states to generate new test cases. This framework integrates
specification-based test generation and dynamic specification
inferences. Specification-based test generation is based on
formal specifications, which express the desired behavior of
a program. However, because formal specifications are dif-
ficult to obtain, dynamic specification inference attempts to
infer specifications, in the form of operational abstractions,
automatically from software execution. Other researchershave
also used operational abstractions, combined with symbolic
execution, to guide the generation of test cases [6].
Method-call Sequences: Pachecoet al. [15] have improved
random unit test generation by incorporating feedback ob-
tained from executing previous test inputs. They build inputs
incrementally by randomly selecting a method call to apply
and finding arguments from among previously-constructed
inputs. Boyapatiet al. employ a feedback-based technique to
obtain all non-isomorphic inputs (test cases) for a method [12].
Code Coverage Reports: All other techniques in this cate-
gory instrument elements (lines, branches, etc.) of the program
code, execute an initial test case/suite, obtain a coverage
report that contains the outcomes of conditional statements,
and use automated techniques to generate better test cases.
The techniques differ in their goals (e.g., cover a specific
program path, satisfy condition-decision coverage, covera
specific statement) and their test-case generation algorithms.
For example, Milleret al. [14] use code coverage and decision
outcomes to generate floating-point test data.

Severaliterative techniqueshave been used to generate a test
case that executes a given program path [9], [10], [13]. The
generation is formulated as a function minimization problem.
The gradient-descent approach is used to gradually adjust an
initial test case so that it executes the given path. Control-
flow information in the form of branch-predicate outcomes is
collected during software execution.

The chaining approach [8] has been used to generate test
cases, each to cover a given program statement. An initial
test case is executed; the program’s control- and data-flow are
used to determine whether the test case will lead to the given
statement. If not, the branch function of the problematic branch
is used to modify the test case. This process continues until
the given statement is executed.

Genetic algorithmshave also been used to automatically
generate test suites that satisfy thecondition-decisionade-
quacy criterion [11], which requires that each condition inthe
program be true for at least one test case and false for at least
one test case. A fitness function is defined for each branch. An
initial test suite is obtained and executed. The fitness functions



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 4

are used to evaluate the “goodness” of each test case. If a test
case covers a new condition-decision, it is considered to be
“more fit.” The test cases in the gene pool evolve to obtain a
new generation of test cases. The process stops until a desired
level of fitness is obtained.

Although the techniques discussed in this section are not
directly applicable to feedback-directed GUI test case gener-
ation, many of the underlying concepts have served as the
foundation for this work. For example, execution feedback is
used to generate GUI test cases, the EIG model is used to
generate the original seed suite, and traversal techniquesfrom
model-based testing are used to cover nodes and edges in the
ESIG.

3 PRELIMINARIES

The feedback-based technique utilizes an abstraction of the
GUI’s run-time statecollected and analyzed during the exe-
cution of test cases that covertwo-way interactionsbetween
GUI events in order to generate test cases that testmulti-way
interactions. This section defines these terms and introduces
notations for subsequent sections.

This work focuses on the class of GUIs that accept discrete
events performed by a single user; the events are deterministic,
i.e., their outcomes are completely predictable.2 A GUI in
this class is composed of a setW of widgets(e.g., buttons,
text fields); each widgetw ∈ W has a setPw of properties
(e.g., color, size, font). At any time instant, each property
p ∈ Pw has a uniquevalue (e.g., red, bold, 16pt); each value
is evaluated using a function from the set of the widget’s
properties to the set of valuesVp. The GUI stateat any time
instant is a set of triples (w, p, v), wherew ∈ W, p ∈ Pw and
v ∈ Vp, i.e., the observable state of the GUI.

A set of statesSI is called thevalid initial state setfor a
particular GUI if the GUI may be in any stateSi ∈ SI when
it is first invoked. The state of a GUI is not static; events
performed on the GUI change its state and hence are modeled
as functions that transform one state of the GUI to another.

GUIs contain two types of windows: (1)modal windows3

(e.g., FileOpen, Print) that, once invoked, monopolize
the GUI interaction, restricting the focus of the user to the
range of events within the window until explicitly terminated
(e.g., using Ok, Cancel), and (2)modeless windows(e.g.,
Find/Replace) that do not restrict the user’s focus. If,
during an execution of the GUI, modal windowMx is used
to open another modal windowMy, thenMx is called the
parentof My for that execution.

The seed test suite is generated using anevent-interaction
graph (EIG) model of the GUI, which is obtained automati-
cally using a standard GUI-reverse-engineering algorithm[4].
The EIG abstraction of the GUI represents only two types of
GUI events:terminationandsystem-interactionevents. Termi-
nation events close modal windows. Otherstructural events
are used to open and close menus and modeless windows,

2. Testing GUIs that react to temporal and non-deterministic events and
those generated by other applications is beyond the scope ofthis research.

3. Standard GUI terminology, e.g., see
http://java.sun.com/products/jlf/ed2/book/HIG.Dialogs.html.

and open modal windows, but are not represented in the EIG
(for reasons presented in earlier work [4]). The remaining
events, called system-interaction events, do not manipulate the
structure of the GUI. Directed edges between nodes encode
execution paths, i.e., sequences of events, in the GUI. For
example, an edge (ex, ey) shows thatey may be executed after
ex along someexecution path.

The basic motivation behind using a graph model to rep-
resent a GUI is that various types of existing graph-traversal
algorithms (with well-known run-time complexities) may be
used to “walk” the graph, enumerating the events along the
visited nodes, thereby generating test cases. In earlier research
[4], an algorithm calledGenTestCases was implemented
that returned all possible paths (sequences of events) in the
graph bounded to a specific length (number of EIG events)
of 2. These length-2 sequences are said to test alltwo-
way interactionsbetween the EIG events. This research will
generate test cases formulti-way interactions, i.e., longer paths
in an EIG. Because EIG nodes do not represent events to open
or close menus, or open windows, the sequences obtained from
the EIG may not be executable. At execution time, other events
needed to reach the EIG events are automatically generated,
yielding an executable test case [4]. To allow clean application
exit, each test case is also automatically augmented with
additional events that close all open modal windows before
the test case terminates.

The function notationSj = ex(Si) denotes thatSj is the
state resulting from the execution of eventex in stateSi. If
e1 and e2 are two different events in a GUI’s EIG, (e1, e2)
is an edge, andS0 ∈ SI is the initial state of the GUI, then
e1(S0) is the GUI state after performinge1, e2(S0) is the GUI
state after performinge2, ande2(e1(S0)) is the GUI state after
performing theevent sequence< e1; e2 >.

4 EVENT SEMANTIC INTERACTION GRAPH

The new feedback-based technique is based on the identifi-
cation of sets of events that need to be tested together in
multi-way interactions. We approximate this identification by
analyzing feedback from the run-time state of the GUI on
an initial test suite. Testing all two-way interactions between
all pairs of events is already quite practical with the smoke
test suite; we treat this suite as a starting point to collectthe
feedback. For each smoke test case< e1; e2 >, we collect
statese1(S0), e2(S0), ande2(e1(S0)).

Modal windows create special situations due to the presence
of termination events. This is because user actions in modal
windows do not cause immediate state changes; they typically
take effect after a termination eventTERM has been executed.
Hence, each of the statese1(S0), e2(S0), ande2(e1(S0)) must
be collected after the execution of the termination eventTERM.
Similarly, problems arise whene1 ande2 are in twodifferent
modal windows;e1 is in a modal window bute2 is in a
modeless window;e1 is in a modal window wherease2 is in its
parent window. All these situations require special handling.

Because of the need to precisely define all these situations
and for special handling of modal windows, we use formal



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 5

predicates. We first define six4 cases—as predicates—in one
context, i.e., where e1 and e2 are system-interaction events
in modeless windows; this situation is calledContext 1. We
will use the notationPn(m)(e1, e2) to represent a predicate
for case n in context m. We then define two additional
contexts; together, the six cases and three contexts yield
6 × 3 = 18 situations for computing run-time relationships
between events. We note that all these situations are necessary
because they capture distinct cases of how an event may
influence another’s execution.

4.1 Widget Modification

We first describe the cases in which an evente1 influencese2

by altering the waye2 modifies a widget’s properties.
Case 1: There is at least one widgetw with propertyp with
initial value v (hence the triple(w, p, v) is in S0), which is
not affected by the individual eventse1 or e2 (the triple is
also ine1(S0) ande2(S0)); however, it is modified when the
sequence< e1; e2 > is executed,i.e., the value ofw’s property
p changes fromv to v′.

This can be formally written asP1(1)(e1, e2) = ∃w ∈
W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, s.t. ((v 6= v′) ∧ ((w, p, v) ∈
{S0 ∩ e1(S0) ∩ e2(S0)}) ∧ ((w, p, v′) ∈ e2(e1(S0)))). It is
quite straightforward to encode such a predicate in a high-
level programming language. The implementation would loop
through the state triples and stop when one widget satisfying
the predicate is detected.
Case 2: There is at least one widgetw with propertyp that
has an initial valuev, which is not modified by the evente2;
it is modified bye1; however, it is modified differently by the
sequence< e1; e2 >.
Case 3: there is at least one widgetw with propertyp that
has an initial valuev, which is not modified by the evente1;
it is modified by e2; however, it is modified differently by
the sequence< e1; e2 >. Note that this case is different from
Case 2 because the event sequence remains the same,i.e., e1

is executed beforee2.
Case 4: there is at least one widgetw with propertyp that
has an initial valuev, which is modified by individual events
e1 ande2; however, it is modified differently by the sequence
< e1; e2 >.

4.2 Widget Creation

The above four cases all handle widgets that persist across
the four states being considered,i.e., S0, e1(S0), e2(S0), and
e2(e1(S0)). In many cases, event execution “creates” new
widgets,e.g., by opening menus; the next case handles newly
created widgets.
Case 5: there is at least onenewwidgetw with propertyp and
valuev in ex(S0), i.e., it was created by eventex (eithere1 or
e2) but did not exist in stateS0; it was created by the sequence
< e1; e2 > but with a different value for some property.

4. We have chosen to present only these six cases because we encountered
them numerous times in our work on GUI testing. These cases are not
exhaustive and we will continue to add new cases, as and when needed,
in the future.

4.3 Event Availability

A common occurrence of event interaction in GUIs is en-
abling/disabling widgets, thereby effecting event availability.
Case 6: there exists at least one widgetw that was disabled
in S0 but enabled bye1. Evente2 is performed onw; hence
e1 makese2 available for execution.

4.4 Additional Contexts

As mentioned earlier, all the six cases were described using
Context 1. We now present contexts 2 and 3 and discuss their
impact on the cases.
Context 2: If both e1 ande2 are associated with widgets that
are contained in one modal window with termination event
TERM, then the definitions ofe1(S0) , e2(S0), ande2(e1(S0))
are modified as follows:e1(S0) is the state of the GUI after
the execution of the event sequence< e1; TERM >, e2(S0) is
the state of the GUI after the execution of the event sequence
< e2; TERM >, and e2(e1(S0)) is the state of the GUI after
the execution of the event sequence< e1; e2; TERM >. Note
that we can maintain independence between states because the
sequences< e1; TERM >, < e2; TERM >, and< e1; e2; TERM >

are executed as separate smoke tests. Cases 1 through 6 apply,
using these modified definitions, fore1 and e2 in the same
modal window. The notation used for the predicates when
applied in Context 2 isPn(2)(e1, e2), where n is the case
number.
Context 3: If e1 is associated with a widget contained in
a modal window with termination eventTERM, and e2 is
associated with a widget contained in the modal window’s
parent window (i.e., the window that was used to open the
modal window) thene1(S0) is the state of the GUI after
the execution of the event sequence< e1; TERM >, e2(S0)
is the state of the GUI after the execution of the evente2, and
e2(e1(S0)) is the state of the GUI after the execution of the
event sequence< e1; TERM; e2 >. The notation used for the
predicates when applied in Context 3 isPn(3)(e1, e2), where
n is the case number.

4.5 Event-Semantic Interaction (ESI) Relationship

We are now ready to formally define the ESI
relationship. There is anEvent Semantic Interaction
relationship between two eventse1 and e2 iff
P1(1)(e1, e2)∨P2(1)(e1, e2)∨. . .P6(1)(e1, e2)∨P1(2)(e1, e2)∨
P2(2)(e1, e2)∨. . .P6(2)(e1, e2)∨P1(3)(e1, e2)∨P2(3)(e1, e2)∨
. . .P6(3)(e1, e2). That is, at least one of the predicates in
Cases 1 through 6 evaluates toTRUE in at least one context;

this relationship is written ase1
n(m)
−→ e2, where the number

n is one of the case numbers 1 through 6;m is the context
number. If multiple cases apply, then one of the case numbers
is used. Due to the specific ordering of the events in the
sequence< e1; e2 >, the ESI relationship is not symmetric.
Once all of the cases have been implemented, the feedback-
based process execution is straightforward. The steps of the
execution are as follows.

1) The seed suite consisting of all 2-way interactions<

ex; ey > between GUI events is executed on the software



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 6

in state S0; these test cases are simple enumerations
of all EIG edges. All eventsey are also executed in
S0. The state informationex(S0), ey(S0), ey(ex(S0)) is
collected and stored.

2) The above predicates are evaluated for each pair of
system-interaction events in the EIG that are either (1)
directly connected by an edge (Context 1) or (2) con-
nected by a path that does not contain any intermediate
system-interaction events (contexts 2 and 3),i.e., there
is at least one termination event that closes a modal
window on this path. If one of the predicates evaluates
to TRUE, the two events are ESI-related.

Once all the ESIs in a GUI have been identified, a graph
model called the ESI graph (ESIG) is created. The ESIG
contains nodes that represent events; a directed edge from node
nx to ny shows that there is an ESI relationship from the event
represented bynx to the event represented byny.

4.6 Test-Case Generation
The ESIG may be traversed using a modified version of the
GenTestCases algorithm discussed in Section 3. The dif-
ferences are that (1) an ESIG may contain multiple connected
components in which case the event sequences are generated
for each component separately, and (2) the length of the
obtained sequences is now a tunable parameter instead of a
fixed number 2. Study 1 in the next section uses values 3, 4,
and 5 for this parameter.

Our new implementation of theGenTestCases algorithm
is based on the adjacency matrix representation of directed
graphs. The key idea used in the implementation is that if we
start with a 0/1 adjacency matrix representation of the ESIG,
and take that matrix to the(N − 1)th power, the(i, j) entry
in the resulting matrix is the number of paths of lengthN

from nodei to nodej (recall that the length is measured in
number of nodes encountered along the path). In the trivial
case,N = 2 will return the input matrix – the(i, j) entry is
either 0 or 1,i.e., the number of length 2 paths from nodei

to nodej. For N = 3, the (i, j) entry in the result matrix is
the number of all length 3 paths from nodei to j.

Because we want to output actual test cases, not just count
them, we use a variation of the above approach. The only
difference is that instead of just counting the paths, our
implementation keeps track of all the actual paths themselves.
For this we had to modify the matrix multiplication algorithm
and the adjacency matrix representation. The adjacency matrix
is modified so that instead of 0/1, the(i, j) entry of the
matrix is a list of paths fromi to j. The matrix multiplication
algorithm is modified so that instead of multiplying and adding
entries, we concatenate pairs of paths together and union
all of them (respectively) to eliminate duplicates. The final
matrix entries are paths (i.e., test cases) of specific lengths.
We implemented the matrix-based test-case generator using
the Mathematicapackage.

5 STUDY 1: EVALUATING THE FEEDBACK -
BASED TECHNIQUE ON FIELDED APPLICATIONS

The test cases obtained from the modifiedGenTestCases
algorithm can be generated and executed automatically on the

GUI. The only unavailable part is thetest oracle, a mechanism
that determines whether an AUT executed correctly for a test
case. In this first study, an AUT is considered to havepassed
a test case if it did not “crash” (terminate unexpectedly or
throw an uncaught exception) during the test case’s execution;
otherwise itfailed. Such crashes may be detected automatically
by the script used to execute the test cases. The EIG and ESIG,
and their respective test cases may also be obtained automati-
cally. Hence, the entire end-to-end feedback-based GUI testing
process for “crash testing” could be executed without human
intervention. Note that, in the next section (Study 2), thiswork
is extended by employing a more “powerful” test oracle to
detect additional failures.

Implementation of the crash testing process included setting
up a database for text-field values. Since the overall process
needed to be fully automatic, a database containing one
instance for each of the text types in the set{negative number,
real number, long file name, empty string, special characters,
zero, existing file name, non-existent file name} was used.
Note that if a text field is encountered in the GUI, one
instance for each text type is tried in succession. The overall
process was implemented in the GUITAR GUI testing system
(http://guitar.sourceforge.net).

This process provided a starting point for a feasibility
study to evaluate the ESIG-generated test cases. The following
questions needed to be answered to determine the usefulness
of the overall feedback-based process:
S1Q1: In how many ESI relationships does a given event
participate? How many test cases are required to test two-
way interactions in an ESIG? How does this number grow for
3-, 4-, ..., n-way interactions?
S1Q2: How do the ESIG- and EIG-generated test suites
compare in terms of fault-detection effectiveness? Do the
former detect faults that were not detected by the latter?

To answer the above questions while minimizing threats
to external validity, this study was conducted using four
extremely popular GUI-based open-source software (OSS) ap-
plications downloaded from SourceForge. The fully-automatic
crash testing process was executed on them and the cause (i.e.,
the fault) of each crash in the source code was determined.
STEP 1: Selection of subject applications. Four popu-
lar GUI-based OSS (CrosswordSage 0.3.5, FreeMind 0.8.0,
GanttProject 2.0.1, JMSN 0.9.9b2) were downloaded from
SourceForge. These applications have been used in our pre-
vious experiments [5]; details of why they were chosen have
been presented therein. In summary, all the applications have
an active community of developers and a high all-time-activity
percentile on SourceForge. Due to their popularity, these
applications have undergone quality assurance before release.
To further eliminate “obvious” bugs, a static analysis tool
called FindBugs [42] was executed on all the applications;
after the study, we verified that none of our reported bugs
were detected by FindBugs.
STEP 2: Generation of EIGs & seed test suites. The
EIGs of all subject applications were obtained using reverse
engineering. In this study, only two-way interactions were
tested by the seed test suites. The seed test suites contained
920; 51,316; 29,033; and 4634 test cases for CrosswordSage,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 7

FreeMind, GanttProject, and JMSN, respectively.
STEP 3: Execution of the seed test suite. The entire seed
suite executed without any human intervention. It executedin
0.39, 30.83, 22.89, and 2.68 hours on CrosswordSage, Free-
Mind, GanttProject, and JMSN, respectively. In all, 163, 66,
14, and 34 test cases caused crashes; these crashes were caused
by 5, 4, 3, and 3faults (as defined earlier) for CrosswordSage,
FreeMind, GanttProject, and JMSN, respectively. The GUI’s
run-time state was recorded during test execution. All faults
were fixed in the applications.

Note that debugging and fault-fixing was necessary due
to two reasons. First, had we not done so, the longer test
cases that we will generate in the next few steps may contain
these short test cases as subsequences; the longer tests may
hence also crash due to the faults previously detected by the
seed suite, yielding no new useful results. Second, this is
what would happen in a real situation; a fault will be fixed
after it was detected. However, this is a threat to internal
validity because an obvious fix in one place may lead to a
new fault at another place in the application. To minimize the
threat, we reran the seed test suite to ensure the quality of
the fixes. Of course, this does not preclude the possibility of
introducing faults that are exposed by longer event sequences.
To completely eliminate this threat, we later verified that the
faults detected by our longer ESIG suites were not caused by
these fixes.
STEP 4: Generation of the ESIG. The above feedback
was used to obtain the ESIs for each application. To address
S1Q1, the number of ESI relationships in which each event
participates is shown in Figure 1. Each event in the GUI has
been assigned a unique integer ID; all event IDs are shown on
the x-axis. The y-axis shows the number of ESI relationships
in which the event participates.

The result shows that certain events dominate (around 25%)
the ESI relationship in GUIs. Manual examination of these
“dominant” events revealed that the nature of the subject
applications,i.e., most of them have a single dominant object
(crossword puzzle, mind map, project schedule, messenger
window) that are the focus of most events, is such that
several key events influence a large number of other events.
In the future, we will create a classification of these dominant
events. Moreover, several events participate in very few or
no ESI relations. These events include parts of theHelp
menu that has no interaction with other application events,and
windowing events such as scrolling for which no developer-
written code exists.

The ESIs were used to obtain the ESIGs and, subsequently,
additional test cases. The number of test cases was 3592,
160,629, 199,127, and 18,144 for CrosswordSage, FreeMind,
GanttProject, and JMSN, respectively.
STEP 5: Execution of the test cases. To addressS1Q2, all
the newly-generated test cases were executed. The execution
lasted for several days. In all, 68, 157, 109, and 20 test
cases caused crashes; they were caused by 3, 3, 3, and 1
faults for CrosswordSage, FreeMind, GanttProject, and JMSN,
respectively. These faults had not been detected by the two-
way test cases. We manually verified that the faults were not
introduced by our bug fixes of STEP 4. The result shows that

the ESIG-based test cases help to detect faults not detectedby
earlier techniques.

6 STUDY 2: D IGGING DEEPER VIA SEEDED
FAULTS AND IN-HOUSE APPLICATIONS

Although the previous study demonstrated the usefulness of
the ESIG-based technique, it also raised some important ques-
tions. One fundamental question that comes to mind pertains
to the cause(s) of the added effectiveness,i.e., “Is the added
effectiveness an incidental side-effect of the events, event
interactions, and lines-of-code that the ESI test cases cover
and their length; or is it really due to targeted testing of the
identified ESI relationships?”The empirical study presented
in this section is designed specifically to address the question
of how the fault-detection effectiveness of the suite obtained
by the feedback-based technique compare to that of other
“similar” suites, where similarity is quantified in terms of
statement coverage, event coverage, edge coverage, and size
(number of test cases).

This question will be answered by selecting four pre-tested
GUI-based applications, and generating and executing 2-way
EIG-based and 3-way ESIG-based test suites on them. We will
generate additional test suites that are similar to the ESIG-
based suite in terms of the aforementioned characteristicsand
are at least 3-way interacting, and compare their fault-detection
effectiveness. Fault detection effectiveness will be measured
on a per-test-suite basis in terms of number of faults detected.
We will also study the faults, pinpointing reasons for why
some of them remain undetected by our technique. Because
of space constraints, only select results are presented in this
section; the interested reader can find complete results in a
technical report [43].

6.1 Preparing the Subject Applications & Test Ora-
cles

Four open-source applications, called the TerpOffice suite,
consisting of Paint, Present, SpreadSheet and Word, have
been selected for the study.5 Table 1 shows key metrics
for TerpOffice. These applications are selected very carefully
for a number of reasons. In particular, to minimize threats
to external validity, the selected applications are non-trivial,
consisting of several GUI windows and widgets. For reasons
described later, artificial faults were seeded in the applications
– this required access to source code, bug reports, and a CVS
development history. To avoid (the often difficult) distinction
between GUI code and underlying “business logic,” GUI-
intensive applications were selected,i.e., most of the source-
code implemented the GUI. Finally, the tools implemented for
this research, in particular for reverse engineering, are well-
tuned for the Java Swing widget library – the applications had
to be implemented in Java with a GUI front-end based on
Swing components. As is the case with all empirical studies,
the choice of subject applications introduces some significant

5. Detailed specifications, requirements documents, source code
CVS history, bug reports, and developers’ names are available at
http://www.cs.umd.edu/users/atif/TerpOffice/.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 8

0 5 10 15 20 61
0

2

4

6

8

10

12

//

//

Event

N
um

be
r 

of
 E

S
Is

0 50 100 150 255
0

20

40

60

80

100

120

//

//

Event
0 50 100 271

0

5

10

15

20

25

30

//

//

Event
0 10 20 30 96

0

2

4

6

8

10

12

14

16

//

//

Event

(a) CrosswordSage-0.3.5 (b) FreeMind-0.8.0 (c) GanttProject-2.0.1 (d) JMSN-0.9.9b2

Fig. 1. ESI Distribution in OSS

threats to external validity of the results; these (and other)
threats have been noted in Section 7.

TABLE 1
TerpOffice Applications

Subjects Windows Widgets LOC Classes Methods
Paint 16 301 11,803 330 1,253

Present 11 322 10,847 292 2,057
SpreadSheet 9 176 5,381 135 746

Word 26 617 9,917 197 1,380
TOTAL 62 1,416 38,398 954 5,436

For the purpose of this study, a GUI fault is a mismatch,
detected by a test oracle, between the “ideal” (or expected)
and actual GUI states. Hence, to detect faults, a description of
ideal GUI execution state is needed. This description is used
by test oracles to detect faults in the subject applications. There
are several ways to create this description. First is to manually
create a formal GUI specification and use it to automatically
create test oracles. Second is to use a capture/replay tool
to manually develop assertions corresponding to test oracles
and use the assertions as oracles to test other versions of
the subject applications. Third is to develop the test oracle
from a “golden” version of the subject application and use
the oracle to test fault-seeded versions of the application. The
first two approaches are extremely labor intensive since they
require either the development of a formal specification or the
use of manual capture/replay tools; the third approach can be
performed automatically and has been used in this study.

Several faults were seeded in each application. In order
to avoid fault interaction and to simplify the mapping of
application failure to underlying fault, multiple versions of
each application were created; each version was seeded with
exactly one fault. Hence, a test case detects a faulti if there
is a mismatch between versioni (i.e., the version that was
created by seeding faulti) and the original. A mismatch is
detected by comparing, between the golden and fault seeded
version, the values of all the properties of all the GUI widgets
being displayed, after each event.

The process used for fault seeding was similar to the one
used in earlier work [4], [44]. Details will not be replicated
here. In summary, during fault seeding, 12 classes of known

faults were identified, and several instances of each fault class
were artificially introduced into the subject program code
in source code statements that were covered by the smoke
test cases, thereby ensuring that these statements were part
of executable code. Care was taken so that the artificially
seeded faults were similar to faults that naturally occur in
real programs due to mistakes made by developers; the faults
were seeded “fairly,”i.e., an adequate number of instances
of each fault type were seeded. Several graduate students
were employed to seed faults in each subject application;
they created 263, 265, 234, and 244 faulty versions for Paint,
Present, SpreadSheet, and Word, respectively.

6.2 Generating and Executing the ESIG-Based Test
Suite

The reverse engineering process was used to obtain the EIGs
for the original versions of each application. The sizes of the
EIGs, in terms of nodes and edges, are shown in Table 2.
These numbers are important as they determine the number of
generated test cases and their growth in number as test-case
length increases.

TABLE 2
ESIG vs. EIG Sizes

Paint Present SpreadSheet Word
#EIG Nodes 300 321 175 616
#EIG Edges 21,391 32,299 6,782 28,538

#ESIG Nodes 102 50 45 75
#ESIG Edges 233 233 197 204

The EIGs were then used to generate all possible 2-way
test cases,i.e., the smoke tests. The numbers generated were
exactly equal to the number of edges in the EIGs – it was
quite feasible to execute such numbers of test cases in little
more than a day on our 50 machines in parallel. The test cases
were executed on their corresponding “correct” applications;
the GUI state was collected and stored. The reader should note
that it is impractical to generate and execute all possible length
3 test cases for these EIGs.

While new software versions were being obtained (via fault
seeding as discussed in Section 6.1), the 2-way EIG-based test



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 9

TABLE 3
ESIG vs. EIG Fault Detection

Paint Present SpreadSheet Word
Total Faults 263 265 234 244

2-way EIG-detected Faults 147 139 139 183
3-way ESIG-detected Faults 47 52 39 36

(only new faults)

suites and GUI state were used to obtain all possible 3-way
ESIG covering test cases. The sizes of the ESIGs are shown in
Table 2. The table shows that the ESIGs are much smaller than
the corresponding EIGs. Due to the small number of nodes and
edges, the number of 3-way covering test cases was 2531,
2080, 2069, and 2345 for Paint, Present, SpreadSheet, and
Word, respectively. As noted earlier, there is a unique set of
length 3 test cases for an ESIG; hence, there is a single ESIG
test suite per application.

The 2-way EIG- and 3-way ESIG-based test cases were then
executed on the fault-seeded versions of the applications.The
number of faults detected is shown in Table 3. Note that the
last row reports the number of “new” faults detected by ESIG.
This table shows that ESIG-based suites are able to detect a
large number of faults missed by the EIG.

6.3 Developing “Similar” Suites

As mentioned earlier, this study required the development of
several new test suites. To minimize threats to validity, the
suites needed to satisfy a number of requirements, discussed
next.

From previous studies, we know that statement, event, and
EIG-edge coverage, and size (number of test cases) play an
important role in the fault-detection effectiveness of a test suite
[44]. For example, a small test suite that covers few lines of
code will most likely detect fewer faults than another larger
suite that covers many more lines. To allow fair comparison
of fault-detection effectiveness, we needed test suites that
have thesame statement, event, and edge coverage, and size
(number of test cases)as that of ESIG-based test suites.

Previous studies have also shown that long test cases
(number of EIG events) fare better than short ones in terms
of the number of faults that they detect [5]. Because we did
not want the new suites to have any disadvantage, we ensured
that all their test cases had at least 3 EIG events (note that all
our ESIG test cases have exactly 3 ESIG/EIG events).

It is non-trivial to generate these test suites. For example,
consider the problem of generating a GUI test suite that
covers specific lines of code. Because of the different levels of
abstraction between GUI events and code, one would need to
manually examine the source code, the relationship between
events and underlying code, and carefully tailor each eventin
every test case to ensure that it covers a specific line. Because
there are no automated techniques to do this task, the process
will be very resource intensive.

Moreover, because the above criteria (same statement, event,
and edge coverage, and size) may be met by a large number
of test suites (with varying fault-detection effectiveness), the
process of generating different suites and comparing them to

the ESIG-based suites needed to be repeated several times.
In this study, we generated 700 “similar” test suites per
application and compared their fault-detection effectiveness to
the ESIG suite.

GUI test cases are expensive to execute – each test case
can take up to 2 minutes to execute (on average, each requires
30 seconds). Our 700 suites each for Paint, Present, Spread-
Sheet, and Word, contained 1,054,064; 860,324; 850,808; and
974,235 test cases, respectively; in all 3,739,431 test cases.
Each test case needed to be run on each fault-seeded version;
this task would have taken several years on our 50-machine
cluster – clearly impractical. Other researchers, who havealso
encountered similar issues of practicality, have circumvented
this problem by creating atest pool consisting of a large
number of test cases that can be executed in a reasonable
amount of time [45]. Each test case in the pool is executed
only once and it’s execution attributese.g., time to execute and
faults detected are recorded. Multiple test suites are created
by carefully selecting test cases from this pool. The execution
of these suites is “simulated” by combining the attributes of
constituent test cases using appropriate functions (e.g., set
union for faults detected). This research will also employ the
test pool approach to create a large number of test suites.
The test-pool-based approach will introduce some threats to
validity, which we will note in Section 7.

Finally, we did not want to introduce any human bias when
generating these test cases. We used a randomized guided
mechanical process. A related approach was employed by
Rothermelet al. [46] to create sequences of commands to test
command-based software. In their approach, each command
was executed in isolation and test cases were “assembled” by
concatenating commands together in different permutations.
Since GUI events (commands) enable/disable each other,
most arbitrary permutations result in unexecutable sequences.
Hence, we used the EIG model to obtain only executable
sequences.

We generated test cases in batches of increasing lengths,
measured in terms of the number of EIG events. We required
that each EIG edge be covered by at leastN test cases of a
particular batch. Moreover, we required that each fault-seeded
statement be covered by at leastM test cases of the overall
pool. The test-case generation process started by generating
(using a process described in the next paragraph) the batch
of length-3 test cases until each EIG edge was covered by at
leastN test cases; they were all executed and their statement
coverage was evaluated; the next (and all subsequent) batch
was generated ONLY IF each fault-seeded statement was not
yet covered by at leastM test cases.

The process of generating each batch of lengthi test cases
uses the following algorithm:

1) Initialize afrequency variable for each EIG edge to
zero.

2) For each eventex in the EIG, do
a) Add the single eventex to a new empty test case

t.
b) Form a list of all outgoing edges fromex.
c) Select the edge (ex, ey) that has the lowest

frequency, breaking ties via random selection.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 10

0

5000

10000

15000

20000

25000

30000

35000

3 4 5 6 7 8

EIG Path Length

N
u

m
b

er
 o

f 
T

es
t 

C
a

se
s

Fig. 2. Histogram of Test Case Lengths in Pool (Paint)

Add ey to the test caset.
d) Follow the selected edge to its destination event

ey.
e) Starting atey, recurse thefrequency-based se-

lection and follow-the-edge process (described in
Steps 2b through 2d and this recursive step) until
the desired length is obtained, adding events into
the test caset.

3) Add the test caset to the suite.
4) If all EIG events have been covered and all

frequency ≥ N , stop; otherwise go to the next EIG
event (via the iteration of Step 2 above).

The above algorithm was guaranteed to stop because all
faults had been seeded in lines that were executable by the
smoke tests; the count for each statement would ultimately
reachM and stop. Finally, all the ESIG-based test cases were
added to the pool.

In this study, we setN = 10 andM = 15. This choice was
dictated by the availability of resources. As described earlier,
all the test cases needed to be executed on the fault-seeded
versions of their respective application. Even with 50 machines
running the test cases in parallel, the entire process took over
four months.

The total number of test cases per application is shown
in Column 2 of Table 4. The length distribution of Paint’s6

test cases is shown as a histogram in Figure 2. As expected,
longer tests were able to cover more EIG edges than the short
ones; hence fewer long test cases were needed to satisfy our
coverage requirements.

After all the runs had completed, we had several matrices
per application: (1) the fault matrix, which summarized the
faults detected per test case and (2) for each coverage criterion
(event, edge, statement), a coverage matrix, which summarized
the coverage elements covered per test case.

This test pool was then used to obtain coverage-adequate
suites. For example, event-adequate suites were obtained by
maintaining sets of test cases that covered each ESIG event.
Test cases were selected randomly without replacement from
each set and duplicates eliminated, ensuring that each event
was covered by the resulting suite. A similar process was used
for edge and statement coverage. The process was repeated

6. Similar histograms are presented in [43].

TABLE 4
Test Pool and Average-Suite Sizes

Test Pool TE TI TS TR, TR+E

Event Edge Stmt. TR+I , TR+S

Paint 119,583 103 190 123.64 2531
Present 231,680 50 264 18.24 2080

SpreadSheet 191,966 45 173 14.08 2069
Word 192,042 84 248 30.35 2345

100 times to yield 100 suites. The average size of the suites
is shown in Columns 3–5 of Table 4.

Finally, TR was constructed using random selection without
replacement ensuring that the final size ofTR was the same
as that of the ESIG suite. A total of 100 such suites per
application were obtained. Similarly, each of the suitesTE,
TI , TS were augmented with additional test cases, selected
without replacement at random from the pool to yieldTR+E ,
TR+I , TR+S , respectively. The sizes of all these suites was
equal to the size of the ESIG suite. Finally, 100 more suites
that sharedall the characteristics of interest in this study (i.e.,
event, edge, statement, and size) with the ESIG suite were
constructed; the symbolTR+E+I+S will be used for these
suites.

Note that the fault-detection effectiveness of each test suite
can be obtained directly from the fault matrix of the test
pool without rerunning the test cases. The results are shown
in Figure 3 as distributions. The box-plots provide a concise
display of each distribution, each consisting of 100 data points.
The line inside each box marks the median value. The edges of
the box mark the first and third quartiles. The whiskers extend
from the quartiles and cover 90% of the distribution; outliers
are shown as points beyond the whiskers. Visual inspection
of the plots shows that the fault-detection effectiveness of
the ESIG-generated test suite (shown as an asterisk) is better
than that of most individual similar-coverage and similar-sized
suites. Some suites that lie in the whiskers and outliers do
detect more faults than the ESIG suite. However, we remind
the reader that unlike the ESIG suite, there is no systematic
and automatic way to generate these suites.

As demonstrated above, box-plots are useful to get an
overview of data distributions. However, valuable information
is lost in creating the abstraction. For example, it is not clear
how manytest suites detect specific numbers of faults; we
are especially interested in the number of suites that do better
than the ESIG suites. This is important to partially understand
our EIG and ESIG suites. We now show the number of test
suites that detected specific numbers of faults. Figure 4 shows
eight histograms for Paint,7 one for each box in the box-plot.
The x-axis represents the number of faults; the y-axis shows
the number of test suites that detected the particular number
of faults. To allow easy visual comparison, we have used the
same x-axis and y-axis scales for all eight plots. The vertical
dotted line represents the number of faults detected by the
ESIG suites.

For all applications,TE, TI , TS, TR, TR+E consistently
did worse than the ESIG suites. For a small percentage of

7. Plots for other applications are shown in [43].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 11

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

0

10

20

30

40

50

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

Paint Present

0

5

10

15

20

25

30

35

40

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

0

5

10

15

20

25

30

35

40

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

SpreadSheet Word

TE TI TS TR TR+E TR+I TR+S TR+E+I+S TE TI TS TR TR+E TR+I TR+S TR+E+I+S

TE TI TS TR TR+E TR+I TR+S TR+E+I+S TE TI TS TR TR+E TR+I TR+S TR+E+I+S

Fig. 3. Fault Detection Distribution

TABLE 5
Percentage of Suites that Outperformed ESIG

Test Suite Paint Present SpreadSheet Word
TR+I 4 0 6 2
TR+S 4 0 2 11

TR+E+I+S 15 2 8 9

test suites (shown in Table 5),TR+I , TR+S , andTR+E+I+S

did better than the ESIG suites. It should be noted that the
ESIG approach does better than most test suites considered
in this study. And that the ESIG-based approach is the only
fully automatic approach to generate the GUI test suites; all
other suites were obtained from the test poolafter they had
been executed and statement coverage obtained. Moreover, the
performance of theTR test suites indicates that the size of a
suite plays a very important role in fault-detection. We study
this issue in the next section.

The results discussed thus far have been based on visual
examination of the data. We now want to determine whether
the differences in the number of faults across coverage criteria
are statistically significant. In particular, we want to study the
differences between the ESIG suite (a single value “number of
faults detected”) and all the other “similar” suites (100 values
per distribution).

For illustration, the solid line superimposed on the his-
tograms (Figure 4) shows the normal distribution approx-
imation; informally, the data seems to follow the normal
distribution quite well. We also confirmed normality by using
QQ-plots [43]. Based on normality, we use asingle sample
t-test to test for the significance of the difference between the
observed fault-detection of the ESIG suite and the mean of
each distribution. The null hypothesis is that the two values
are equal; the alternate hypothesis is that they are unequal.
Note that a separate test is needed per pair (mean of each
distribution, fault-detection of the ESIG suite value). The
resulting p-values were all more than 0.99. Hence we reject
the null hypothesis and accept the alternate hypothesis; there
is a significant difference between fault-detection of the ESIG
suite and the mean fault-detection of each of the “similar”
suites. The ESIG suites are better at detecting faults compared
to same-sized test suites that cover essentially the same events,
edges, and statements. This result helps to answer the primary
question raised in this study.

6.4 Discussion

We now present details of why the ESIG-based test suites were
able to detect more faults than other test suites. We specifically
looked at three related issues: reachability, manifestation, and
number of test cases. We note that the first two issues are



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 12

0

10

20

30

T E T I T S T R

30

Te
r 
o
f 
T
e
s
t 
S
u
it
e
s

0

10

20

0 13 26 39 52

T R+E

0 13 26 39 52

T R+I

0 13 26 39 52

T R+S

0 13 26 39 52

T R+E+I+S

Number of Detected Faults

N
u
m
b
e

Fig. 4. Histogram for Paint

related to the RELAY model [47] of how a fault causes a
failure on the execution of some test. We definereachability
as the coverage of the statement in which a fault was seeded,
and manifestationas the fault leading to a failure so that
our GUI-based test oracle could detect it. As observed in
[47], both are necessary conditions for fault detection. The
data in Figure 3 indicates that the ESIG-based test suites
were able to outperform their coverage-adequate equivalent
counterparts. Hence, they must have been more successful,
than their counterparts, at the combination of reachability and
manifestation of several faults. We feel that this behavioris
due to the nature of the ESI relationship, which is based
on observed GUI state, and hence the software’s output.
Executing tests that focus only on ESI events increases the
likelihood that a fault will be revealed on the GUI, and hence
detected by our GUI-based test oracle. Although we will not
attempt to analyze this behavior in great detail here (indeed
this is a direction for future research), we will provide some
quantitative data to show evidence of this phenomenon by
studying the test cases in the pool.

Figure 5 shows two tables, one for Paint and the other
for Word. Each table has three columns (to save space, the
columns are wrapped): Column 1 (ID) is the fault ID; Column
2 (f ) is the number of test cases that detected the fault as
well as executed the statement in which the fault was seeded;
Column 3 (∼f ) is the number of test cases that did not detect
the fault even though each executed the statement in which
the fault was seeded; the fault ID is shaded if at least one ESI
test case detected it. For example, the statement that contained
Fault 21 of Paint was executed by a total of 845+11 test cases

(marked with an oval), of which 11 detected it; the fault was
detected by at least one ESI test case. On the other hand,
Fault 127 of Paint was not detected by any ESI test case; it
was however detected by 42 of the total 42+267 test cases.
Hence, a statement-coverage adequate test suite would have
a probability of 42

42+267 of detecting this fault (assuming that
faults are independent). The data in Figure 5 is in fact sorted
by this probability, giving us a sense of the “hardness” of
the fault for statement-coverage adequate test suites. This data
helps us to better interpret the results of Figure 3. First, the
ESIG test suites did detect many of the seeded faults. Second,
they did better thanTS because they detected many of the
“hard” faults (this was most apparent in Paint and SpreadSheet
[43]). Third, some faults were detected by many of the test
cases that executed the statement. For example, Fault 136 in
Paint was detected by 747 of the total 747+446 test cases
that executed the statement in which it was seeded. The fault
was seeded in the handler of a termination event that closes
the Attributes window and applies the attributes (if any
have changed) to the current image on the main canvas. The
seeded fault caused the image size to be computed incorrectly,
resulting in an incorrectly sized image whenever at least one
attribute in theAttributes window is modified via the
GUI. Because there are many different ways of modifying
the attributes, a large number of test cases are able to detect
this fault (12 in the ESIG test suite and 735 in the rest of the
test pool). In general, statement coverage adequate test suites
do really well for these types of faults that can be triggered
in many different ways.

Fourth, several faults were detected by very few test cases.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 13

ID f ~f ID f ~f ID f ~f ID f ~f ID f ~f ID f ~f ID f ~f
158 1 1247 22 9 796 75 15 707 245 3 115 73 28 703 156 126 2336 81 8 61
159 1 1173 77 9 735 92 15 698 248 3 115 72 31 744 209 68 1238 85 8 61
65 3 721 57 4 311 71 15 696 255 3 115 44 15 339 157 131 2331 25 10 72
36 4 869 21 11 845 99 17 769 256 3 115 86 11 180 158 130 2146 29 10 72
52 5 830 51 13 874 125 2 90 261 3 115 14 1 15 88 4 65 114 12 72
64 5 772 56 5 331 126 2 90 262 3 115 120 15 220 93 4 65 57 11 58
33 6 856 19 13 850 84 17 762 42 10 381 32 10 122 210 74 1185 97 11 58
34 7 843 20 14 891 48 16 717 47 21 762 253 9 109 211 74 1185 116 14 70
90 6 722 177 2 125 80 16 714 46 10 359 119 19 216 212 70 1072 117 17 65

179 1 120 96 12 711 94 16 705 93 21 748 259 11 107 155 167 2295 118 20 64
180 1 118 55 6 354 83 16 704 98 21 730 59 33 314 159 175 2101 120 21 62
246 1 117 100 12 704 82 17 743 68 21 729 58 36 337 102 5 57 121 21 62
249 1 117 247 2 116 79 17 719 54 11 379 123 25 207 30 7 75 160 54 153
191 1 116 250 2 116 88 1 42 45 12 383 128 39 270 66 6 63 115 27 57
192 1 116 260 2 116 81 16 664 30 4 127 127 42 267 67 6 63 119 30 54
89 7 773 76 14 781 70 18 746 31 4 127 134 853 3273 79 6 63 32 76 100

211 1 110 26 2 108 91 18 738 43 12 373 178 28 99 80 6 63 6 122 129
212 1 110 18 18 920 251 2 82 67 23 707 229 28 98 83 6 63 24 56 28
50 10 934 66 15 764 252 2 82 124 3 89 200 357 372 101 6 56 122 60 24

101 24 2206 69 14 688 17 24 978 97 27 771 136 747 446 91 7 62
102 23 2093 37 17 834 78 19 762 41 15 402 137 557 260 76 7 55
85 8 720 74 16 755 95 19 761 87 5 127 103 7 55

Paint Word

Fig. 5. Test Cases Covered Faulty Statements and Their Fault Detection.

Fault 34 of Paint is an example. This fault flips the conditional
statement in an event handler of a type of curve tool. The
condition is to check whether the curve tool is currently
selected; if yes, then the curve stroke is set according to the
selected line type for the curve tool. Due to the fault, the
curve stroke is incorrectly set, resulting in an incorrect image
to be drawn on the main canvas only when the event sequence:
< SelectCurveTool; SelectLineType;DrawOnCanvas >

is executed. If the first two events are not executed, then
DrawOnCanvas does not trigger the fault even if the state-
ment containing the seeded fault is executed. Hence, although
there are many test cases that cover the faulty statement
(843+7=850), only 7 test cases in the test pool detected the
fault. One of them is the ESI test case; ESI-relationships were
found between the three events. In general, statement coverage
adequate test suites do not do well for faults that are executed
by many event sequences but manifest as failures in very few
cases.

The size of a suite seems to play a very important role
in fault-detection. Indeed, theTR test suites, which were the
same size as the ESIG-based suites, did better (in most cases)
than their coverage-adequate counterparts. We feel that this
behavior is an artifact of the density of our fault matrices.A
large number of test cases are successful at detecting many
“easy” faults. Even if test cases are selected at random, given
adequate numbers, they will be able to detect a large number of
these easy faults. For example, given 192,042 test cases in the
pool for Word and the size ofTR being 2345, the probability
that Fault 24, which is executed by 84 test cases, is detected
by at least one test case inTS is 0.49 – this is quite high. In
Figure 6, we show the probability that a random suite of its
corresponding ESI-suite size would detect a particular fault.
The figure shows two tables for Word and Paint. Each table
has two (wrapped) columns. Column 1 (ID) is the fault ID;
Column 2 (p) is the probability that the fault is detected by
at least one test case inTR, which is the same size as the

ID p ID p ID p ID p ID p ID p ID p
158 0.02 245 0.06 77 0.18 71 0.27 93 0.36 88 0.05 118 0.22
159 0.02 248 0.06 253 0.18 41 0.27 98 0.36 93 0.05 120 0.23
179 0.02 255 0.06 50 0.19 44 0.27 68 0.36 102 0.06 121 0.23
180 0.02 256 0.06 42 0.19 120 0.27 102 0.39 66 0.07 115 0.28
246 0.02 261 0.06 46 0.19 74 0.29 67 0.39 67 0.07 119 0.31
249 0.02 262 0.06 32 0.19 48 0.29 101 0.40 79 0.07 160 0.48
191 0.02 124 0.06 21 0.21 80 0.29 17 0.40 80 0.07 24 0.49
192 0.02 36 0.08 54 0.21 94 0.29 123 0.41 83 0.07 122 0.52
211 0.02 57 0.08 86 0.21 83 0.29 97 0.44 101 0.07 209 0.57
212 0.02 30 0.08 259 0.21 81 0.29 73 0.45 30 0.08 212 0.58
88 0.02 31 0.08 96 0.23 37 0.30 178 0.45 91 0.08 210 0.60 > 0.25
14 0.02 52 0.10 100 0.23 99 0.30 229 0.45 76 0.08 211 0.60

177 0.04 64 0.10 45 0.23 84 0.30 72 0.48 103 0.08 32 0.61
247 0.04 56 0.10 43 0.23 82 0.30 59 0.51 81 0.09 6 0.78
250 0.04 87 0.10 51 0.24 79 0.30 58 0.54 85 0.09 156 0.79
260 0.04 33 0.12 19 0.24 18 0.32 128 0.57 25 0.12 158 0.80
26 0.04 90 0.12 20 0.26 70 0.32 127 0.59 29 0.12 157 0.80

125 0.04 55 0.12 76 0.26 91 0.32 200 1.00 57 0.13 155 0.87
126 0.04 34 0.14 69 0.26 78 0.33 137 1.00 97 0.13 159 0.88
251 0.04 89 0.14 66 0.27 95 0.33 136 1.00 114 0.14
252 0.04 85 0.16 75 0.27 119 0.33 134 1.00 116 0.16
65 0.06 22 0.18 92 0.27 47 0.36 117 0.19

Paint Word

Fig. 6. Probability of Detecting Faults by Random Test
Cases.

ESIG suite. This data shows that many of these difficult faults
are detected by at least one ESIG-based test case, improving
their fault-detection effectiveness. Moreover, 16 faults, marked
in the figure, in Word have a detection probability of more
than 0.25. This number is much larger for the other three
applications, helping to understand whyTR and the other
suites that included randomly selected test cases did so well.

Finally, we wanted to examine why some of the faults were
not detected. We manually examined each fault and tried to
manually devise ways of manifesting the fault as a failure. We
determined that:

1) several of the faults were in fact manifested as failures
on the GUI but our automated test oracle was not capable
of examining these parts of the GUI,

2) few faults caused failures in non-GUI output, which we



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 14

TABLE 6
Undetected Faults Classification

Ignored

Widget Non-GUI Longer Masked Crash Total

Properties Failure Sequence Error

Paint 0 0 1 6 0 7
Present 13 0 4 0 0 17

SpreadSheet 9 2 8 5 3 27
Word 5 0 4 11 0 20

could not detect,
3) several of the undetected faults require even longer

sequences,
4) the effect of several faults was masked by the event

handler code even before our test oracle could detect
it,

5) some faults crashed their corresponding fault-seeded
version.

We show the numbers of these faults in Table 6. The large
number of “Ignored Widget Properties” faults has prompted
us to improve our test oracles for future work.

This controlled study showed that the automatically iden-
tified ESI relationships between events generate test suites
that detect more faults than their code-, event-, and event-
interaction-coverage equivalent counterparts. Moreover, we
saw that several of our missed faults remained undetected
because of limitations with our automated GUI-based test
oracle, and others required even longer sequences.

7 CONCLUSIONS AND FUTURE WORK

This paper presented a new fully automatic technique to
test multi-way interactions among GUI events. The technique
is based on analysis of feedback obtained from the run-
time state of GUI widgets. A seed test suite is used for
feedback collection. The technique was demonstrated via two
independent studies on eight software applications. The results
of the first study showed that the test cases generated using the
feedback were useful at detecting serious and relevant faults
in the applications. The second study compared the ESIG-
based test suite to similar EIG-based suites. It showed thatthe
added effectiveness is due to targeted testing of the identified
ESI relationships, not an incidental side-effect of the size of
the suite, nor the additional events and code that it covers.

As is the case with all research involving empirical studies,
these results are subject to threats to validity. First is the
selection of subject applications and their characteristics. The
results may vary for applications that have a complex back-
end, are not developed using the object-oriented paradigm,
or have non-deterministic behavior. Second, in study 2, the
test pool approach was used due to practical limitations. It
is expected that the repetition of the same test case across
multiple test suites will have an impact on some of the results.
The algorithm used to create the test pool ensures that each
event (the first event in the test case) is executed in a known
initial state; the choice of this state may have an effect on the
results. Third, the Java API allow the extraction of only 12
properties of each widget; only these properties were used to

obtain the ESI relationship via GUI state; moreover, faultsare
reported for mismatches between these 12 properties. Fourth,
we used one technique to generate test cases – based on event-
interaction graphs. Other techniques,e.g., using capture/replay
tools and programming the test cases manually may produce
different types of test cases, which may show different exe-
cution behavior. Fifth, in Study 2, a threat is related to our
measurement of fault detection effectiveness; each fault was
seeded and activated individually. Note that multiple faults
present simultaneously can lead to more complex scenarios
that include fault masking. Finally, several threats are related
to fault seeding in Study 2. Threats from issues such as
human decision-making are minimized by using an objective
technique for uniformly distributing faults based on functional
units.

This research has presented several exciting opportunities
for future work. In the immediate future, the three contextsfor
the cases will be simplified and, if possible, combined. The
current special treatment of termination events, which ledto an
additional two contexts, will be revised. One possibility is the
revision of the EIG model; the elimination of all termination
events from this model will be explored. This revision will also
lead to the definition of new, fundamentally different casesfor
the ESI relationship.

The results showed that certain events in the GUI dominate
the ESI relationship. These events will be studied and classi-
fied. In the future, additional GUI applications and software
problems will be studied. The run-time state information
was collected using the Java Swing API for standard Swing
widgets. Future work involves incorporating customized API
for application-specific widgets into feedback collectionand
analysis.

The analysis summarized in Section 5 led to a deeper
understanding of the relationship between real GUI events and
the underlying code in fielded GUI applications. This may lead
to new techniques that combine dynamic analysis of the GUI
and static analysis of the event handler code. For example, the
code for related events may be given to a static-analysis engine
that could examine the code for possible interactions that are
only apparent at the code level,e.g., data-flow relationships.

The feedback currently obtained at run time is in the form
of GUI widgets. Mechanisms, such as reflection, in modern
programming languages may be used to obtain additional feed-
back from non-GUI objects. The definition of state, in terms
of a set of objects with properties and values, is general; it
may be applied to any executing object. Some of the six cases
may be adapted for non-GUI objects. Another straightforward
way to enhance the feedback is to instrument the software for
code coverage and run-time invariant collection. This feedback
may be used to generate new types of test cases. Another
logical extension of this work is to examine the redundancy
in our ESIG suites via existing test minimization techniques
developed for user interfaces [48].

Some of the challenges of GUI testing are also relevant
to testing of event-driven software,e.g., web applications
and object-oriented software. One way to test these classes
of software is to generate test cases that are sequences of
events (e.g., web user actions or method calls). Some of the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 15

techniques developed in this research have already been used
by other researchers to prune the space of all possible event
interactions to be tested for web applications [49]; similar
extensions will be explored for object-oriented software.

ACKNOWLEDGMENTS

We thank the anonymous reviewers whose comments and
suggestions helped to extend the second empirical study,
reshape its results, and improve the flow of the text. This
work was partially supported by the US National Science
Foundation under NSF grant CCF-0447864 and the Office of
Naval Research grant N00014-05-1-0421.

REFERENCES

[1] E. Dustin, J. Rashka, and J. Paul,Automated software testing: introduc-
tion, management, and performance. Addison-Wesley Professional,
1999.

[2] R. K. Shehady and D. P. Siewiorek, “A method to automate user interface
testing using variable finite state machines,” inFTCS ’97: Proceedings of
the 27th International Symposium on Fault -Tolerant Computing (FTCS
’97). Washington, DC, USA: IEEE Computer Society, 1997, p. 80.

[3] L. White and H. Almezen, “Generating test cases for GUI responsibili-
ties using complete interaction sequences,” inISSRE ’00: Proceedings of
the 11th International Symposium on Soft ware Reliability Engineering.
Washington, DC, USA: IEEE Computer Society, 2000, p. 110.

[4] A. M. Memon and Q. Xie, “Studying the fault-detection effectiveness of
GUI test cases for rapidly evolving software,”IEEE Trans. Softw. Eng.,
vol. 31, no. 10, pp. 884–896, 2005.

[5] X. Yuan and A. M. Memon, “Using GUI run-time state as feedback to
generate test cases,” inICSE ’07: Proceedings of the 29th International
Conference on Software Engineering. Minneapolis, MN, USA: IEEE
Computer Society, May 23–25, 2007, pp. 396–405.

[6] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Ernst, “An em-
pirical comparison of automated generation and classification techniques
for object-oriented unit testing,” inProceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, 2006.

[7] T. Xie and D. Notkin, “Tool-assisted unit-test generation and selection
based on operational abstractions.”Autom. Softw. Eng., vol. 13, no. 3,
pp. 345–371, 2006.

[8] R. Ferguson and B. Korel, “The chaining approach for software test
data generation.”ACM Trans. Softw. Eng. Methodol., vol. 5, no. 1, pp.
63–86, 1996.

[9] M. J. Gallagher and V. L. Narasimhan, “Adtest: A test datageneration
suite for Ada software systems.”IEEE Trans. Software Eng., vol. 23,
no. 8, pp. 473–484, 1997.

[10] B. Korel, “Automated software test data generation.”IEEE Trans.
Software Eng., vol. 16, no. 8, pp. 870–879, 1990.

[11] C. C. Michael, G. McGraw, and M. Schatz, “Generating software test
data by evolution.”IEEE Trans. Software Eng., vol. 27, no. 12, pp.
1085–1110, 2001.

[12] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated testing
based on java predicates.” inISSTA ’02: Proceedings of the 2002 ACM
SIGSOFT international symposium on Software testing and analysis,
2002, pp. 123–133.

[13] N. Gupta, A. P. Mathur, and M. L. Soffa, “Automated test data generation
using an iterative relaxation method.” inSIGSOFT FSE, 1998, pp. 231–
244.

[14] W. Miller and D. L. Spooner, “Automatic generation of floating-point
test data.”IEEE Trans. Software Eng., vol. 2, no. 3, pp. 223–226, 1976.

[15] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” inICSE ’07: Proceedings of the 29th
International Conference on Software Engineering. Minneapolis, MN,
USA: IEEE Computer Society, May 23–25, 2007, pp. 396–405.

[16] B. A. Myers and M. B. Rosson, “Survey on user interface programming.”
in CHI, 1992, pp. 195–202.

[17] F. Belli, C. J. Budnik, and L. White, “Event-based modelling, analysis
and testing of user interactions: approach and case study: Research
articles,” Softw. Test. Verif. Reliab., vol. 16, no. 1, pp. 3–32, 2006.

[18] J. M. Clarke, “Automated test generation from a behavioral model,” in
Proceedings of Pacific Northwest Software Quality Conference. Port-
land, OR: Pnsqc/Pacific Agenda, May 1998.

[19] S. Esmelioglu and L. Apfelbaum, “Automated test generation, execution,
and reporting,” inProceedings of Pacific Northwest Software Quality
Conference. Portland, OR: Pnsqc/Pacific Agenda, Oct 1997, pp. 127–
142.

[20] P. J. Bernhard, “A reduced test suite for protocol conformance testing,”
ACM Transactions on Software Engineering and Methodology, vol. 3,
no. 3, pp. 201–220, Jul. 1994.

[21] W.-H. Chen, C.-S. Lu, E. R. Brozovsky, and J.-T. Wang, “An opti-
mization technique for protocol conformance testing usingmultiple uio
sequences,”Inf. Process. Lett., vol. 36, no. 1, pp. 7–11, 1990.

[22] T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Trans. Softw. Eng., vol. 4, no. 3, pp. 178–187, 1978.

[23] A. von Mayrhauser, R. T. Mraz, and J. Walls, “Domain based regression
testing,” in Proceedings of The International Conference on Software
Maintenance. Washington, DC, USA: IEEE Computer Society, 1994,
pp. 26–35.

[24] P. M. Maurer, “Generating test data with enhanced context-free gram-
mars,” IEEE Software, vol. 7, no. 4, pp. 50–55, Jul. 1990.

[25] M. Auguston, J. B. Michael, and M.-T. Shing, “Environment behavior
models for scenario generation and testing automation,” inA-MOST ’05:
Proceedings of the 1st international workshop on Advances in model-
based testing. New York, NY, USA: ACM Press, 2005, pp. 1–6.

[26] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI test
case generation using automated planning,”IEEE Trans. Softw. Eng.,
vol. 27, no. 2, pp. 144–155, 2001.

[27] A. Howe, A. von Mayrhauser, and R. T. Mraz, “Test case generation as
an AI planning problem,”Automated Software Engineering, vol. 4, pp.
77–106, 1997.

[28] D. J. Kasik and H. G. George, “Toward automatic generation of novice
user test scripts,” inProceedings of the Conference on Human Factors
in Computing Systems : Common Ground. New York: ACM Press,
13–18 Apr. 1996, pp. 244–251.

[29] D. M. Woit, “Specifying operational profiles for modules,” in ISSTA
’93: Proceedings of the 1993 ACM SIGSOFT international symposium
on Software testing and analysis. New York, NY, USA: ACM Press,
1993, pp. 2–10.

[30] B. Sarikaya, “Conformance testing: architectures andtest sequences,”
Comput. Netw. ISDN Syst., vol. 17, no. 2, pp. 111–126, 1989.

[31] F. Ipate and M. Holcombe, “Complete testing from a stream x-machine
specification,”Fundam. Inf., vol. 64, no. 1-4, pp. 205–216, 2004.

[32] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N.Tillmann,
and M. Veanes, “Towards a tool environment for model-based testing
with AsmL.” in FATES, 2003, pp. 252–266.

[33] E. Farchi, A. Hartman, and S. S. Pinter, “Using a model-based test
generator to test for standard conformance.”IBM Systems Journal,
vol. 41, no. 1, pp. 89–110, 2002.

[34] H. S. Hong, Y. R. Kwon, and S. D. Cha, “Testing of object-oriented
programs based on finite state machines.” inAPSEC. IEEE Computer
Society, 1995, pp. 234–.

[35] L. Apfelbaum, “Automated functional test generation.” in Autotestcon
’95 Conference. IEEE, 1995.

[36] L. Lucio, L. Pedro, and D. Buchs, “A methodology and a framework for
model-based testing.” inRISE, ser. Lecture Notes in Computer Science,
N. Guelfi, Ed., vol. 3475. Springer, 2004, pp. 57–70.

[37] J. A. Whittaker, “Stochastic software testing.”Ann. Software Eng., vol. 4,
pp. 115–131, 1997.

[38] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann,
and M. Veanes, “Model-based testing of object-oriented reactive systems
with spec explorer.” May 2005.

[39] P. W. M. Koopman, R. Plasmeijer, and P. Achten, “Model-based testing
of thin-client web applications.” inFATES/RV, 2006, pp. 115–132.

[40] N. H. Lee and S. D. Cha, “Generating test sequences from aset of
mscs.”Computer Networks, vol. 42, no. 3, pp. 405–417, 2003.

[41] F. Belli, “Finite-state testing and analysis of graphical user interfaces,”
in ISSRE. IEEE Computer Society, 2001, pp. 34–43.

[42] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, 2004.

[43] X. Yuan and A. M. Memon, “Using GUI run-time state as feedback
for test automation,” University of Maryland, College Park, MD USA,
Technical Report, Aug. 2009, http://hdl.handle.net/1903/9416. [Online].
Available: http://hdl.handle.net/1903/9416

[44] Q. Xie and A. M. Memon, “Designing and comparing automated test
oracles for GUI-based software applications,”ACM Transactions on
Software Engineering and Methodology, vol. 16, no. 1, p. 4, 2007.

[45] L. C. Briand, Y. Labiche, and Y. Wang, “Using simulationto empirically
investigate test coverage criteria based on statechart,” in ICSE ’04: Pro-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 16

ceedings of the 26th International Conference on Software Engineering.
IEEE Computer Society, 2004, pp. 86–95.

[46] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and X. Qiu,
“On test suite composition and cost-effective regression testing,” ACM
Trans. Softw. Eng. Methodol., vol. 13, no. 3, pp. 277–331, 2004.

[47] D. J. Richardson and M. C. Thompson, “An analysis of testdata selection
criteria using the relay model of fault detection,”IEEE Trans. Softw.
Eng., vol. 19, no. 6, pp. 533–553, 1993.

[48] F. Belli and C. J. Budnik, “Test minimization for human-computer
interaction,” Applied Intelligence, vol. 26, no. 2, pp. 161–174, 2007.

[49] P. T. Alessandro Marchetto and F. Ricca, “State-based testing of Ajax
web applications,” inProceedings of the 1st International Conference
on Software Testing, Verification, and Valication, April 9–11, 2008, pp.
121–130.

Xun Yuan is a Software Engineer in Test (SET)
at Google Kirkland where she is in charge of en-
suring the quality of a web-based software prod-
uct called Website Optimizer. She completed her
PhD from the Department of Computer Science
at the University of Maryland in 2008 and MS
in Computer Science from the Institute of Soft-
ware Chinese Academy of Sciences in 2001.
Her research interests include software testing,
quality assurance, web application design, and
model-based design. In addition to her interests

in Computer Science, she also likes mathematics and literature.

Atif M Memon is an Associate Professor at the
Department of Computer Science, University of
Maryland. His research interests include pro-
gram testing, software engineering, artificial in-
telligence, plan generation, reverse engineering,
and program structures. He is the inventor of the
GUITAR system (http://guitar.sourceforge.net/)
for automated model-based GUI testing. He is
the founder of the International Workshop on
TESTing Techniques & Experimentation Bench-
marks for Event-Driven Software (TESTBEDS).

He serves on various editorial boards, including that of the Journal of
Software Testing, Verification, and Reliability. He has served on nu-
merous National Science Foundation panels and program committees,
including the International Conference on Software Engineering (ICSE),
International Symposium on the Foundations of Software Engineering
(FSE), International Conference on Software Testing Verification and
Validation (ICST), Web Engineering Track of The International World
Wide Web Conference (WWW), the Working Conference on Reverse
Engineering (WCRE), International Conference on Automated Software
Engineering (ASE), and the International Conference on Software Main-
tenance (ICSM). He is currently serving on a National Academy of
Sciences panel as an expert in the area of Computer Science and
Information Technology, for the Pakistan-U.S. Science and Technology
Cooperative Program, sponsored by United States Agency for Interna-
tional Development (USAID). In addition to his research and academic
interests, he handcrafts fine wood furniture.


