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Abstract

We study formal security properties of a state-of-the-art
protocol for secure file sharing on untrusted storage, in the
automatic protocol verifier ProVerif. As far as we know,
this is the first automated formal analysis of a secure stor-
age protocol. The protocol, designed as the basis for the
file system Plutus, features a number of interesting schemes
like lazy revocation and key rotation. These schemes im-
prove the protocol’s performance, but complicate its secu-
rity properties. Our analysis clarifies several ambiguities
in the design and reveals some unknown attacks on the pro-
tocol. We propose corrections, and prove precise security
guarantees for the corrected protocol.

1. Introduction

Much research in recent years has focused on the secu-
rity analysis of communication protocols. In some cases,
attacks have been found on old, seemingly robust proto-
cols, and these protocols have been corrected [23, 33, 40]; in
other cases, the security guarantees of those protocols have
been found to be misunderstood, and they have been clari-
fied and sometimes even formalized and proved [4, 33, 37].
More generally, this line of work has underlined the diffi-
culty of designing secure communication protocols, and the
importance of verifying their precise security properties.

While protocols for secure communication have been
studied in depth, protocols for secure storage have received
far less attention. Some of these protocols rely on secure
communication, and we expect the usual techniques for se-
cure communication to apply to such protocols as well. But
some distinctive features of storage pose problems for se-
curity that seem to go beyond those studied in the con-
text of communication protocols. Perhaps the most strik-
ing of these features is dynamic access control. Indeed,
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while most storage systems feature dynamic access control
in some form, its consequences on more abstract security
properties like secrecy and integrity are seldom evaluated
in detail.

In this paper, we show that protocols for secure stor-
age are worth analyzing, and study an interesting example.
Specifically, we analyze a state-of-the-art file-sharing proto-
col that exploits cryptographic techniques for secure storage
on an untrusted server. The protocol is the basis for the file
system Plutus [32]. This setting is interesting for several
reasons. First, compromise of storage servers is a reason-
ably common threat today, and it is prudent not to trust such
servers for security [34]. Next, the protocol we study has a
very typical design for secure file sharing on untrusted stor-
age, where data is stored encrypted and signed, and keys
for encrypting, signing, verifying, and decrypting such data
are managed by users. Several file systems follow this basic
design, including SNAD [35], SiRiUS [28], and other cryp-
tographic file systems since the 1990s [15]. Finally, beyond
the basic design, the protocol features some promising new
schemes like lazy revocation and key rotation that improve
the protocol’s performance in the presence of dynamic ac-
cess control, but in turn complicate its security properties.
These features are worthy of study. For instance, our analy-
sis reveals that lazy revocation allows more precise integrity
guarantees than the naive scheme in [28]. With lazy revo-
cation, if an untrusted writer is revoked, readers can dis-
tinguish contents that are written after the revocation from
previous contents that may have been written by that writer;
consequently, they can trust the former contents even if they
do not trust the latter contents. On a different note, the com-
putational security of key rotation schemes has generated a
lot of interest recently [6, 7,26]. Our analysis reveals some
new integrity vulnerabilities in the protocol that can be ex-
ploited even if the key rotation scheme is secure.

Formal techniques play a significant role in our analysis.
We model the protocol and verify its security properties in
the automatic protocol verifier ProVerif. ProVerif is based
on solid formal foundations that include theory for the ap-
plied pi calculus and proof theory for first-order logic. The



formal language forces us to specify the protocol precisely,
and prove or disprove precise security properties of the pro-
tocol. This level of rigor pays off in several ways:

e We find a new integrity attack on the protocol, and
show that it can have serious practical consequences.
That this attack has eluded discovery for more than
four years is testimony to the difficulty of finding such
attacks “by hand”.

e We propose a fix and prove that it corrects the proto-
col. Both the attack and the correction are relative to
a formal specification of integrity that is not immedi-
ately apparent from the informal specification in [32].
We also prove a weaker secrecy guarantee than the one
claimed in [32] (and show that their claim cannot be
true).

e The formal exercise allows us to notice and clarify
some ambiguities in [32]; it also allows us to find some
new, simpler attacks where more complex ones were
known. These discoveries vastly improve our under-
standing of the protocol’s subtleties.

e Finally, the use of an automatic verifier yields a much
higher level of confidence in our proofs than manual
techniques, which have been known to be error-prone.

More generally, our results reconfirm that informal justifica-
tions (such as showing resistance to specific attacks) are not
sufficient for protocols. As far as we know, our study is the
first automated formal analysis of a secure storage protocol;
we expect our approach to be fruitful for other protocols in
this area.

Related work There is a huge body of work on formal
methods for the verification of security protocols, e.g., [1,
4,8,16,29,33,37]. We refer the reader to [14] for more in-
formation on this work, and we focus here on more closely
related work on the design and verification of secure file
systems.

In file systems based on the network-attached (object)
storage protocols (NASD, OSD) [27, 30], distributed access
control is implemented on trusted storage via cryptographic
capabilities. A semi-formal security analysis of this proto-
col appears in [30], while [19-21] present formal models
and manual security proofs for this protocol in the applied
pi calculus.

Among other protocols for secure file sharing on un-
trusted storage, the closest to the one we study here are
those behind the file systems Cepheus [25], SiRiUS [28],
and SNAD [35]. Lazy revocation first appears in Cepheus;
see [31] for a summary of the origins of lazy revocation, and
its limitations. Keys for reading and writing files in SiRiUS
are the same as those in Plutus. However, those keys are

stored and distributed securely by the server (“in-band”), in-
stead of being directly distributed by users (“out-of-band”).
Moreover, revocation in SiRiUS is immediate, instead of
lazy. In SNAD, keys for reading files are distributed in-band
as in SiRiUS. However, unlike Plutus and SiRiUS, there are
no keys for writing files—any user can write contents by
signing those contents with its private key, and the storage
server is trusted to control access to writes.

While the protocol we study partially trusts the storage
server to prevent so-called rollback attacks (where contents
received from the file system are not the most recent con-
tents sent to the file system), the protocol behind the file sys-
tem SUNDR [34] specifically provides a guarantee called
fork consistency, that allows users to detect rollback attacks
without trusting the storage server. The correctness of that
protocol is formally proved in [34]. SUNDR does not focus
on other secrecy and integrity guarantees.

Recently several schemes for key rotation have been pro-
posed and manually proved in the computational model of
security [6,7,26], and various alternative schemes for key
distribution and signatures have been designed to eliminate
public-key cryptography in this context [36]. Mechanically
verifying these schemes should be interesting future work.

Finally, to guarantee stronger information-flow proper-
ties than the ones studied in this paper, access control must
be complemented by precise code analysis. Recently, sev-
eral type systems have been designed for such purposes [18,
22,38,42]. The type system in [18] is particularly suitable
for proving such properties in the presence of dynamic ac-
cess control and untrusted storage.

Organization The rest of the paper is organized as fol-
lows. In Section 2, we outline the protocol behind Plutus.
In Section 3, we give an overview of ProVerif, and present
our model of Plutus in ProVerif. In Section 4, we spec-
ify and analyze secrecy and integrity properties of Plutus in
ProVerif, and present our results and observations. Finally,
in Section 5, we discuss our contributions and conclude.

2. Plutus

The file system Plutus [32] is based on a storage design
that does not rely on storage servers to provide strong se-
crecy and integrity guarantees. Instead, contents of files are
cryptographically secured, and keys for writing and read-
ing such contents are managed by the owners of those files.
Special schemes are introduced to economize key distribu-
tion and cryptography in the presence of dynamic access
control; those schemes complicate the protocol and its se-
curity properties.

In Plutus, principals are qualified as owners, writers, and
readers. Every file belongs to a group', and all files in a

IThere is a difference between the informal interpretation of a group



group have the same writers and readers. The owner of a
group generates and distributes keys for writing and reading
contents for that group; those keys are shared by all files in
that group. Specifically, a write key is used to encrypt and
sign contents, while a read key is used to verify and decrypt
such contents. These keys can be revoked by the owner to
dynamically control access to those files; a new write key
and a new read key are then generated and distributed ap-
propriately. However, the new write key is used only for
subsequent writes: unlike SiRiUS [28], the files are not im-
mediately secured with the new write key, so that the previ-
ous read key can be used to verify and decrypt the contents
of those files until they are re-written. This scheme, called
lazy revocation, avoids redundant cryptography and is jus-
tified by the following observations:

e Encrypting the existing contents with the new write
key does not guarantee secrecy of those contents from
the previous readers, since those contents may have
been cached by the previous readers.

e More subtly, since the existing contents come from the
previous writers, signing those contents with the new
write key would wrongly indicate that they come from
the new writers.

Further, a scheme called key rotation allows the new read-
ers to derive the previous read key from the new read key,
avoiding redundant key distribution—the new readers do
not need to maintain the previous read key for reading the
existing contents. In contrast, the new read key cannot be
derived from the previous read key, so contents that are sub-
sequently written with the new write key can only be read
by the new readers.

Concretely, a write key is of the form (sk, lk), where
sk is part of an asymmetric key pair (sk, vk), and Ik is a
symmetric encryption key; the complementary read key is
(vk,lk). Here sk, vk, and Ik are a sign key, a verify key,
and a lockbox key. Contents are encrypted with k> and
signed with sk; those contents are verified with vk and de-
crypted with [k. Plutus uses the RSA cryptosystem [39], so
we have sk = (d,n) and vk = (e,n), where the modulus
n is the product of two large primes p and ¢, and the expo-
nents d and e are inverses modulo (p — 1)(g — 1), that is,
ed =1 mod (p — 1)(q — 1). Thus, the functions z + ¢
mod n and y — y° mod n are inverses. Given a hash
function hash, a message M is signed with sk by comput-
ing S = hash(M)? mod n, and S is verified with vk by

in [32], and the formal interpretation of a group in this paper. In fact, the
interpretation in [32] is inconsistent; see Section 4.4 for a more detailed
discussion of this issue.

2More precisely, contents are divided into blocks, and each block is
encrypted with a fresh key; these keys are in turn stored in a “lockbox”
that is encrypted with /K. In this paper, we consider for simplicity that the
contents are directly encrypted with lk; we have checked that our results
continue to hold with the details of the lockbox.

checking that S® mod n = hash(M). We call (p, q) the
RSA seed. In general, e may be chosen randomly, rela-
tively prime to (p — 1)(¢ — 1), and d may be computed
from e, p, and q. However in Plutus, e is uniquely de-
termined by n and Ik as follows: given a pseudo-random
sequence (r;) generated with seed Ik, e is the first prime
number in the sequence (r; + \/n). We denote this algo-
rithm by genExp(n, Ik). To sum up, a sign/verify key pair
(sk, vk) is generated from a random RSA seed (p, ¢) and a
lockbox key Ik, by computing n = pq, e = genExp(n, Ik),
vk = (e,n), and sk = (d,n), where d is the inverse of e
modulo (p — 1)(g — 1).

The owner of a group distributes (sk, lk) to writers and
lk to readers; users can further derive vk from n and [k
using genExp. Note that n is already available to writers
from sk. Further, the owner distributes a signed n to writ-
ers, which they attach whenever they write contents to the
file system—so any user can obtain n from the file system
and verify its authenticity. Thus writers can act for readers
in Plutus, although in [32] it is wrongly claimed that writers
cannot derive vk (implying that read access is disjoint from
writer access). It is already known that writers can act for
readers in SiRiUS in a similar way [28, 36].

Let (D, N) and (E, N) be the private key and the public
key of the owner of a group. The initial and subsequent
versions of keys for writers and readers of that group are
generated as follows:

Version 0 The initial lockbox key lk¢ is random, and the
initial sign/verify key pair (sko, vko) is generated from
a random RSA seed (with modulus ng) and lkg.

Version v to version v + 1 When keys for version v are
revoked, a new lockbox key lk,; is generated by
“winding” the previous lockbox key Ik, with the
owner’s private key: lk,41 = lkf mod N. The
previous lockbox key can be retrieved by “unwind-
ing” the new lockbox key with the owner’s public key:
lk, = lkUE "1 mod N. In particular, a reader with
a lockbox key Ik, for any v > v can generate the
verify key vk, by obtaining the modulus n, from the
file system, recursively unwinding Ik, to lk,, and de-
riving vk, from n, and [k, using genExp. The new
sign/verify key pair (sky, 41, vky41) is generated from
arandom RSA seed (with modulus n,41) and Ik, 1.

While storage servers are not trusted to provide strong se-
crecy and integrity guarantees, there is still a degree of trust
placed on servers to prevent unauthorized modification of
the store by a scheme called server-verified writes. Specifi-
cally, the owner of a group generates a fresh write token for
each version, and distributes that token to the writers of that
version and to the storage server. The server allows a writer
to modify the store only if the correct write token is pre-
sented to the server; in particular, revoked writers cannot



revert the store to a previous state, or garbage the current
state.

3. ProVerif and a formal model of Plutus

In order to study Plutus formally, we rely on the auto-
matic cryptographic protocol verifier ProVerif. We briefly
present this verifier next, and describe our model of Plutus
below.

3.1. ProVerif

The automatic verifier ProVerif [2,11,12,14] is de-
signed to verify security protocols. The protocol is speci-
fied in an extension of the pi calculus with cryptography, a
dialect of the applied pi calculus [3]. The desired security
properties can be specified, in particular, as correspondence
assertions [41], which are properties of the form “if some
event has been executed, then other events have been exe-
cuted”. (We illustrate this input language below.) Internally,
the protocol is translated into a set of Horn clauses, and the
security properties are translated into derivability queries
on these clauses: the properties are proved when certain
facts are not derivable from the clauses. ProVerif uses a
resolution-based algorithm to show this non-derivability.

ProVerif relies on the formal, so-called Dolev-Yao model
of protocols [24], in which messages are modeled as terms
in an algebra. This rather abstract model of cryptography
makes it easier to automate proofs than the more concrete,
computational model, in which messages are modeled as
bitstrings. Consequently, ProVerif can handle a wide vari-
ety of cryptographic primitives specified by rewrite rules or
equations over terms. Moreover:

e When ProVerif proves a property, the proof is valid for
an unbounded number of sessions of the protocol and
an unbounded message size.

e When the proof fails, ProVerif provides a derivation
of a fact from the clauses. It also tries to reconstruct,
from this derivation, a trace of the protocol that shows
that the property is false [5]. When trace reconstruc-
tion fails, ProVerif gives no definite answer. Such a
situation is unavoidable due to the undecidability of
the problem. In our study, whenever this situation hap-
pened, manual inspection of the derivation provided by
ProVerif allowed us to reconstruct an attack against the
said property: the failure of the ProVerif proof always
corresponded to an attack.

We refer the reader to [14] for detailed information on
ProVerif and the theory behind it.

3.2. A model of Plutus in ProVerif

We now present a model of Plutus in ProVerif; its secu-
rity properties are specified and studied in Section 4.

3.2.1. Cryptographic primitives, lists, and integers

We abstract cryptographic primitives with function sym-
bols, and specify their properties with rewrite rules and
equations over terms. The term enc(M, K) denotes the re-
sult of encrypting message M with symmetric key K; and
the rewrite rule

dec(enc(z,y),y) — =

models the fact that any term of the form enc(M, K) can
be decrypted with K to obtain M. (Here x and y are vari-
ables that can match any M and K.) The term hash(M)
denotes the hash of message M. The term exp(M, (R, N))
denotes the result of computing M mod N. We abstract
random RSA seeds as fresh names. The term N(s) denotes
the modulus of seed s. The term e(s, K') denotes the unique
exponent determined by the modulus N(s) and base K by
the algorithm described in Section 2; this fact is modeled by
the rewrite rule:

genExp(N(z),y) — e(w,y)

The term d(s, K) is the inverse exponent, as explained in
Section 2. This fact is modeled by the equations:

eXp(eXp(Z, (d(.%‘, y)a N('r)))> (e(xa y)? N(m)))
exp(exp(z, (e(z, y),N(2))), (d(z,y), N(z)))

Finally, the rewrite rule

z
z

crack(e(z,y),d(x,y),N(z)) — x

models the fact that a modulus N(s) can be efficiently “fac-
tored” to obtain the RSA seed s if both exponents e(s, K)
and d(s, K) are known [17].

We model sets of allowed writers and readers with lists:
nil is the empty list, and cons(M, L) is the extension of the
list L with M; we have member(N, L) if and only if N is a
member of the list L. Likewise, we model version numbers
with integers: zero is 0, and the integer succ(M) is the suc-
cessor of the integer M ; we have geq(N, M) if and only if
the integer N is greater than or equal to the integer M. The
following clauses define the predicates member and geq in
ProVerif.

member(z, cons(z, y));

member(z,y) = member(z,cons(z, y)).

geq(, z);
geq(z,y) = geq(succ(z),y).



For elegance of notations, we sometimes write 0, 1, ... for
zero, succ(zero),...; M > N for geq(M,N);and M € L
for member(M, L).

3.2.2. The protocol

We model principals as applied pi-calculus processes with
events [14]. Informally:

e out(u, M); P sends the message M on a channel
named u and continues as the process P; a special case
is the process out(u, M), where there is no continua-
tion.

e in(u, X); P receives a message M on a channel
named u, matches M with the pattern X, and con-
tinues as the process P with variables in X bound to
matching terms in M. Here X may be a variable z,
which matches any message and stores it in x; a pat-
tern =N, which matches only the message IV; or even
a more complex pattern like (=N, x), which matches
any pair whose first component is [NV and stores its sec-
ond component in x.

e new m; P creates a fresh name m and continues as
the process P.

e event e(My,..., M,); P executes the event e(M,
., M,) and continues as the process P. A spe-
cial case is the process event e(Mj, . .., M, ), where
there is no continuation. The execution of e(Mjy, ...,
M,,) merely records that a certain program point has
been reached for certain values of My, ..., M,. Such
events are used for specifying security properties, as
explained in Section 4.1.

e if M = M’ then P else @ executes P if M evaluates
to the same term as M'; otherwise it executes Q. A
special case is the process if M = M’ then P, where
there is no else continuation.

e let X = M in P evaluates M, matches it with the
pattern X and, when the matching succeeds, continues
as P with the variables in X bound to matching terms
in the value of M.

e P | @ runs the processes P and () in parallel.

e ! P runs an unbounded number of copies of the process
P in parallel.

In Figures 1, 2, and 3, we define processes that model the
roles of owners, writers, and readers; the protocol is spec-
ified as the parallel composition of these processes. (The
storage server is assumed to be untrusted at this point, and
therefore not modeled. We study server-verified writes and
their properties later.) The network is modeled by a public

channel net; as usual, we assume that the adversary con-
trols the network. Likewise, the file system is modeled by
a public channel fs. On the other hand, private (secure)
channels are not available to the adversary. For instance,
rprivchannel(r) and wprivchannel(w) are private channels
on which an owner sends keys to reader r and writer w, re-
spectively. We limit the number of revocations that are pos-
sible in any group to max,ey. (Thus the number of versions
is bounded. At this level of detail, ProVerif does not termi-
nate with an unbounded number of versions. We managed
to obtain termination with an unbounded number of ver-
sions for a more abstract treatment of cryptography, thanks
to an extension of ProVerif that takes advantage of the tran-
sitivity of geq in order to simplify the Horn clauses. How-
ever, we do not present that abstract model here because
it misses some of the attacks that are found with the more
detailed model below.)

First, Figure 1 shows the code for owners. An owner cre-
ates its private/public key pair (lines 2-5), and then creates
groups on request (lines 7-9). For each group, the owner
maintains some state on a private channel currentstate.
(The current state is carried as a message on this chan-
nel, and the owner reads and writes the state by receiving
and sending messages on this channel.) The state includes
the current version number, the lists of allowed readers and
writers, the lockbox key, and the sign key for that group.
The owner creates the initial version of keys for the group
(lines 12-14), generates at most max,., subsequent ver-
sions on request (lines 17-21), and distributes those keys
to the allowed readers and writers on request (lines 25-30
and 34-40). The generation and distribution of keys fol-
low the outline in Section 2. Moreover, the owner signs
the modulus of each version with its private key (line 38),
sends the signed modulus to writers of that version (line 40),
and sends its public key to readers so that they may verify
that signature (line 30). Events model runtime assertions in
the code: for instance, isreader(r, g, v) and iswriter(w, g, v)
assert that 7 is a reader and w is a writer for group g at ver-
sion v.

Next, Figure 2 shows the code for writers. A writer for
group g at version v obtains the lockbox key, the sign key,
and the owner-signed modulus for v from the owner of g
(lines 46-47). To write data, an honest writer encrypts that
data with the lockbox key (line 50), signs the encryption
with the sign key (line 51), and sends the signed encryption
to the file system with a header that includes the owner-
signed modulus (lines 52-54). The event puts(w, M, g,v)
asserts that an honest writer w for group g sends data M
to the file system using keys for version v. In contrast, a
dishonest writer leaks the lockbox key, the sign key, and the
owner-signed modulus (line 59); the adversary can use this
information to act for that writer. The event corrupt(w, g, v)
asserts that a writer w for group g is corrupt at version v.
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let processOwr =
new seedl;new seed2; (* create owner’s RSA key pair *)
let ownerpubkey = (e(seed?, seed2),N(seed1)) in
let ownerprivkey = (d(seedl, seed2),N(seed?)) in

out(net, ownerpubkey); (* publish owner’s RSA public key *)
(
!'in(net, (= newgroup, initreaders, initwriters)); (* receive a new group creation request;
initreaders and initwriters are the initial lists of allowed readers and writers, respectively *)
new g; (* create the new group g *)
out(net, g); (* publish the group name g *)
new currentstate; (* create a private channel for the current state for group g *)
(
( new initlk; (* create initial lk *)
new seed3;let initsk = (d(seed3, initlk), N(seed?)) in (* generate initial sk *)

out(currentstate, (zero, initreaders, initwriters, initlk, initsk))
(* store state for version 0 on channel currentstate *)

| (* Next, we move from version 0 to version 1 *)

(in(net, (= revoke, = g, newreaders, newwriters)); (* receive a revoke request for group g;
newreaders and newwriters are the new lists of allowed readers and writers *)

in(currentstate, (= zero, oldreaders, oldwriters, oldlk, oldsk)); (* read state for version 0 *)
let newlk = exp(oldlk, ownerprivkey) in (* wind old Ik to new Ik *)
new seed3; let newsk = (d(seed3, newlk), N(seed3)) in (* generate new sk *)

out(currentstate, (succ(zero), newreaders, newwriters, newlk, newsk))
(* store state for version 1 on channel currentstate *)

| .. (* Similarly, we move from version 1 to version 2, and so on *)

(

'in(net, (= rkeyreq, r,= ¢)); (* receive read key request for reader r and group g *)
in(currentstate, (v, readers, writers, lk, sk)); (* get the current state *)
out(currentstate, (v, readers, writers, Ik, sk));
if member(r, readers) then (* check that the reader r is allowed *)

( event isreader(r, g, v); (* assert that r is a reader for group g and version v *)
out(rprivchannel(r), (g, v, Ik, ownerpubkey)) ) (* send lk and owner’s public key to r *)
)

|

(

lin(net, (= wkeyreq, w, = g)); (* receive write key request for writer w and group g *)
in(currentstate, (v, readers, writers, lk, sk)); (* get the current state *)
out(currentstate, (v, readers, writers, lk, sk));
if member(w, writers) then (* check that the writer w is allowed *)

(let (-, n) = sk in let sn = exp(hash(n), ownerprivkey) in (* sign the modulus *)
event iswriter(w, g, v); (* assert that w is a writer for group g and version v *)
out(wprivchannel(w), (g, v, ik, sk, sn))) (* send Ik, sk, and signed modulus to w *)

Figure 1. Code for owners



44
45

let processWir =
Lin(net, (v, 9));

(* initiate a writer w for group g *)

46  out(net, (wkeyreq, w, g)); (* send write key request *)
47  in(wprivchannel(w), (= g, v, Ik, sk, sn)); (* obtain Ik, sk, and signed modulus *)
48
49 ( new m; (* create data to write *)
50 let encz = enc(m, lk) in (* encrypt *)
51 let sencx = exp(hash(encz), sk) in (* sign *)
52 event puts(w, m, g,v); (* assert that data m has been written by w for group g at version v *)
53 let (dz,n) = sk in
54 out(fs, (g, v, n, sn, encz, sencz)) (* send content to file system *)
55 )
56 |
57  (in(net,= (corrupt, w)); (* receive corrupt request for w *)
58 event corrupt(w, g, v); (* assert that w has been corrupted for group g at version v *)
59 out(net, (Ik, sk, sn)) (* leak Ik, sk, and signed modulus *)
60 )
61 ).

Figure 2. Code for writers
62 let processRdr =
63 lin(net, (r,9)); (* initiate a reader T for group g *)
64  out(net, (rkeyreq, 7, g)); (* send read key request *)
65 in(rprivchannel(r), (= g, v, lk, ownerpubkey)); (* obtain lk and owner’s public key *)
66
67 (in(fs, (= g, vz, n, sn, encz, sencx)); (* obtain header and content from file system *)
68 if hash(n) = exp(sn, ownerpubkey) then (* verify signature in header *)
69 (if (v, vz) = (succ(zero), zero) then
70 (let Ik = exp(lk, ownerpubkey) in (* unwind Ik *)
71 let vk = (genExp(n, k), n) in (* derive vk *)
72 if hash(encz) = exp(sencz, vk) then (* verify signature of encryption®)
73 let © = dec(encz, lk) in (* decrypt to obtain data *)
74 event gets(r, z, g, vx) (* assert that reader r read data x for group g and version vz *)
75 )
76 .
7 )
78 |
79  (in(net,= (corrupt, r)); (* receive corrupt request for r *)
80 event corrupt(r, g, v); (* assert that r has been corrupted for group g at version v *)
81 out(net, Ik) (* leak Ik *)
82 )
83 ).

Figure 3. Code for readers



Finally, Figure 3 shows the code for readers. A reader
for group g at version v obtains the lockbox key for v from
the owner of g (lines 64—65). To read data, an honest reader
obtains content from the file system (line 67), and parses
that content to obtain a signed encryption and a header that
contains g, a version number vz, and a signed modulus. It
verifies the signature of the modulus with the owner’s pub-
lic key (line 68); it then generates the verify key for vz from
the modulus and the lockbox key (lines 69-71), verifies the
signature of the encryption with the verify key (line 72), and
decrypts the encryption with the lockbox key (line 73). The
generation of the verify key for vz from the modulus for va
and the lockbox key for v follows the outline in Section 2:
the lockbox key [k for vz is obtained from the lockbox key
for v by unwinding it v — vz times (line 70), after which
genExp generates the required exponent (line 71). In Fig-
ure 3, we detail only the case where v = 1 and vz = 0
(lines 69-75), in which case we unwind the lockbox key
once (line 70); the ProVerif script includes a similar block
of code for each vz < v < max,ey, located at line 76
and omitted in Figure 3. The event gets(r, x, g, vx) asserts
that an honest reader r for group g receives data « from the
file system using keys for version vz. In contrast, a dis-
honest reader leaks the lockbox key (line 81); the adversary
can use this information to act for that reader. The event
corru pt(r, g, v) asserts that a reader r in group g is corrupt
at version v.

4. Security results on Plutus

We now specify secrecy and integrity properties of Plu-
tus in ProVerif, and verify those properties (showing proofs
or attacks) using ProVerif. We propose corrections where
attacks are possible, and clarify several security-relevant de-
tails of the design along the way.

4.1. Correspondences

Properties of the protocol are specified as correspon-
dences [41]. The verifier ProVerif can prove such corre-
spondences [14]. A simple example is the correspondence
e(My,...,M,) ~ ¢ (Mj,..., M), which means that in
any trace of the protocol in the presence of an adversary, the
event e(My, . .., M,,) must not be executed unless the event
e'(Mj,...,M!,) is executed. More generally, correspon-
dences may include equality tests of the form M = M’,
atoms of the form pred(Mi, ..., M,) that rely on user-
defined predicates pred (such as geq and member), and
atoms of the form attacker()), which mean that the at-
tacker knows the term M.

Definition 4.1 (Correspondences). Let 7 range over traces,
o over substitutions, and ¢ over formulas of the form

attacker(M), e(My, ..., M,), pred(M, ...
M, p1 N\ ¢a, or ¢1 V ¢a.

o 7 satisfies attacker(M) if the message M has been
sent on a public channel in T .

7Mn)’ M =

T satisfies e(My,...,M,) if the event e(Mq,...,
M,,) has been executed in T.

T satisfies M = M’ if M = M’ modulo the equations
that define the function symbols.

T satisfies pred(My, . ..
.., M,,) is true.

, M., if the atom pred(My,

T satisfies d1 N\ ¢o if T satisfies both ¢1 and ¢s.
o T satisfies ¢y V ¢ if T satisfies ¢1 or T satisfies po.

Let an Init-adversary be an adversary whose initial
knowledge is Init. A process P satisfies the correspondence
¢ ~ ¢ against Init-adversaries if and only if, for any trace
T of P in the presence of an Init-adversary, for any substi-
tution o, if T satisfies o, then there exists a substitution ¢’
such that o' ¢ = o and T satisfies o' ¢’ as well.

In a correspondence ¢ ~» ¢', the variables of ¢ are
universally quantified (because o is universally quantified),
and the variables of ¢’ that do not occur in ¢ are exis-
tentially quantified (because o’ is existentially quantified).
ProVerif can prove correspondences ¢ ~+ ¢’ of a more re-
stricted form, in which ¢ is of the form attacker(M) or
e(Ma, ..., M,). This corresponds to the formal definition
of correspondences proved by ProVerif given in [14, Defi-
nition 3], except for two extensions: we allow atoms of the
form attacker(M), M = M’, and pred(My,...,M,) to
occur in ¢' and we do not require that ¢’ be in disjunctive
normal form.

In order to prove correspondences, ProVerif translates
the process and the actions of the adversary into a set of
Horn clauses R. In these clauses, messages are represented
by patterns® p, which are terms in which names a have been
replaced with functions «a[...]. Free names are replaced
with constants a[], while bound names created by restric-
tions are replaced with functions of the messages previously
received and of session identifiers that take a different value
at each execution of the restriction—so that different names
are represented by different patterns. The clauses use the
following kinds of facts:

e attacker(p), which means that the adversary may have
the message p;

e message(p, p'), which means that the message p’ may
be sent on channel p;

3Note that the meaning of “pattern” in this context is different from the
usual meaning, e.g. in Section 3.2.2.



e event(e(py,...,pn)), which means that the event
e(p1,. - .,pn) may have been executed;

e m-event(e(pi,...,pn)), which means that the event
e(p1,- - ., pn) must have been executed;

e the facts geq(p, p’) and member(p, p’), which are de-
fined in Section 3.2.1.

The clauses that define geq and member are shown in Sec-
tion 3.2.1. The other clauses in R are generated automat-
ically by ProVerif from the process and from the defini-
tions of the function symbols; see [14, Section 5.2] for de-
tails. ProVerif establishes security properties by proving
that certain facts are derivable from these clauses only if
certain hypotheses are satisfied. The derivability properties
are determined by a resolution-based algorithm, described
in [14, Section 6]. Specifically, ProVerif computes a func-
tion solvep 1. (F') that takes as argument a process P, the
initial knowledge of the adversary Init, and a fact F', and re-
turns a set of Horn clauses that determines which instances
of F' are derivable. More precisely, let 7., be any set of
m-event facts, which are supposed to hold. An instance Fj
of F' is derivable from R U F,e if and only if there ex-
ist a clause H = C' in solvep j;(F') and a substitution
oo such that Fy; = 0¢C and the facts in ogH are deriv-
able from R U Fye. In particular, if solvep it () = 0,
then no instance of F' is derivable from R U Fy, for any
Fme- Other values of solvep ;. (F') give information on
which instances of F' are derivable and under which condi-
tions. In particular, the m-event facts in the hypotheses of
clauses in solvep, r,;: (F') must be in . in order to derive
an instance of F’ (since R contains no clause that concludes
m-event facts), so the corresponding events must have been
executed.

We can then prove the following theorem, which pro-
vides a technique for establishing correspondences.

Theorem 4.2 (Correspondences). Let P be a closed pro-
cess. Let ¢ ~ ¢ be a correspondence, where ¢ is
attacker(M) or e(M,...,M,). Let F' = attacker(p)
if ¢ = attacker(M) and F = event(e(p1,...,pn)) if
¢ = e(My,...,M,), where p,p1,...,py, are the patterns
obtained from the terms M, M, ..., M, respectively, by
replacing names a with patterns a[]. Let ¢’ be the formula
obtained from ¢’ by replacing names a with patterns a||.

Suppose that, for all H = C € solvep 1n: (F'), there
exists a substitution o such that C = oF and H + o4/,
where

o H F e(py,...
pn)) € H

,Dn) if and only if m-event(e(py, ...,

e H & p=yp'ifand only if p = p’ modulo the equations
that define the function symbols.

e H | pred(pi,...,pn) (Where pred is a user-defined
predicate or attacker) if and only if pred(p1,...,pn)
is derivable from the facts in H, the clauses that de-
fine user predicates, the clauses that express the initial
knowledge of the adversary, and the clauses that ex-
press that the adversary can apply functions.

o HE iy AN ifand only if H -1 and H = 1,
o HE 1y Vs ifand only if H -y or H F 1.

Then P satisfies the correspondence ¢ ~~ ¢’ against Init-
adversaries.

This theorem is an extension of [14, Theorem 4] to the
case in which ¢’ may contain atoms attacker(M), M =
M’, and pred(My, ..., M,), and ¢’ may not be in disjunc-
tive normal form. Intuitively, if 7 satisfies oas ¢, then o, F’
is derivable, where o, is the substitution on patterns that
corresponds to the substitution on terms o ;. So there ex-
ist a clause H = C' in solvep ;. (F') and a substitution
o such that 0, F' = 0(¢C and the facts oo H are deriv-
able. Since H + o1/, we also have ocqo1)’. Moreover,
C =0F,so0,F =0g0F. So, letting a]’g = 0g0, we have
opl' = o,F and 0,7, so op¢ = 0)y¢ and T satisfies
o9, where o), is the substitution on terms that corre-
sponds to the substitution o—;) on patterns. Hence the corre-
spondence ¢ ~~ ¢ is satisfied.

In this paper, we use the more general language of cor-
respondences of Definition 4.1, and show how to exploit
the more limited queries that ProVerif can prove in order to
prove the correspondences that we need.

4.2. Main security properties of Plutus

We study secrecy and integrity properties of Plutus
by specifying correspondences in ProVerif. Our security
proofs with ProVerif assume max,., = 5, that is, they ap-
ply to a model where at most five revocations are possible
for any group. The attacks assume max,., = 1, and re-
main a fortiori valid for any max;., > 1. Running times
of ProVerif appear later in the section. Recall that ProVerif
does not terminate at this level of detail if the number of
versions is unbounded. Nevertheless, we expect the results
below to hold in that case as well.

We begin with secrecy. Specifically, we are interested in
the secrecy of some fresh data m written by an honest writer
for group g using keys for version v. We cannot expect m
to be secret if a dishonest reader for g at v colludes with the
adversary at v—but is it necessary that such a reader collude
with the adversary in order to leak m? In order to determine
that, we tentatively specify secrecy as follows: a secret m
written by an honest writer for g at v is leaked only if a
reader for g is corrupt at v, i.e., the process modeling Plutus



satisfies the correspondence

puts(w, m, g,v) A attacker(m) ~-

corrupt(r, g,v) A isreader(r, g,v)

Unfortunately, here writers can act for readers (see Sec-
tion 2), so a corrupt writer at v leaks (at least) as much in-
formation as a corrupt reader at v. Note that on the contrary,
it is intended in [32] that read access be disjoint from write
access. Moreover, since the read key for v can be obtained
from the read key for any v’ > v by unwinding, even a cor-
rupt reader (or writer) at such v’ leaks as much information
as a corrupt reader at v. Of course, if the set of readers does
not increase, a reader at v’ is already a reader at v, so this
situation is not surprising. (Indeed, this is the case that mo-
tivates key rotation in [32].) On the other hand, increasing
the set of readers may result in unintended declassification
of secrets. In light of these observations, we must weaken
our specification of secrecy.

Definition 4.3 (Secrecy). Secrecy is preserved in Plutus if,
for all g and v, any secret m written by an honest writer for
g using keys for v is leaked only if a reader or writer for g
is corrupt at some v' > v, i.e., the process modeling Plutus
satisfies the correspondence

puts(w,m,g,v) A attacker(m) ~-
v > v A corrupt(a, g,v") (1)
A (isreader(a, g,v") V iswriter(a, g,v"))

This weaker property is proved as follows.
Theorem 4.4. Secrecy is preserved in Plutus.

Proof. Let m[g = G,v = V] denote the name m created
in line 49 when the variables g and v in lines 45 and 47
are bound to the terms G and V/, respectively. (This nota-
tion can be used directly in ProVerif, exploiting ProVerif’s
internal representation of bound names by patterns. It is de-
tailed and justified in [14].) ProVerif automatically proves
the following correspondence:

attacker(mlg = x4, v = x,]) ~
v >z, A corrupt(a,z,,v’) )

A (isreader(a, z4,v") V iswriter(a, z4,v"))

By the semantics of the input language, for any terms
W, M, G, and V, if puts(W, M, G,V) is executed, then
M = mlg = G,v = V]. Thus, for all substitutions o, if a
trace 7 satisfies oputs(w, Tm, &4, Z,) and cattacker(z,, ),
then ox,, = omlg = z4,v = xz,); so T satisfies
cattacker(mlg = x4, v = x,]); so by correspondence (2),
7 satisfies o’ (v > x,, Acorrupt(a, x4, v") A(isreader(a, z4,
v') Viswriter(a, x4, v"))) for some substitution ¢’ such that
o'ty = oxgy and o'z, = ox,. Hence, correspondence (1)
is satisfied. O

Next, we specify an integrity property. Specifically, we
are interested in the integrity of some data x read by an
honest reader r for group g using keys for version v. We
expect x to come from the adversary if a dishonest writer
for g at v colludes with the adversary at v; otherwise, we
expect = to be written by an honest writer w for g using
keys for version v. Moreover, such w must be a writer for g
at v.

Definition 4.5 (Integrity). Integrity is preserved in Plutus
if for all g and v, any data x read by an honest reader for
g using keys for v is written by an honest writer for g us-
ing keys for v unless a writer for g is corrupt at v, i.e., the
process modeling Plutus satisfies the correspondence

gets(r,x, g, v) ~~
iswriter(w, g, v) 3)
A (puts(w,z,g,v) V corrupt(w, g,v))

Unfortunately, when we try to show that integrity is pre-
served in Plutus, ProVerif cannot prove the required corre-
spondence for this model. Manual inspection of the deriva-
tion output by ProVerif reveals an attack, where the adver-
sary is able to send data to an honest reader for group g at
version 0 without corrupting a writer for g at 0.

Theorem 4.6. Integrity is not preserved in Plutus, i.e., the
correspondence (3) is not satisfied.

Proof. When ProVerif is given the query (3), it cannot
prove this query, and outputs a derivation of gets(r,m,
g,0) from facts that do not include puts(w,m,g,0) or
corrupt(w, g,0) for any w; we manually check that this
derivation corresponds to an attack. Briefly, a reader for
g is corrupted at version 0 and a writer for g is corrupted at
version 1; the adversary then constructs a bogus write key
for version 0 and writes content that can be read by r using
the read key for version 0. In more detail:

1. A reader for group g is corrupted at version 0 to get the
lockbox key [k for version 0.

2. Next, a writer for g is corrupted at version 1 to get the
lockbox key lk1, the sign key (d(s1,lk1),N(s1)), and
the owner-signed modulus sn; = exp(hash(N(s1)),
ownerprivkey) for version 1 (where s; is the RSA
seed for version 1 and ownerprivkey is the private key
of the owner).

3. The exponente(sy, lky) is computed as genExp(N(s1),
lky).

4. Next, the RSA seed s; is computed as crack(e(sq,
lkl),d(sl,lkl),N(sl)).

5. Now a bogus sign key sk’ is constructed as (d(s1, lko),

N(s1)).



6. Choosing some fresh data m, the following content is
then sent to the file system, where M = enc(m, lkg):

(9,0, sn1,N(s1), M, exp(hash(M), sk'))

7. Anhonest reader r for g reads m using keys for version
0, without detecting that the modulus in the sign key is
in fact not the correct one!

Note that corrupting a reader for g at version 0 to obtain (kg
is not a necessary step in the above attack; the adversary can
instead compute [kq from [k, by unwinding. Orthogonally,
the adversary can collude with a writer for a different group
at version 0, instead of corrupting a writer for group g at
version 1. In each case, a bogus sign key for the target group
and version may be constructed from an unrelated modulus
because the correct group and version of that modulus is not
verified in this model. O

The above attack can have serious consequences, since
it implies that a writer for an arbitrary group can act as
a legitimate writer for a target group simply by colluding
with a reader for that group. Here, we consider a model
without server-verified writes, that is, we assume that the
server is compromised and colludes with the adversary. As
argued in [28,34], server compromise is a realistic possi-
bility, so the above attack can be quite damaging. Worse,
integrity is not preserved even in a model extended with
server-verified writes. However with server-verified writes,
the consequences are less serious—in order to write data for
a group, the adversary needs to obtain the current write to-
ken for that group, for which it needs to corrupt a current
writer for that group. Still, the attack has the same undesir-
able effect as allowing rotation of write keys. Specifically,
it allows a corrupt writer at a later version to modify data
in such a way that readers date the modified data back to an
earlier version; in other words, the modified data appears to
be older than it actually is to readers. This situation can be
dangerous. Suppose that a reader trusts all writers at ver-
sion 0, but not some writer at version 1 (say because the
corruption of that writer at version 1 has been detected and
communicated to the reader). The reader may still trust data
written at version 0. However, the above attack shows that
such data cannot be trusted: that data may in fact come from
a corrupt writer at version 1.

We propose a simple fix FF to correct the protocol: owners
must sign each modulus with its correct group and version.
More concretely, the term bound to sn at line 38 of the code
for owners must be exp(hash(n, g, v), ownerprivkey), and
conversely, line 68 of the code for readers must check
that hash(n, g, v) = exp(sn, ownerpubkey). The corrected
model preserves integrity as shown by Theorem 4.7 below.
(Moreover, Theorem 4.4 continues to hold for the corrected
model, with an unchanged proof.)

Theorem 4.7. Integrity is preserved in Plutus with fix F.

Proof. Under the given conditions, ProVerif automatically
proves the correspondence (3). O

While Definition 4.5 restricts the source of data read by
honest readers, it still allows the adversary to replay stale
data from a cache; in particular, content written by a writer
at version v may be cached and replayed by the adversary
at a later version v, when that writer is revoked. Unfortu-
nately, in the model above we cannot associate contents that
are read from the file system with the versions at which they
are written to the file system. Such associations are possible
only if the file system is (at least partially) trusted, as with
server-verified writes.

Below we specify a stronger integrity property that we
expect to hold in a model extended with server-verified
writes; the property not only restricts the source of data
read by honest readers, but also requires that such data
be fresh. The code for the extended model is avail-
able online at http://www.soe.ucsc.edu/~avik/
projects/plutus/. Briefly, we define a process to
model the storage server, and extend the code for owners
so that for any group g, a new write token is created for
each version v, communicated to the server, and distributed
to writers for g at v. Corrupt writers leak their write tokens.
A writer must send contents to the server with a token; the
contents are written to the file system only if that token is
verified by the server to be the write token for the current
version. Honest readers securely obtain server-verified con-
tents from the server. (Of course, those contents are also
publicly available from the server.) To verify the stronger
integrity property, we replace the event gets(r, x, g, vx) in
the code for readers (line 74) with a more precise event
gets(r, x, g,vxz,v"). The latter event subsumes the former,
and further asserts that the relevant contents are written to
the file system after server-verification at v’. We expect that
v’ = vz, where vz is the version of keys used to read those
contents, unless a writer for g is corrupt at v’; in the latter
case, the adversary is able to replay at v’ data that is origi-
nally written using keys for vz, so we may have v’ > vz.

Definition 4.8 (Strong integrity). Strong integrity is pre-
served in Plutus if for all g and v, any data x read by an
honest reader for g using keys for v is written by an honest
writer for g using keys for v, unless a writer for g is corrupt
at v; and further, such data is written either at v or at some
version v' > v at which a writer is corrupt, i.e., the process
modeling Plutus satisfies the correspondence
gets(r, x, 97 v, ’U/) ~

iswriter(w, g, v)

A (puts(w,z,g,v) V corrupt(w, g,v)) (€))

AN@W=vvVv @>vA

iswriter(w’, g,v") A corrupt(w’, g,v")))



Without fix F

With fix F

1 2 3 4 5

maXyey 1
Without server-verified writes 0:01
With server-verified writes 0:05

0:01 0:02 0:05 0:14 0:40
0:03 0:17 1:19 7:14 42:05

Figure 4. Running times of ProVerif

The corrected, extended model preserves strong in-
tegrity, as expected. Once again, the proof is automatic.

Theorem 4.9. Strong integrity is preserved in Plutus with
server-verified writes and fix I.

Proof. Under the given conditions, ProVerif automatically
proves the correspondence (4). [

Further, we show (using a correspondence omitted here)
the correctness of server-verified writes: for any group g,
only writers for g at the current version v can write data for
g at v. (Such writes must be authorized by the current write
token for g, which is distributed only to the current writers
for g.) Consequently, server-verified writes prevent at least
two kinds of attacks:

e Unauthorized writers cannot destroy data by writing
unreadable junk over such data.

e Revoked writers cannot roll back new data by writing
data with old keys over such data.

Running times of ProVerif Figure 4 presents the running
times of ProVerif 1.14pl4 for the scripts above, in “min-
utes:seconds” format, on a 2.6 GHz AMD machine with
8 GB memory. We test models with or without fix F, and
with or without server-verified writes. We already find at-
tacks assuming max;., = 1 for models without fix F.
On the other hand, models with fix F are tested assuming
max,e, < H, so our security proofs apply only to those
models (although we expect them to hold with larger val-
ues of max;., as well). Memory usage increases signif-
icantly with server-verified writes; for example, the script
with max,., = 5, fix F, and server-verified writes takes
around 2.2 GB of memory. For max,., = 6, ProVerif runs
out of memory on this 8 GB machine.

4.3. Analysis of some design details

Next, using ProVerif, we clarify some design details of
Plutus.

4.3.1. Why should a new modulus be created for each
version?

The following explanation is offered by [32]:

. the reason for changing the modulus after
every revocation is to thwart a subtle collusion
attack ... a revoked writer can collude with a
reader to become a valid writer . . .

We formalize this attack as a violation of integrity in Plutus:
if the modulus for version 1 is the same as that for version
0, the adversary is able to send data to an honest reader for
group g at version 1 without corrupting a writer for g at 1.
We manually reconstruct the attack.

1. A writer for g is corrupted at version 0, and a reader for
g is corrupted at version 1. Thus the adversary obtains
the lockbox key [k and sign key (d, n) for version 0,
and the lockbox key [k, for version 1. We may assume
that the writer corrupted at O is revoked at 1. Let there
be another writer for g at version 1 that publishes some
content, so that the adversary also knows the owner-
signed header sn, for version 1.

2. The adversary computes the exponent ¢y = genExp(n,
lkg), the RSA seed s = crack(eq, dp, n), and the sign
key sk1 = (d(s,lk1),N(s)) for version 1. (Since the
modulus n is unchanged, the RSA seed s is the same
for versions 0 and 1.) Finally, choosing some fresh
data m the adversary sends the following content to
the file system, where M = enc(m, lk1):

(9,1, sn1,n, M,exp(hash(M), sk1))

3. An honest reader for g reads m using keys for ver-
sion 1.

However, we have two comments on this attack:

e With server-verified writes, the sentence of [32] quoted
above is not quite true: in order to become a valid
writer, one additionally needs to obtain a write token
at some version v > 1, which can be done only by
corrupting a writer at some version v > 1.

e But by corrupting a writer at version v > 1, the ad-
versary can mount a much simpler attack. Indeed, the
adversary can compute the RSA seed s and all keys for
version 1 from the keys for such v—without corrupt-
ing a writer at version 0 or a reader at version 1. We



reconstruct a simple attack along these lines by mod-
ifying the ProVerif script so that the modulus is not
changed between versions and inspecting the deriva-
tion output by ProVerif. Here the adversary is able to
send data to an honest reader for group g at version 0
without corrupting a writer for g at 0.

1. A writer for g is corrupted at version 1. Thus
the adversary obtains the lockbox key lk;, and
the sign key (dy,n) for version 1. Let there be
another writer for g at version O that publishes
some content, so that the adversary also knows
the owner-signed header sn for version 0.

2. The adversary computes the lockbox key Ik by
unwinding [k;, the exponent e; = genExp(n,
lk1), the RSA seed s = crack(ey,dy, n), and the
sign key sko = (d(s,lkg),N(s)) for version 0.
Finally, choosing some fresh data m the adver-
sary sends the following content to the file sys-
tem, where M = enc(m, lko):

(97 Oa sno, N, M7 exp(hash(M), Sk’o))

3. An honest reader for g reads m using keys for
version 0.

ProVerif does not exhibit the former attack mentioned
in [32] because it stops with this simpler attack.

4.3.2. With server-verified writes, why should a new
write token be created for each version?

Suppose that a writer w, allowed at version 0, is revoked
without changing the write token. Then the server accepts
writes from w even after its revocation (at version 1), since
the token obtained by w at version 0 remains valid. In par-
ticular, w may destroy files by overwriting them with un-
readable junk after its revocation. This attack violates the
correctness of server-verified writes. Furthermore, w may
write valid contents after its revocation (at version 1) using
keys that it obtained at version 0, and readers can read such
data using keys for version 0, trusting that they were written
at version 0. This attack violates strong integrity.

Accordingly, neither the correctness of server-verified
writes nor strong integrity can be proved by ProVerif for
a model where write tokens are not changed. We manually
reconstruct the corresponding attacks from the derivations
output by ProVerif. The more basic integrity property con-
tinues to hold in this case, however.

4.4. Additional remarks

Below we list some more observations on the paper that
describes Plutus [32]:

e The following sentence appears in [32, Section 3.1]:

With filegroups, all files with identical shar-
ing attributes are grouped in the same file-

group . ..

Under this interpretation, each group is tied to a par-
ticular set of sharing attributes (writers and readers).
So, if two files happen to have the same sharing at-
tributes after some changes of sharing attributes, then
these two files should join the same filegroup even if
they initially belonged to different filegroups. Such a
join actually does not happen in Plutus.

The following sentence appears in [32, Section 3.4]:

A revoked reader ... will never be able to
read data updated since ... [its] revoca-
tion.

We clarify that if a reader that is revoked at version v
colludes with a corrupt reader or writer at any v’ > v,
or is itself a reader or writer at such v/, it is able to read

data updated in the interval v + 1,..., v,

The following sentence appears in [32, Section 3.5.2]:

If the writers have no read access, then they
never get the ... [lockbox key], and so it
is hard for them to determine the file-verify
key from the file-sign key.

The claim here is wrong. Writers always get the lock-
box key (to encrypt data), so they can always construct
the verify key (just as well as readers can).

The following sentence appears in [32, Section 3.2]:

In order to ensure the integrity of the con-
tents of the files, a cryptographic hash of
the file contents is signed ...

We clarify that contents should be signed after be-
ing encrypted (as in our model), for security in the
computational model of cryptography. Indeed, sign-
ing encrypted contents allows one to use a weaker en-
cryption scheme: the encryption scheme needs to be
only IND-CPA (indistinguishable under chosen plain-
text attacks), with the signature providing integrity
of the ciphertext. Signing contents in the clear in-
stead requires a stronger security assumption for the
encryption scheme, that allows the adversary to call
the decryption oracle. This point is similar to the fact
that when the encryption is IND-CPA and the MAC
is UF-CMA (unforgeable under chosen message at-
tacks), encrypt-then-MAC (in which the MAC is ap-
plied to the ciphertext) guarantees the secrecy of the



plaintext, while encrypt-and-MAC (in which the MAC
is applied to the plaintext) does not [9]. Here, the sig-
nature plays the role of the MAC.

e As noted in [26, Section 3], the key rotation scheme
in [32] is not provable in the computational model
of cryptography under reasonable assumptions (one-
wayness of RSA and IND-CPA symmetric encryp-
tion), because a key obtained by unwinding is not in-
distinguishable from a random key when one has ac-
cess to other winded versions of this key. This prob-
lem is out of scope of our verification since we work in
the Dolev-Yao model of cryptography. Recently sev-
eral other rotation schemes have been proposed, and
their cryptographic security properties have been for-
mally studied [6,7,26]. One can note that the attacks
discussed in this section do not depend on the specific
scheme for generating, winding, and unwinding lock-
box keys. Our results continue to hold if we change the
rotation scheme to a hash-chaining scheme [26, Sec-
tion 5.1], for instance. They also continue to hold if
lockbox keys are hashed before they are used for en-
cryption, as proposed in [26, Section 5.3] and [7, Sec-
tion 4.2] to correct the key rotation scheme in [32].

The scripts used in this paper are available at http://
www.soe.ucsc.edu/~avik/projects/plutus/.

5. Conclusion

We have formally studied an interesting, state-of-the-
art protocol for secure file sharing on untrusted storage (in
the file system Plutus), and analyzed its security properties
in detail using the automatic verifier ProVerif. Our study
demonstrates that protocols for secure storage are worth an-
alyzing. Indeed, the analysis vastly improves our under-
standing of the above protocol; we formally specify and
verify its security properties, find (and fix) some unknown
attacks, and clarify some design details that may be rele-
vant for other storage protocols. Working in the Dolev-Yao
model allows a deep analysis of the security consequences
of some promising new features of the protocol. At the
same time, some consequences remain beyond the scope of
a Dolev-Yao analysis. It should be interesting to study those
consequences in the computational model, perhaps using an
automated verifier like CryptoVerif [10, 13]. Unfortunately,
our initial attempts at modeling the protocol in CryptoVerif
indicate that the tool is presently not mature enough to prove
the relevant properties. We therefore postpone that study to
a point at which tools for proofs in the computational model
are more developed.

Over the years, storage has assumed a pervasive role in
modern computing, and understanding secure storage has

become as important as understanding secure communica-
tion. The study of secure communication has taught us the
importance of rigor in the design and analysis of protocols.
This observation certainly applies to secure storage as well.
As far as we know, we are the first to present an automated
formal analysis of a secure storage protocol. Our approach
should be fruitful for other secure storage protocols, and we
expect to see further work in this new area.
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