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Abstract

Graphical user interfaces (GUIs) are a common way to
interact with software. To ensure the quality of such soft-
ware it is important to test the possible interactions with
its user interface. GUI testing is a challenging task as they
can allow, in general, infinitely many different sequences
of interactions with the software. As it is only possible to
test a limited amount of possible user interactions, it is
crucial for the quality of GUI testing to identify relevant
sequences and avoid improper ones.

In this paper we propose a model for better GUI testing.
Our model is created based on two observations. It is
a common case that different user interactions result in
the execution of the same code fragments. That is, it is
sufficient to test only interactions that execute different
code fragments. Our second observation is that user inter-
actions are context-sensitive. That is, the control flow that
is taken in a program fragment handling a user interaction
depends on the order of some preceding user interactions.
We show that these observations are relevant in practice.
We present a preliminary implementation that utilizes these
observations for test case generation.

Keywords-GUI testing, grey-box testing, automated testing,
model-based testing

I. Introduction

Graphical User Interfaces (GUIs) are one of the most
common way to interact with software systems. To en-
sure the functional correctness and robustness of such a
system, special GUI testing strategies are applied. GUI
testing can be considered as a special case of model-
based testing. A model that represents possible sequences

of user interactions with the GUI is generated or provided
by the test designer. Based on this model, test cases can
be generated. Using a model is necessary in order to avoid
testing sequences of user interactions that are not possible
in the actual system. Usually the process of generating and
maintaining the model is a costly process that requires a lot
of manual interaction. Every change to the GUI requires
an adaption of the model and thus modifications to the test
cases.

GUI testing automation is a common way to check
stability and robustness of systems with GUIs. In GUI
testing automation, the model of the GUI is generated
from the source code of the application automatically. This
model is used to generate sequences of user interactions.
The effectiveness and efficiency of GUI testing automation
depends on the underlying model that is used to generate
sequences of user interactions. That is, how many test
cases have to be generated to achieve a certain degree of
confidence about the system and how many bugs can the
test cases reveal?

As the GUIs become more and more complex, the total
number of user interaction sequences that need to be tested
is too large to be handled in a reasonable time [1]. It is
impractical to test all necessary GUI sequences [2] even
if the testing runs for a long time [3]. That is, there is an
urgent need to improve the efficiency and effectiveness of
the test case generation in GUI testing automation.

In this paper we propose a technique to generate a
model for GUI testing automation. Our method is moti-
vated by two observations:

• Shared event handlers: If some user interactions result
in the execution of the same source code fragment, we
say that this source code fragment is the shared event
handler of these events. Generating sequences of user
interactions that share event handlers will eventually



result in redundant test cases.
• Context-sensitive event handlers: If the source code

fragment of a user interaction contains a conditional
choice that is evaluating a variable which has been
modified in a preceding user interaction (e.g., the
value of a check box), we say that this source code
fragment is a context-sensitive event handler. In this
scenario, the execution of a preceding event handler
can affect the control flow of a succeeding event
handler.

Based on these observations we present a way to
generate a model for GUI testing that analyzes parts of the
program’s source code to detect sequences of user interac-
tion that are suitable for testing. The presented technique
uses a grey-box approach and performs a shallow analysis
of those parts of the system that handle user interactions.

During the creation of the model, we identify if two
user interactions use a shared event handler. Knowing
that two events result in the execution of the same source
code fragment allows us to avoid the creation of redundant
sequences of user interactions during testing. This helps to
increase the efficiency of our technique.

We use a shallow analysis to identify if the reaction of
the system to a user interaction depends on input values
that are influenced by other user interactions. That is, we
try to identify if an event handler takes a conditional choice
depending on variables that can be modified using other
user interactions (in contrast to conditional choice that
purely depends on internal data). We design our model
such that it privileges the creation of sequences where
events with context-sensitive event handlers are preceded
by a random subset of events that form their context.

In Section III we present a new approach to create a
model for GUI test case generation. Using our observations
(Section IV), we utilize the source code of the event
handlers to construct a model (Section V) that can generate
efficient and effective test cases (Section VI). We apply
our model to a medium-sized open source project. The
results indicate that it is effective and efficient for real
projects. We present a preliminary implementation and
discuss the benefits and drawbacks of the presented model.
Our experiments in Section VII show that shared event
handlers and context-sensitive event handlers are relevant
in practice.

The main contribution of this work is to show the
utilizing of the source code of an application to generate
more effective and more efficient GUI test cases. In partic-
ular, we detected a large amount of context-sensitive event
handlers in our example applications. Thus, it motivates
that analyzing the source code of GUI applications has a
high potential to improve GUI test case generation.

II. Motivating Example

Our experiments were conducted using four applica-
tions. These applications are part of an open-source office
(TerpOffice) suite developed at the Department of Com-
puter Science of the University of Maryland by undergrad-
uate students of the senior Software Engineering course.
The TerpOffice applications are a common benchmark
used by GUI testing and have been described in several
studies [4].

We illustrate our approach using the TerpWord appli-
cation as a running example. TerpWord is a simple word
processor written in Java. Its GUI is implemented using
the Java Swing toolkit 1.

TerpWord offers the standard functionality of a word
processor. The user can interact with the application using
buttons, top menus, context menus, etc., which we sum-
marize using the term widget. Depending on the actions
of the user, widgets might not be visible or accessible at a
given moment. That is, the available user interactions and
the shape of the visible user interface might change during
the execution of the program. Figure 1 shows two screen
shots of TerpWord where different widgets are enabled.

Even though TerpWord is a small application with a
total of only 50 widgets in its main frame window, it is
already challenging to test its user interface. Even if we
only consider sequences of 3 consecutive different user
interactions, we already have a total amount of 125,000
(503) possible test cases (without considering e.g., different
input data or preconditions about the state of the system).
Many of these test cases will not be feasible, as they do
not correspond to possible user interactions with the ap-
plication. Therefore it is crucial to find a model that helps
to identify and generate feasible and relevant sequences of
user interactions that can serve as test cases for the user
interface of an application.

III. Grey-box GUI Testing Technique

In this section we give an overview of our GUI testing
technique. We describe the approach in 3 steps: (i) mining
the GUI source code; (ii) generate the model; and (iii)
generate test cases. Figure 2 presents an overview of our
approach.

An application is defined by a GUI and a set of
instructions. The GUI is a set of widgets. Widgets can
be buttons, text boxes, etc. They all share that the user can
interact with them. For each interaction a widget generates
an event e that carries information about the widget the
user interacted with and the type of interaction. For each
event e there exists a subset of instructions h in the source

1http://java.sun.com/javase/technologies/desktop/



Figure 1. TerpWord with disabled and enabled Split Panel.
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Figure 2. GUI Tests Case Generation.

code that handles this event. We call h the event handler
of e. The event handler h is a fragment of the application
that is executed every time the associated event e occurs.
We say that E is the set of all events and H is the set
of instructions of the application (i.e., an event handler
h is a subset of H). We assume that we have a relation
Ex : E×H that allows us to identify the set of instructions
h = Ex (e) that handles an event e.

A GUI test case then is a sequence of events t =
e1 . . . en of user interactions and an oracle that decides
if the outcome of this sequence meets some requirements.
In this paper we limit our experiments to a simple crash
oracle. That is, a test fails if the system terminates abnor-
mally during the execution of the test case.

Our model for GUI testing is an automaton M = (S, δ),
where S is a finite set of states, δ = S × (E ∪ {ϵ}) × S
is a set of transitions between two states labeled with an
event e ∈ E or with ϵ. Every state in this automaton is
accepting. That is, each word accepted by this automaton
is a sequence of events that can serve as a GUI test.

The proposed technique generates the model from the
source code of a given application automatically and
generates a sequence of GUI test cases using this model.
The effectiveness of our GUI testing technique is given by

how many sequences have to be generated to test a certain
fragment of H . The efficiency of a GUI testing technique
is given by the ratio of the generated sequences that
detect undesired behavior to the total number of generated
sequences.

The model of the application is generated automatically
by mining the application’s source code. During the cre-
ation of the model we make use of the following two
observations:

• Shared event handlers: Given two events e1, e2 and a
program fragment h ∈ H . If h = Ex (e1) = Ex (e2),
we say that h is a shared event handler of e1 and e2,
and it is sufficient to test either e1 or e2. That is, if
two events result in the execution of the same part
of the system h ∈ H , removing one of two events
from the model might increase the efficiency of the
generated test cases.

• Context-sensitive event handlers: Given an event e
that is handled by a part of the system h = h1∪h2. We
can think of h1 ∪ h2 as a conditional choice between
two different control-flow paths. If the choice whether
h1 or h2 is executed when e is handled depends on
some variables that are modified by another event e′,
we say that h is a context-sensitive event handler with
respect to the context e′. In general, the context of an
event handler might comprise several event handlers.

Notice that our observations are about facts that cannot
be computed precisely. We can neither statically decide
the events that use one shared event handler nor we can
identify the possible context of an event handler for the
general case. Our approach cannot provide a set of test
cases that is minimal in one way or another. The focus of
this work is to show that using these observations results in
a model that generates a more efficient and more effective
set of test cases than an approach that does not use these



observations. In the following we show that our model can
be used to generate a more efficient and more effective set
of test cases than pure black-box models. We give evidence
that our observations occur in practice and considering
them during the model generation results in significant
improvements in the test case generation.

For the construction of our model for GUI testing we
mine information from the source code using a simple
static analysis technique. We collect the set of events
that will form our test sequences later on and the source
code fragment that is executed when this event is handled
(event handlers). During this step we identify shared event
handlers and rule out those events that are handled by
the same handler. The result of this step is a set of pairs
that associates each event with one unique source code
fragment that is executed when this event is handled. Then,
we compute for each (context-sensitive) event handler the
set of events that might influence its control-flow.

With the information mined from the source code about
events and the context events of their respective event
handlers, we create the automaton model that is used for
test case generation.

IV. Mining Widgets and Event Handlers

We use the application TerpWord as a running example
to explain our process of model generation for GUI testing.
TerpWord is an instance of a standard windows application
comparable to WordPad and Microsoft Word.

For generating the model of the GUI, we mine in-
formation about the possible user interactions from the
source code. We analyze the application to collect all
events (or user interactions) together with the source code
fragment that handles this event. The mining procedure
iterates over a Java program given as a set of classes.
For each class we iterate over the attributes. For each
attribute we check if the attribute is derived from the class
JComponent, that is, if the attribute is an instance of
a widget type that appears in the GUI. If the attribute is
not a widget type we skip it and continue with the next
attribute. If the attribute is a widget type, the algorithm
iterates over the event handler associated with this widget.
For the Java Swing toolkit, an event is registered using
the method setActionCommand. We collect all events
created for one widget. The corresponding event handler
is usually a code block in a switch case, where the
conditional is a string comparison with the event name.
In our implementation we refer to this block as an event
handler.

For demonstration purpose we restrict our presentation
to the detection of shared event handlers in Java appli-
cations that implement their user interface using the Java
Swing toolkit. Extending the approach to other patterns,

Algorithm 1: Mining Widgets and Event Handlers
Input: Set of Java Classes
Output: Ex
begin1

foreach (Java class in set) do2
foreach (attribute in Java Class) do3

if (attribute is a widget) then4
foreach (Event e of widget) do5

if (e is in Ex ) then6
Skip (redundant) widget7

endif8
else if (event handler h is empty)9
then

Skip (dead) widget10
endif11
else12

Store Ex (e) = h13
endif14

endfch15
endif16
else17

Skip attribute18
endif19

endfch20
endfch21

end22

toolkits and languages is straightforward.
In the following we present Algorithm 1 that mines the

widgets and event handlers of an application and allows
us to identify shared event handlers.

A. Shared Event Handlers

While mining events and event handlers from the source
code, Algorithm 1 identifies the use of shared event
handlers. A shared event handler occurs when two different
widgets offer user interactions that are registered with the
same event name and the same action handler. Shared
event handlers are a common practice to avoid duplicated
functionality in the source code. However, for GUI testing
only one of the events has to be considered.

The usage of a shared event handler is shown in List-
ing 1. The class constructor creates a menu item m (line 4)
and a button b (line 8). Both created objects obtain exactly
the same action command, which is done via the method
call of setActionCommand (line 5, 9), and the same
action listener (line 6, 10) using setActionListener.
An action command represents an unique identifier for a
certain event, an action listener is responsible for handling
the event when it occurs. Since TerpWord uses the Java
Swing toolkit, all events assigned to an action listener are
handled in the actionPerformed method (line 15).
The action command is extracted from an action event
object (line 17)) and then evaluated for executing the



corresponding event handler (line 18, 29).

1 public class EkitCore extends JPanel
implements ActionListener {

2

3 public EkitCore(){
4 JMenuItem m = new JMenuItem("Copy");
5 m.setActionCommand("textcopy");
6 m.addActionListener(this);
7

8 JButton b = new JButton("Copy");
9 b.setActionCommand("textcopy");

10 b.addActionListener(this);
11

12 // add menu item and button to panel
13 }
14

15 public void actionPerformed(ActionEvent ae){
16 try {
17 String command = ae.getActionCommand();
18 if ( command.equals("textcopy") ){
19 if ( splitPane.isVisible() &&
20 sourcePane.hasFocus() ){
21 // copy text from source panel
22 sourcePane.copy();
23 }
24 else {
25 // copy text from main panel
26 mainPane.copy();
27 }
28 }
29 else if ( command.equals("splitpane") ){
30 // toggle split panel
31 splitPane.setVisible(
32 !splitPane.isVisible());
33 }
34 }
35 }
36 }

Listing 1. Example of a Shared Context-
sensitive Event Handler in TerpWord.

From a black-box perspective the user interaction with
m and b are different events. That is, generating GUI test
cases from a model that contains both events will result
in redundant test cases as replacing m by b and vice versa
results in the same test outcome.

For each attribute in the source code that represents
a widget, our algorithm records a pair of an event e that
represents the interaction with this widget, and the program
fragment h that handles this event. The fragment h is
obtained by following the control-flow starting from the
location that handles e. If we already recorded a pair (e′, h)
such that the events e and e′ are handled by the same
source code fragment h, we dismiss the pair (e, h), as the
event e′ is sufficient to test h. In the special case that h does
not have control-flow (that is, the event is not implemented)
we dismiss the pair (e, h) again. In the resulting set, each
event e is associated with a unique source code fragment
h.

For our example from Listing 1, Algorithm 1 returns
the pairs:



if ( splitPane.isVisible() &&
sourcePane.hasFocus() ) {
sourcePane.copy();

textcopy, }
else {

mainPane.copy();
}


,

 splitPane.setVisible(
splitpane, !splitPane.isVisible()

);


Now we have a set of pairs that associates each event

with an event handler. The second part of our implemen-
tation identifies the context-sensitive event handlers and
creates a model for test case generation.

B. Context-sensitive Event Handlers

From Algorithm 1 we obtain a list of pairs of events
and event handlers. Then, we identify the context of each
event handler. Given a pair (e, h) of event and handler, we
say that the code h that handles an event e is a context-
sensitive event handler if the control-flow path taken when
e is handled depends on variables that are modified by
other event handlers. That is, if the control-flow path taken
in h is influenced by certain preceding events.

Algorithm 2: Collecting Context-sensitive Event Handlers
Input: Pair (e, h) of event and handler
Output: Context events Ctx (h)

begin1
Ctx (h)=∅ ;2
foreach (conditional choice c in h) do3

if (c reads field of widget w) then4
Add events of w to Ctx (h);5

endif6
endfch7

end8

Algorithm 2 detects the context events Ctx (h) for each
event handler h. For each event handler h, it returns a
list of events which we refer as a context of h. Initially
the list of context events Ctx (h) is empty. The algorithm
traverses the control-flow of h. For each conditional choice
(i.e., loops, if-then-else, etc.), the algorithm checks if the
condition evaluates attributes of objects that are derived
from a JComponent. If such an object is detected, we
add the events associated with this widget to the list of
context events Ctx (h) of the handler h.

In the example given by Listing 1 of TerpWord the event
handler textcopy evaluates if the split panel is visible
(splitPane.isVisible()) and the source panel has



the focus (sourcePane.hasFocus()) (line 19, 20).
This conditional decides, whether the code of the source
panel or the text of the main panel has to be copied
to the clipboard. Both parts of the conditional refer to
other widgets and thus can be modified by interaction with
these widgets. Our previous analysis identified that the
event splitpane is associated with the widget splitPane
and that widget sourcePane is not associated with any
event. We say that event handler of textcopy is context-
sensitive with respect to the event splitPane. That is,
we have a chance that, if we create different sequences
of events (i.e. different test cases) where textcopy is
preceded by the events associated with splitPane, we
will execute the then-, and the else-branch of this
conditional.

Our algorithm is primitive and does not consider data-
flow. It uses a simple pattern matching. Still, as we discuss
later, the algorithm is already able to detect a large amount
of context-sensitive event handlers and their context events.

Now, that we have identified a set of events, event
handlers and the context events for each event handler we
can create our model that is used for the generation of GUI
test cases.

V. Model Generation

From our preceding analysis we obtain a list of pairs
(e, h) of event e and event handler h, as well as a list
of events Ctx (h) that might affect the control-flow of h.
Using this information we create our automaton model that
is used for test case generation.

Our model M = (S, δ) is a finite automaton with
transitions labeled with events e or ϵ. A word accepted
by the automaton is a sequence of events which represents
a GUI test case. Initially our model contains an initial state
s0 ∈ S and no transitions.

For each pair (e, h), we create a state s and one
transition (s0, e, s) and another transition (s, ϵ, s0) that
loops back to the initial state. That is, the automaton
accepts any sequence of events.

Next we process the context events of (e, h). We iterate
over the set of context events Ctx (h). We create a new
state s′ and an edge (s0, ec, s

′) for each ec ∈ Ctx (h)
and one edge (s′, e, s). The additional states and edges
do not affect the language accepted by the automaton (as
it already accepts any possible sequence). Extending the
automaton with these transitions is motivated by the way
we create sequences of events for testing: If we traverse
the model starting from the initial state s0, and we always
choose a random transition to the next state, the probability
that an event e is preceded by an event e′ ∈ Ctx (Ex (e))
is higher than the probability that e is preceded by some
other event.

Figure 3. Example of a generated Model.

Figure 3 shows an example of the generated grey-box
model for the TerpWord application. In two out of three
paths in that automaton, the event textcopy is preceded
by the event splitpane. That is, if we generate sequences
of events by randomly traversing through the automaton,
it is more likely that the event textcopy is preceded by
splitpane.

VI. Test Case Generation

Algorithm 3 shows how we perform GUI testing based
on the model generated in the previous sections. The input
of the algorithm includes the model, TCsize that determines
the number of events of each test case, timeout that
determines for how long the test cases will be generated
and the seed that determines the random seed used for test
case generation.

Algorithm 3: GUI Test Case Generation
Input: Model M = (S, δ), TCsize, timeout, seed

begin1
State s = initial state of M2
Test Case tc := {}3
while (timeout is not reach) do4

Pick randomly (s, e, s′) ∈ δ5
s := s′6
tc := tc+ e7
if (size of tc ≥ TCsize) ∧ (s is initial state of M )8
then

try9
Execute the test case tc10
catch11

Report tc12
endtry13
Test Case tc := {}14

endif15
endw16

end17

The algorithm starts with an empty sequence of events
tc. The testing procedure is repeated until a given timeout



is reached. Starting from the initial state in our model
M , in each iteration of the loop, we randomly pick one
outgoing edge and traverse to the target state. We add the
event from the edge label and add it to tc (if the label is ϵ
we do not add anything). This procedure is repeated until
the initial state of M is reached again and the length of tc
is larger than the threshold TCsize.

We execute the resulting sequence of events tc and
check if the program terminates abnormally. If so, we
report this sequence to the test engineer. Then, we reset
the sequence of events and start over until the time limit
is reached.

VII. Exploratory Experiments

We present our preliminary experiments using as subject
four applications: TerpWord, TerpPaint, TerpPresent and
TerpSpreadSheet. Our main goal is to determine how the
event handlers can affect the generated GUI test cases. We
define the following questions:

• RQ1: How often do shared event handlers occur?
• RQ2: How often do context-sensitive event handlers

occur?
Table I presents how many shared event handlers

and context-sensitive event handlers were found in four
TerpOffice applications. We mine the source code of the
applications looking for the number of widgets, event
handlers, shared event handlers and context-sensitive event
handlers. It is important to observe that we mine only
the main frame windows and we are not considering non-
main frame windows (e.g. modal windows like dialogs or
modeless windows like floating widgets). According to the
results we have the following observations:

• The mean of shared event handlers is 18%, which
means that we have widgets that exercise the same
event handler. The TerpPaint application is an outlier.
If we are not considering this outlier the mean of
shared event handlers is 27%.

• In the application TerpPaint we found only one shared
event. The reason of that is due to its characteristics: it
is an image manipulation application where almost all
event handlers are only connected to one widget, since
the application is supposed to be used mainly with one
input device (e.g. a mouse that chooses a color from
the palette and draws a rectangle). In comparison,
the remaining TerpOffice applications tend to provide
more than one input method (e.g. a mouse that clicks
a toolbar button and a keyboard that chooses a menu
item that leads to the execution of the same event).

• The mean of context-sensitive event handlers is 81%,
which we consider high. The data used in the GUI
seems to be important for test case generation. In

TerpSpreadSheet almost all event handlers have an
associated context.

Application:
TerpOffice

#LOC #Widgets #Event
handlers

#Shared
event
handlers

#Context-
sensitive
event
handlers

Word 6842 50 39 11 (28%) 24 (62%)
Paint 17730 92 95 1 (1%) 69 (73%)
Present 25072 115 91 24 (26%) 74 (81%)
SpreadSheet 126909 51 37 10 (27%) 35 (95%)
Total
(mean)

176553 308 262 46 (18%) 213 (81%)

Table I. Mining Widgets Evaluation.

A. Coverage: Shared Event Handlers

Table II presents the coverage of the test case generation
for the main frame window of TerpWord without regard
to shared and context-sensitive event handlers. We realize
this test case generation by using a temporary model which
is similar to the model presented in Section V, though
neither shared nor context-sensitive transitions are consid-
ered here. Thus, for each shared event handler mined from
the source code, we (1) add a transition to our temporary
model, and (2) duplicate that transition, depending on
how many widgets are connected to this event handler.
This scenario conforms to a black-box perspective where
shared event handlers are unknown. Additionally, for each
context-sensitive event handler we (1) add a transition to
our temporary model, but we (2) omit any corresponding
ϵ or preceding transition.

We generate test cases randomly with a timeout of
1 min. The timeout comprises the time for starting and
exiting the application itself, as well as the execution of
the event handlers for each test case.

TCsize is the number of events (steps), #Test Cases is
the total number of generated test cases, ØMethod Cov. is
the percentage of methods coverage and ØLine Cov. is the
percentage of lines covered.

Seed TCsize #Test Cases ØMethod Cov. (%) ØLine Cov. (%)
1 2 15 48 55
1 3 14 47 54
2 2 15 47 52
2 3 14 49 56
3 2 15 43 53
3 3 14 48 55

Avg. 2 15 46.0 53.3
Avg. 3 14 48.0 55.0

Table II. Coverage omitting Shared and
Context-sensitive Event Handler, and a Time-
out of 1 min.



Table III presents the coverage of the test case genera-
tion with regard to shared event handlers only. We realize
this test case generation by using our model presented in
Section V, though context-sensitive event handlers are not
considered here. Thus, each shared event handler mined
from the source code is represented by one transition
only. Additionally, for each context-sensitive event handler
we still do not insert their corresponding ϵ or preceding
transitions in our model. Only Table IV shows the results
for both shared and context-sensitive event handlers.

In this experiment, we also consider the main frame
window of TerpWord and a timeout of 1 min. TCsize is the
number of events (steps), #Test Cases is the total number
of generated test cases, ØMethod Cov. is the percentage
of methods coverage and ØLine Cov. is the percentage of
lines covered.

Seed TCsize #Test Cases ØMethod Cov. (%) ØLine Cov. (%)
1 2 15 52 60
1 3 15 57 62
2 2 14 53 60
2 3 14 54 62
3 2 15 53 61
3 3 14 54 61

Avg. 2 14.7 52.7 60.3
Avg. 3 14.3 55.0 61.7

Table III. Coverage considering Shared Event
Handler and a Timeout of 1 min.

According to the Tables II and III we can observe
that we do not lose information when using shared event
handlers. The coverage difference of both tables was about
7%. When we eliminate redundant events we increase the
coverage. It seems that we can reach a higher coverage
eliminating redundant event handlers in comparison with
purely random test case generation. We believe that more
and better results will come with bigger and more com-
plex GUI applications, which have a lot of shared event
handlers.

B. Coverage: Context-Sensitive Event
Handlers

Table IV shows the coverage of the test case generation
for the whole TerpWord application. In this table, both
shared and context-sensitive event handlers are considered.
Each test case has a size of 3 and the experiment ran 10
times with a timeout equals to 5 min.

We can observe that the coverage does not change
significantly when we use different seeds for random test
case generation based on our model. It means that the
random selection of events has no influence in the results.
The difference between the coverage found in this table
with the previous one occurs because we are considering

Seed Method (%) Line (%) #Test Cases
1 47 50 48
2 46 50 48
3 47 50 48
4 47 50 48
5 47 50 48
6 46 50 48
7 46 50 48
8 46 50 46
9 53 53 47
10 54 54 46

Avg. 47.9 50.7 47.5

Table IV. Coverage on TerpWord using our
Technique and a Timeout of 10 min.

here the whole TerpWord application, and not only the
main frame window.

C. Discussion

The two main advantages of our technique are: the
test case generation (i) with less redundant test cases
and (ii) more interesting sequences of events. For (i)
we identify the shared event handlers and we remove
duplicated widgets. However, to identify the context is
much more complicated. In our findings we observe that
the applications do not follow code standards. For instance,
event handlers are implemented within an actionPerformed
method (e.g. in TerpWord), in a separated method or even
in a different class. Thus, the mining algorithm has to be
tailored to recognize specific patterns. In general, we think
that the scalability of the static code analysis is strongly
connected to the complexity of the patterns. It may be more
difficult to mine context in the source code implementing
sophisticated patterns. In terms of the scalability of the test
case generation, we assume that our systematic approach
is also useful for bigger applications, since the advantages
of grey-boxing GUI applications are encoded in the model
itself.

Related to our research question: for RQ1 we observe
that shared event handlers occur often in the TerpOffice
applications. However, we also found an application, which
amount of shared event handlers is small (in TerpPaint we
only found one event). For instance, in TerpPaint an event
handler h1 sets the color of a brush. Then, in an event
handler h2 the brush draws a pixel in the document using
the selected color, without evaluating any other widgets.
This behaviour can be found in many event handlers in
TerpPaint.

For RQ2 we observe that the occurrence of context-
sensitive event handlers are the most common event of the
TerpOffice applications. It means that if we do not consider
how to evaluate the context of these events probably our
testing will not achieve a better coverage. This is one



reason why GUI testing, in general, is used to assure
reliability and robustness. When some context is incor-
porated into GUI testing we can achieve not only a high
coverage, but improve the correctness of the applications.
On the other hand, one limitation of our approach is related
with the kind of context and different patterns, which our
implementation deals with.

VIII. Related Work

Recent works have been done to improve GUI testing
using the application’s source code. Zhao and Cai [5]
propose a coverage criteria based on the handler of the
widgets. The idea is to apply GUI test cases and to
verify how many handlers were exercised by the tests.
Our approach extends the idea of handler-based coverage
criterion to test case generation.

Some approaches to extract models from source code
are proposed in [6], [7]. In [6] they extract the hierarchi-
cal structure of windows and interactive controls within
windows and their properties. They consider enabling and
disabling dependencies as well as data dependence. In [7]
a tool called GUISurfer is presented, which automates the
process of extracting information on the GUI behavior
using its source code. Both approaches are complementary
in comparison to our approach with respect to the kind of
information they obtain in their reverse engineering.

Memon et al. [8] propose a novel model for GUI testing.
On their findings, they define a single model that can
be used by GUI and web-based applications. In [9] they
propose a test case generation based on runtime execution.
It allows identifying further user interactions between GUI
events to increase the amount of detected faults. With
respect to our model, we can also use the ideas of a
single model to represent GUI and web-based applications.
In this work, we do not analyze runtime executions for
incorporating these interactions in our model, but it can
be a future direction to identify different context.

Nguyen et al. [10] present a tool to map the business
logic and presentation logic for GUI testing. It is inter-
esting for applications with a business logic and multiple
presentation logics like front-ends for email clients.

IX. Conclusion

In this paper we present a technique, which incorporates
shared and context-sensitive event handlers into test case
generation. We mine the source code of the application
in order to identify shared and context-sensitive event
handlers. We generate a model with this information and
then we generate GUI test cases.

Our exploratory experiments show that simple static
analysis already can mine useful information to avoid the

creation of improper sequences of user interactions in GUI
testing. We observe that about 18% of the total of event
handlers are shared event handlers which suggests that
we do not have to generate test cases for all widgets. In
addition, we observe that context-sensitive event handlers
represent the majority of the event handlers for the ob-
served applications (about 81%). We are surprised that a
simple pattern based analysis was already able to reveal so
many dependencies between widgets. Incorporating these
dependencies in the test case generation yields a large
potential to improve the relevance of the test cases (and
thus improve the quality of the application).

The results from our test case generation indicate that
the benefit of eliminating redundant events handlers shows
for applications where only a very limited number of
sequences can be generated within the available time limit.
Our model for test case generation seems to be improper
to benefit from the information about context-sensitive
event handlers. However, we believe that the knowledge
about context events is useful and can be validated using
a modified model.

A. Future Work

We see two potential directions for future work. One
direction is to further mine information about the de-
pendencies between user interactions. We believe that a
more in-depth static analysis will be needed for significant
improvements. Our next steps involve experiments with
data-flow analysis and symbolic execution (e.g., [11]) to
categorize the way in which an event handler modifies
the data of its associated widget. Based on this we might
be able to guess which order of context events might be
suitable to trigger a certain control-flow path.

We plan to improve the kind of context that we are able
to obtain from the code as well as to extend the focus to
change-based GUI testing [12]. Changes in GUIs occur
often even when the software is in production. The costs
for testing the whole GUI are high. We will analyze how
the GUIs change and how to check only for changes to
aim a reduction of the testing costs.

Another direction of future work will be the creation of
an improved model. From our experiments we could not
see an effect of context-sensitive event handlers. We will
conduct further experiments on larger applications as we
assume that an effect is only visible for longer sequences
of user interactions. We experiment with different ways to
modify the model such that it creates certain sub-sequences
of events with a higher probability than other. We believe
that the approach of using a model that privileges certain
sequences has a large potential in user interface testing, and
can be additionally combined with e.g. machine learning
approaches.



Our results and insights from detecting shared event
handlers motivate the idea of further reducing the number
of relevant events by, e.g. detecting widgets that are not
associated with any code, or with code that does not change
the state of the system (e.g., an info dialog). This analysis
might seem trivial, but reducing the total number of events
that need to be considered for test case generation has a
huge impact if only a small fraction of sequences can be
tested within the given time frame.

In the future we will perform a comparison with clas-
sical and well established techniques that use Event Flow
Graphs as input for test case generation [13], [4], [2].

We think that the mining of hidden widgets can also be
an improvement to GUI test case generation, respectively
to achieve higher code coverage. For example, a hidden
widget is a shortcut connected to a certain event handler,
in the same manner as the event handler of a button’s
click. Since shortcuts that can be used by a user are not
visible to them, mining the source code can reveal event
handlers that are called, if a particular key stroke occurs.
In comparison, in a back-box approach (e.g. GUI ripping)
it might be much harder to detect those kinds of hidden
widgets. So far, our mining algorithm searches for action
listeners only, but we plan to consider further listeners for
keys, a mouse and for windows itself.

In this paper, we only explored the widgets and event
handlers of the main frame window of each application, but
we want to extend our approach also to modal windows.
Here the challenge is certainly to modify the grey-box
model in a way, that a subset of possible event handlers
can be enabled or disabled, according to whether a modal
window is displayed or not.

Overall, we see that simple static analysis can reveal
a lot of information about the dependencies between
user interactions with a GUI. Using this information to
distinguish between feasible and unfeasible test sequences
has a great potential to generate good testing results even
in a narrow time frame.
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