
Dynamic Access Control in a
Concurrent Object Calculus

Avik Chaudhuri

Computer Science Department
University of California, Santa Cruz

avik@cs.ucsc.edu

Abstract. We develop a variant of Gordon and Hankin’s concurrent object cal-
culus with support for flexible access control on methods. We investigate safe
administration and access of shared resources in the resulting language. Specifi-
cally, we show a static type system that guarantees safe manipulation of objects
with respect to dynamic specifications, where such specifications are enforced
via access changes on the underlying methods at runtime. By labeling types with
secrecy groups, we show that well-typed systems preserve their secrets amidst
dynamic access control and untrusted environments.

1 Introduction

Systems that share resources almost always exercise some control on access to those
resources. The access control typically relies on a set of rules that decide which access
requests to accept; furthermore, those rules may be subject to change to reflect changing
requirements on resource access at runtime. While access control mechanisms are often
easy to deploy—they are both common and various—they are surprisingly difficult to
marshal towards achieving higher safety goals. For instance, users who have access to a
file with sensitive content can often share the content, intentionally or by mistake, with
those who do not have access; even if the privileged users are careful, a change in the
access rules can allow other users to read that content, or write over it.

A convenient view of access control results from its characterization in terms of
capabilities: a resource may be accessed if and only if a corresponding capability is
shown for its access. For one, this view provides an immediate low-level abstraction
of access control “by definition”; two, the view is independent of higher level spec-
ifications on resource usage (say, in terms of types, or identities of principals). The
separation facilitates higher level proofs, since it suffices to guarantee that the flow
of a capability that protects a resource respects the corresponding high-level intention
on resource usage. We develop methods to provide such guarantees in this paper. The
methods in turn rely on a sound low-level implementation of access control in terms of
capabilities. Fortunately, to that end, a capability for a resource can be identified with a
pointer to that resource. Exporting a direct link to a resource, however, poses problems
for dynamic access control, as discussed by Redell in his dissertation (1974). Redell
suggests a simple alternative that uses indirection: export indirect pointers to a local,
direct reference to the resource, and overwrite this local pointer to modify access to that
resource [30]. We revisit that idea in this paper.

We study safe dynamic access control in a concurrent object language. Resources
are often built over other resources; dependencies between resources may entail depen-
dencies on their access assumptions for end-to-end safety. For example, suppose two
users read the same file to obtain what they believe is a shared secret key that they then
use to encrypt secret messages between themselves; it does not help if a third user can
write a Trojan key on that file and then decrypt the “secret” messages. A natural way to
capture such dependencies is to group the related resources into objects. (In the exam-
ple above, the object would be the file in question, and the resources would be a “key”
field and “read” and “write” methods that manipulate that field.)

We develop a variant of Gordon and Hankin’s concurrent object calculus concς [14]
for our study. In concς , as in most previous object calculi (e.g., [2, 4, 32]), a method
is accessed by providing the name of the parent object and a label that identifies the
method. For example, for a timer object t in the calculus, with two methods, tick and
set, knowing the name t is sufficient to call (or even redefine) both methods (t.tick,
t.set). We may, however, want to restrict access to set to the owner of t, while allowing
other users to access tick; such requirements are not directly supported by concς . In
languages like Java, there is limited support for method-level access control via access
modifiers—however, such modifiers can only sometimes be changed in a very restricted
way, and moreover they implement a policy design that is fixed by the language.

Our calculus provides veils for implementing flexible access control of methods.
Veils are similar to Redell’s indirect access pointers. More specifically, a veil is an alias
(or “handle”) for the label that identifies a particular method inside an object definition.
A method is invoked by sending a message on its veil; method access is modified by
re-exporting a different veil for its label. A method call crucially does not require the
name of the parent object. An object name, on the other hand, is required for access
modification and redefinition of methods—thus object names are similar to Redell’s lo-
cal references (or “capabilities”). In the sequel, informally, a capability is a reference
to an object, and veils are indirect references to its methods. A capability is meant to
be shared between the owner and other administrators of an object, and veils are meant
to be made available to the users of its methods. Dependencies between object methods
often require their redefinitions and access modifications to be simultaneous—therefore
the calculus replaces concς’s method update with a more general “administration”
primitive. Veils allow a relatively straightforward encoding of the mutex primitives of
concςm (an extension of concς that facilitates encodings of locks, communication
channels, etc.), so we do not include those primitives in the syntax.

We show a type system for the resulting language that guarantees safe manipulation
of objects with respect to dynamically changing specifications. Informally, we allow ob-
ject methods to change their exported “type views” at runtime: in other words, resource
administrators can not only control resource usage at runtime, but also dynamically
specify why they do so (i.e., their higher level intentions). This flexibility is desirable
since persistent resources (e.g., file systems, memory) are typically used in several dif-
ferent contexts over time. For example, files are often required to pass through intervals
of restricted access; memory locations are dynamically allocated/deallocated to map
different data structures over several program executions. By a combination of access
control (as provided by the language) and static discipline (provided by the type sys-
tem) we can show that the intentions of the users and administrators of those resources

are respected through and between such phases of flux. In particular, by labeling types
with secrecy groups, we show that well-typedness guarantees secrecy under dynamic
access control, even in the presence of possibly untyped, active environments.

Outline of the paper. In the next section we present a concurrent object calculus with
veils for dynamic access control (the “veil calculus”, for brevity). We accompany the
formal syntax and semantics of our language with commentary on the conceptual and
technical differences with Gordon and Hankin’s original calculus. In Section 3, we
present a type system for the language, show examples of well-typed programs, and
state our main theorem, viz. typing guarantees secrecy under dynamically changing
type views and even under untyped environments. We discuss related work in Section 4
and conclude by summarizing our contributions.

2 The untyped veil calculus

In this section we present a variant of the calculus concς [14]. The novel aspects of
the language lie in the separation of roles for method definition and invocation; this
separation is induced by a fresh treatment of method names via veils.

The syntax is very similar to that of concς; as such, it retains most of the simplicity,
compactness, and expressivity of the original. Although we make minimal changes to
the original calculus (specifically, in the manner of method call and update), the changes
have a clear effect on the suitability of the resulting language as a core calculus for
studying security properties of concurrent objects. As argued in Section 1, the original
calculus cannot separate the ability to call a method (i.e., use a resource) from the ability
to redefine it (i.e., do administration on it); moreover, it cannot distinguish between
method-access abilities within the same object. Persistent resources characteristically
require support for such distinctions for security. The new language improves upon
concς in this respect, since veils can enforce those distinctions quite naturally.
u, v, w ::= results

x variable
m,n, p, q, θ name (capability, veil)

d ::= denotations
θ̃[˜̀ Z⇒ ς(x)(̃y)b] object

a, b ::= expressions
u result
p 7→ d denomination
(νn) a restriction
a � b fork
let x = a in b evaluation
`(u) internal method call
`⇐\ (y)b internal method update{
v〈u〉 external method call
u←[d external update (“administration”)

Names in the veil calculus fall into two conceptual categories (that we do not distinguish
syntactically): object names, which we call capabilities, and method alias names, which

we call veils. An object is defined by a map from labels to expressions, and a map from
labels to veils. The former map defines the methods of the object. The method bodies
abstract on a “self” variable that gets bound to the name of the object at runtime. Unlike
concς , they also abstract on an “argument” variable—while parameter passing can be
encoded even otherwise, having explicit argument abstraction allows better typings.
The map from labels to veils defines the external aliases for the methods of the object.
As usual, these (finite) maps are written as associated sequences for convenience. We
use the notation ϕ̃ to abbreviate a sequence ϕ1, . . . ϕk, where k is given by |ϕ̃|. Thus
in the object θ̃[˜̀ Z⇒ ς(x)(̃y)b], the variable x abstracts “self”; for each label `i ∈ ˜̀, the
name θi is a veil for the method identified by that label; the method’s body bi takes the
parameter yi. The maps are sometimes made explicit by writing the object as Θ[ς(x)∆],
where Θ(`i) = θi and ∆(`i)(yi) = bi for each `i ∈ ˜̀.

There are separate “internal” and “external” primitives in the syntax for method call
and update. The internal primitives `(u) and ` ⇐\ (y)b noticeably do not carry any ob-
ject reference (cf. the forms p.` and p.`⇐\ b in concς [14]). Labels by themselves have
no meaning outside objects; hence the use of internal primitives is limited to within
objects. The external primitives, on the other hand, can be used in any context. An ex-
ternal method call

{
v 〈u〉 is a message on a veil. Crucially, an object reference is not

required for invoking a method (cf. [14]). Object references are required for adminis-
tration. Administration is done via external update u←[d, which is a generalization of
concς’s method update: it modifies an object by re-exporting veil bindings and aug-
menting/overriding several method definitions.

The rest of the syntax is the same as that of concς . Informally, the syntactical forms
have the following meanings. (The formal semantics is shown later in the section.)

– u is a result (a variable or name) that is returned by an expression.
– p 7→ d attaches the capability p to an object d.
– (νn) a creates a new name n that is bound in the expression a, and executes a.
– a � b is the (non-commutative) parallel composition of the expressions a and b;

it returns any result returned by b, while executing a for side-effect. This form,
introduced in [14], is largely responsible for the compactness of the syntax, since
it provides an uniform way to write expressions that return results, and “processes”
that exhibit behaviours. (Of course, expressions that return results can also have
side-effects.)

– let x = a in b binds the result of the expression a to the variable x and then executes
the expression b; here x is bound in b.

– `(u) means a local method call inside an object; see external call.
– `⇐\ (y)b means a local method update inside an object; see external update.
– {

v 〈u〉 means an external call on the veil v, with argument u; in the presence of a
denomination p 7→ d where d exports v for a defined method, the corresponding
method expression is exported by substituting veiled calls for internal calls, self
updates for internal updates, p for the abstracted self variable, and u for the formal
parameter. The details of method export are given below.

– u←[d means an external update on the capability u; in the presence of a denomina-
tion u 7→ d′, the veils exported by d replace those exported by d′, and the methods
defined by d augment or override those defined by d′; the capability u is returned.

Example 1. Assume that integers can be encoded in the language, and there is a method
handle θpre for decrementing a positive integer. Consider the following code. A server
creates a new timer object, exports the tick and set methods of the timer on veils θtick
and θset, and sets the value of the timer to an integer N by invoking θset. A client
repeatedly ticks the timer by invoking θtick. At some point, the server creates a new
veil θntick, and re-exports the tick method of the timer object on this veil. Consequently,
since the client does not know this new veil, it can no longer tick the timer. (We elide
unnecessary self-bindings ς(x), formal parameters (y), and unit arguments in the code.)

System def= (νp, θval, θset, θtick) (Server � Client)
Server def= p 7→ θvalθsetθtick[val Z⇒ val, # timer on capability p, with

set(y) Z⇒ let = val⇐\ y in y, # set exported on veil θset
tick Z⇒ let z = val in # tick exported on veil θtick

let z′ =
{

θpre〈z〉 in set(z′)] �{
θset〈N〉 � . . . � # timer gets activated...
(νθntick) p←[θvalθsetθntick[val Z⇒ val] # timer gets deactivated

Client def= (
{

θtick� . . . �
{

θtick) # timer ticks

We show a chemical semantics for the language, much as in [14]. Following the pre-
sentation in [13], we employ a grammar of evaluation contexts to tighten the rules.

E ::= evaluation contexts
• hole
let x = E in b evaluation
E � b fork side
a � E fork main
(νn) E restriction

Informally, an evaluation context is an expression container with exactly one hole. By
plugging an expression a into the hole of an evaluation context E , we obtain the ex-
pression E [[a]]. (In general, plugging may not be capture-free with respect to names or
variables.) We define structural congruence of expressions as usual.

Structural congruence a ≡ b # fn (resp. bn) collects free (resp. bound) names

(STRUCT RES)
n /∈ fn(E) ∪ bn(E)

(νn) E [[a]] ≡ E [[(νn) a]]

(STRUCT PAR)
fn(a) ∩ bn(E) = ∅
a � E [[b]] ≡ E [[a � b]]

(STRUCT EQV)
≡ is an equivalence

Next, we define reduction of expressions. Not surprisingly, perhaps, there are no re-
duction rules for internal call and update: we restrict the sites of action to the external
primitives. The reductions for external call and update, (Red Call) and (Red Upd), have
some important differences from the corresponding reductions in concς . First, when a
method body is exported on call reduction, the free labels in the body are “frozen” via
substitutions of veiled calls for internal calls, and self updates for internal updates. The
export translation Θ

x is shown below. Second, while object update is a straightforward
generalization of method update, such an update also re-exports veil bindings for the
methods of the object. In general, the update can block or unblock method calls that are

invoked on past or present veils: thus it serves as an access control mechanism in the
language. Update is therefore synonymous with administration in this paper.

In the following, we use the notation ∆′,∆ to mean the map obtained by augment-
ing the map ∆ with ∆′, while overriding bindings for the common labels.

Export a Θ
x and structural reduction a −→ b

Θ(`) = v

`(u) Θ
x

def
=

{
v〈u〉

(`⇐\ (y)b) Θ
x

def
= x←[Θ[` Z⇒ ς(x)(y)b Θ

x]

(a � b) Θ
x

def
= a Θ

x � b Θ
x (let z = a in b) Θ

x
def
= let z = a Θ

x in b Θ
x

((νn) a) Θ
x

def
= (νn) a Θ

x

a = u, p 7→ d,
{
v〈u〉, or u←[d

a Θ
x

def
= a

(RED CALL)
d = Θ[ς(x)∆]

Θ(`j) = θ ∆(`j)(y) = b

(p 7→ d)�
{
θ〈m〉 −→ (p 7→ d) � b Θ

x {p/x, m/y}

(RED UPD)
d = [ς(x)∆] d′ = Θ′[ς(x)∆′]

d′′ = Θ′[ς(x)∆′, ∆]

(p 7→ d)� p←[d′ −→ (p 7→ d′′)� p

(RED EVAL)
let x = n in b −→ b{n/x}

(RED CONTEXT)
a −→ b

E [[a]] −→ E [[b]]

(RED STRUCT)
a ≡ a′ a′ −→ b′ b′ ≡ b

a −→ b

Freezing labels (by a veil map) in the export translation makes intuitive sense: it
assigns a definite meaning to a method expression outside the syntactical scope of its
parent object. Freezing labels also facilitates the enforcement of static object invariants
(Section 3) amidst runtime administration; indeed labels in isolation cannot provide any
runtime access guarantees.

Notice that an update returns the object reference (as in [14]): therefore, say, if an
internal update is the rightmost branch of a method definition, a call to the method might
return a reference to its parent object. This result is potentially dangerous—a user of the
method can obtain administrative abilities on the object. We however do not complicate
the semantics to prevent such “errors”, partly because they are easy to catch statically.
The update in question can of course be localized by a “let” if necessary.

To illustrate the semantics, next we show some sample reductions for parts of the
code of Example 1. Here, let Θ(tick) = θtick, Θ′(tick) = θntick, ∆(val) = val,
∆′(val) = N , ∆′′(val) = N − 1, and let the remaining bindings be as given by the
initial denomination of p in the code.

p 7→ Θ[ς(x)∆] �
{

θset〈N〉 −→ p 7→ Θ[ς(x)∆] �

let = p←[Θ[val Z⇒ N] in N

−→ p 7→ Θ[ς(x)∆′] � N # activate

p 7→ Θ[ς(x)∆′] �
{

θtick −→ p 7→ Θ[ς(x)∆′] �

let z =
{

θval in let z′ =
{

θpre〈z〉 in
{

θset〈z′〉
−→? p 7→ Θ[ς(x)∆′′] � N − 1 # tick

p 7→ Θ[ς(x)∆′′] � p←[Θ′[val Z⇒ val] −→ p 7→ Θ′[ς(x)∆] � p # deactivate

3 Flux-robust typing

In this section we show a type discipline for systems with concurrent objects that ex-
port dynamic “type views”. More specifically, we allow methods to change types at
runtime: the type of a method corresponds dynamically to the type of the veil it exports.
For example, suppose the owner of a file wants to change the type of the content from
“public” to “secret”. Clearly, the veil for the content field must be changed: while the
previous veil could have been public, the new veil has to be secret. If the file addition-
ally has read and write methods that depend on the content field, their types change
accordingly: therefore the veils for these methods need to be changed as well.

Changing veils is however not enough for end-to-end secrecy. (This inadequacy is
typical of access control mechanisms, as mentioned in Section 1.) A user who can now
read the file on its new veil will regard the content as secret (even if it is not). Suppose
that the user reads the (previously public) content θ on the new veil, and exports θ as a
handle to read a secret key k that he has written to another file: it now becomes possible
to publicly read k by invoking θ. Indeed, it is almost always possible to exploit such
“type interpretation” errors to leak secrets. (For instance, interpreting secret content as
public can be equally bad.) To prevent such errors, the content field must be overridden
to reflect its new type. By the same argument, then, it appears that the read and write
methods need to be overridden as well—we can however do better. Typically read and
write have types that are parametric with respect to the type of the content: informally,
whenever the content type is X , the read and write methods have types (1)X and (X)1
(where 1 is the unit type). Therefore, those methods reflect their new types as soon as
the content field is overridden.

We summarize these insights in the following general principles that govern the
type system below. First, an object update is consistent only if the types of the new
veils match up with the types of the method definitions. Second, type consistency forces
some methods to be overridden; methods whose types are parametric with respect to the
types of the overridden methods however need not be overridden themselves. This form
of polymorphism is typically exhibited by higher-order (generic) functions, composi-
tionally defined procedures, or (in the degenerate case) methods that have static types,
i.e., whose types do not change. We prefer to call these methods “natural” to avoid
nomenclatural confusion with any particular brand of polymorphism.

3.1 A type system for secrecy despite flux

The primary goal of the type discipline is flux robustness, i.e., type safety despite dy-
namic changes to type assumptions for methods. Access control is used in an integral
way to enforce safety. In the type system, methods are qualified as “flat” or “natural”.
Flat methods must be overridden whenever veils change. Natural methods may be over-
ridden; if they are, they must remain polymorphically typed, as indicated above.

To specify and verify secrecy, we introduce a system of principals. More specifi-
cally, we use indices to identify “owners” of code, and let the type declaration for a
name specify the group of indices within which that name is intended to be confined.
We then use type safety to verify that each such intention is preserved at runtime.

Secrecy groups as presented are close to those developed in [10]; the basic concepts
appear earlier in, e.g., the pi calculus with group creation [9] and the confined lambda
calculus [23]. Let∞ be a countable universe of indices—this is the largest group, also
called “public”, since a name that belongs to this group may be shared by all principals.
Other groups (trusted) are proper subsets of∞, or group variables (ranged over by X).

ρ ::= qualifiers
[flat method
\ natural method

H, I ::= groups
∞ countable universe of indices (public)
G trusted

G ::= trusted groups
X group variable
{. . .} proper subset of∞

S, T, U ::= types
X type variable

ObjG [˜̀ : (̃S)T ρ] capability type scheme
VeilG(u.` : (S)T) veil type
(∃x)T dependent union type
Null null type
Un untrusted type

Typed processes declare types for new names (with (νn : T) a, instead of (νn) a in
Section 2). Informally, the type sorts have the following meanings:

– X ranges over type variables. Group and type variables appear in capability signa-
tures (see below).

– A capability signature ObjG [˜̀ : (̃S)T ρ] is a type scheme that assigns types (Si)Ti

and qualifiers ρi to the methods `i ∈ ˜̀ of a denoted object. The group G corre-
sponds to the set of administrators for that object. The scheme binds group and
type variables that are shared by the types of the methods in the signature. We in-
terpret a type scheme as an universally quantified type over its bound variables,
while leaving the bound variables implicit (à la polymorphic types in ML [26]).

– A veil type VeilG(u.` : (S)T) is dependent on a capability u, and instantiates the
type scheme for a method ` in the signature of that capability. The veil expects an
argument of type S and returns a result of type T . The group G corresponds to the
set of users—the “access-control list”—for the method referenced by the veil. We
use dependence in the veil type to prevent the same veil from being exported by
different objects. (A similar “no-confusion” property is required, for instance, of
datatype constructors [11].)

– Dependent union types (∃x)T allow capability dependencies to be passed without
explicit communication of the capabilities themselves. The type system thus sup-
ports the separation of roles of veils and capabilities (as intended) despite enforcing
necessary dependencies between them.

– The type Null is given to an expression whose result, if any, is ignored.
– Finally, the type Un is given to any expression whose result, if any, is untrusted.

For example, the signature of a file capability might look like:

Obj{Owner}[content : (1)X[, read : (1)X\, write : (X)1\]

where 1 def= Obj[]. If, say, the content is of type T , a veil for write may have the type:

(∃z)Veil{Writer,Owner}(z.write : (T)1)

As another example, an authenticated encryption object may be given the signature:

Obj{KeyManager}[key : X[, authencrypt : (Y)(∃z)VeilX (z.decrypt : (X)Y)\]

where the group X of the decryption handle returned by encryption can be controlled
by KeyManager. Let, e.g., R

def= {Reader, KeyManager}, W
def= {Writer, KeyManager},

RW
def= R ∪ W , key type TX

def= ObjR[], and content type TY
def= ObjRW []. Then

authencrypt may be exported on a veil with type

(∃z′)VeilW (z′.authencrypt : (TY)(∃z)VeilRW (z.decrypt : (TX)TY))

The relationship between types and groups is made explicit by a reach function, defined
below. Informally, the reach of a type is the group within which the inhabitants of that
type may be shared (but not without). For example, Un has reach ∞. Group and type
variables do not constrain the reach of the type they appear in. Otherwise, the topmost
group that appears in a type is taken to be the reach of that type.

Type reach ‖T‖ with group variables X equated to∞

‖X‖ =∞ ‖(∃x)T‖ = ‖T‖ ‖Un‖ =∞ ‖ObjG [:]‖ = G ‖VeilG(:)‖ = G

Let σ range over substitutions of group and type variables, that is, σ : (X → H)+(X →
T). We define substitution below; it is mostly standard, except for the substitution of
∞ for a group variable that annotates a type, which “rounds off” that type as untrusted.
We say that σ is a proper substitution for U if Uσ is defined.

Group and type substitution Gσ, Uσ

Xσ = σ(X) {. . .}σ = {. . .} Xσ = σ(X) ((∃x)T)σ = (∃x)Tσ Un σ = Un

Gσ 6=∞

ObjG [è : (̃S)T ρ]σ = ObjGσ[è : ˜(Sσ)Tσρ]

Gσ =∞ eSσ = Un eTσ = Un

ObjG [è : (̃S)T ρ]σ = Un

Gσ 6=∞
VeilG(u.` : (S)T)σ = VeilGσ(u.` : (Sσ)Tσ)

Gσ =∞ Sσ = Un Tσ = Un

VeilG(u.` : (S)T)σ = Un

Next, we show typing rules. Let Γ be a sequence of type assumptions u : T . The
rules judge well-formed assumptions Γ ` �, good types Γ ` T , good subtyping Γ `
T <: U , and well-typed expressions Γ `I a : T . In the rules for Γ ` T <: U , we
implicitly include the condition Γ ` T in the antecedent. In the rules for Γ ` T and
Γ `I a : T , whenever there are no ` judgments in the antecedent, we implicitly include
the condition Γ ` �.

In the judgment Γ `I a : T , the group I under ` indicates the “trust level” under
which the program is to be typed: any result in the program must have a type whose
reach intersects I. Informally, principals with indices in I are allowed to collude—
their programs may contain results that have types whose reaches include at least one
of the indices in I, but may not contain any result whose type is “out of reach” (i.e.,
whose reach does not include any index in I). For instance, `∞ is the most liberal
typing relation. In fact ` is monotone:H ⊆ I implies `H ⊆ `I .

Let VeilG(u.` : (S)T) ∈ veiltype(u.` : (S)T) for all trusted groups G, and Un ∈
veiltype(u.` : (Un)Un). Finally, let σ∞ range over special substitutions that map group
variables to∞ and type variables to Un, that is, σ∞ : (X →∞) + (X → Un).

Typing rules Γ ` �, Γ ` T, Γ ` T <: U, Γ `I a : T

(HYP NONE)
∅ ` �

(HYP NEXT)
Γ ` T u /∈ dom(Γ)

Γ, u : T ` �

(TYP VAR)
Γ ` X

(TYP EXST)
Γ, x : X ` T

Γ ` (∃x)T

(TYP OBJ)èdistinct ∀{`i ∈ è}. Γ ` Si, Ti

Γ ` ObjG [è : (̃S)T ρ]

(TYP VEIL)
u ∈ dom(Γ) Γ ` S, T

Γ ` VeilG(u.` : (S)T)

(TYP UN)
Γ ` Un

(SUB REFL)
Γ ` T <: T

(SUB TRAN)
Γ ` T <: S Γ ` S <: U

Γ ` T <: U

(EXP SUB)
Γ `I a : T Γ ` T <: U

Γ `I a : U

(DEP GRNT)
x /∈ dom(Γ)

Γ ` T{u/x} <: (∃x)T

(DEP ASSM)
x not free in U X fresh
Γ, x : X, u : T `I a : U

Γ, u : (∃x)T `I a : U

(SUB OBJ)è : (̃S)T ρ ⊆ è′ : ˜(S′)T ′ρ′

Γ ` ObjG [è′ : ˜(S′)T ′ρ′] <: ObjG [è : (̃S)T ρ]

(NULL EXP)
Γ ` T <: Null

(EXP RES)
I ∩ ‖T‖ 6= ∅ Γ (u) = T

Γ `I u : T

(EXP NEW)
Γ, n : T `I a : U

Γ `I (νn : T) a : U

(EXP FORK)
Γ `I a : T Γ `I b : U

Γ `I a � b : U

(EXP EVAL)
Γ `I a : T Γ, x : T `I b : U

Γ `I let x = a in b : U

(EXP CALL)
Γ `I v : VeilG(w.` : (S)T)

Γ `I u : S I ∩ ‖T‖ 6= ∅
Γ `I

{
v〈u〉 : T

(EXP CALL UN)
Γ `I v : Un
Γ `I u : Un

Γ `I
{
v〈u〉 : Un

(NULL DEN)

Γ `I p : ObjG [è : (̃S)T ρ] dom(Θ) ∪ dom(∆) ⊆ è (̃S)Tσ = (̃S′)T ′

∀{`i ∈ dom(Θ)}. Γ `I Θ(`i) : U ′
i ∈ veiltype(p.`i : (S′i)T

′
i)

∀{`i ∈ dom(∆)}. Γ, yi : S′i `I ∆(`i)(yi) Θ
x {p/x}σ : T ′

i

∀{`i ∈ dom(∆) | ρi = \}. ∀σ∞.

Γ, ez : eU ∈ veiltype(p.è : (̃S)Tσ∞), yi : Siσ∞ `I ∆(`i)(yi) ez/è
x {p/x}σ∞ : Tiσ∞

Γ `I p 7→ Θ[ς(x)∆] : Null

(DEN UN)
Γ `I p : Un ∀{`i ∈ dom(Θ)}. Γ `I Θ(`i) : Un

∀{`i ∈ dom(∆)}. Γ, yi : Un `I ∆(`i)(yi) Θ
x {p/x} : Un

Γ `I p 7→ Θ[ς(x)∆] : Un

(EXP UPD)

Γ `I u : ObjG [è : (̃S)T ρ] dom(Θ) ∪ dom(∆) ⊆ è {`i | ρi = [} ⊆ dom(∆)

(̃S)Tσ = (̃S′)T ′ ∀{`i ∈ dom(Θ)}. Γ `I Θ(`i) : U ′
i ∈ veiltype(u.`i : (S′i)T

′
i)

∀{`i ∈ dom(∆)}. Γ, yi : S′i `I ∆(`i)(yi) Θ
x {u/x}σ : T ′

i

∀{`i ∈ dom(∆) | ρi = \}. ∀σ∞.

Γ, ez : eU ∈ veiltype(u.è : (̃S)Tσ∞), yi : Siσ∞ `I ∆(`i)(yi) ez/è
x {u/x}σ∞ : Tiσ∞

Γ `I u←[Θ[ς(x)∆] : ObjG [è : (̃S)T ρ]

(EXP UPD UN)
Γ `I u : Un ∀{`i ∈ dom(Θ)}. Γ `I Θ(`i) : Un

∀{`i ∈ dom(∆)}. Γ, yi : Un `I ∆(`i)(yi) Θ
x {u/x} : Un

Γ `I u←[Θ[ς(x)∆] : Un

Notice that Null is not a “good” type—we have Null as a type only because it allows
us to give compact rules for well-typed expressions. (Dep Assm) and (Dep Grnt) are
standard assume/guarantee rules for propagating dependencies. (Den Un), (Exp Call
Un), and (Exp Upd Un) can type arbitrary “untrusted” expressions whose names and
type declarations are all public.

(Exp Call) checks that veil invocation is type-safe, i.e., the type of the result matches
that suggested by the veil type. (Exp Res) and (Exp Call) check if the typing group
intersects the reach of an expected result type. These checks do not constrain irrelevant
type assumptions, even if those types are out of reach of the typing group.

(Null Den) and (Exp Upd) are largely similar. There, σ ranges over proper substitu-
tions for group and type variables that are bound by the capability signature. Addition-
ally, σ∞ ranges over all proper partial substitutions that map some of those variables to
∞ and Un. Both rules check if the capability signature is properly instantiated (via σ)
by the types of the new veil bindings and the new method bodies. Crucially, every ap-
plication of (Null Den) and (Exp Upd) can present a different instantiation for the type
scheme of the same capability. This allows “dynamic specification” of type assump-
tions for the methods of an object. For those methods that are qualified natural, (Null
Den) and (Exp Upd) also check if the method bodies can be typed polymorphically to
match their type schema, with fresh veil bindings and partially instantiated types (via
σ∞). The checks are necessary because we do not require natural methods to be over-
ridden on each update of the object, yet want them to be robust to any changes in type
assumptions within the object. (Indeed, (Exp Upd) requires only those methods that are
qualified flat to be overridden on update.) There are only finitely many σ∞ to consider
(since there are only finitely many bound group and type variables in the signature).
Group variables suffice to account for instantiations with trusted groups; the substitu-
tions σ∞ account for those instantiations that may map some group variables to ∞,
thereby collapsing some types to Un and changing type structure. (Similar subtleties
appear in a secrecy type system for asymmetric communication [1] while exploiting
polymorphism across trusted types and Un.)

Example 2. Assume that name matching can be encoded in the language. Recall the
example with authenticated encryption objects. Assume that p has the shown signature,
θenc has the shown veil type, k has type TX , and θkey has type (∃z′)VeilR(z′.key : TX).
Then the following denomination is well-typed under `{KeyManager}. A proper σ∞ that
must be considered when typechecking authencrypt maps X to∞, and X and Y to
Un; another such is the empty substitution that does not instantiate any variable.

p 7→ θkeyθenc[key Z⇒ k, authencrypt(y) Z⇒
(νq : ObjX [decrypt : (X)Y \]) (νθdec : VeilX (q.decrypt : (X)Y))

let x′ = key in q 7→ θdec[decrypt(x) Z⇒ if x is x′ then y] � θdec]

Next, say we can type Reader’s code ar under `{Reader} and Writer’s code aw under
`{Writer}. Informally, ar can obtain the key k by invoking θkey; aw can encrypt a term
of type TY by invoking θenc, and share the resulting decryption handle θdec with ar; and
ar can retrieve the encrypted term by invoking θdec with argument k. However, ar can
never encrypt a term with θenc, and aw can never decrypt a term encrypted with θenc.

Example 3. Suppose that Bonnie and Clyde wish to start a session sometime in the
future, with a session secret generated by Clyde. Moreover, they wish to use a file p
owned by Bonnie to establish that secret when they are ready. We show a safe, well-
typed protocol in which the file is used in at least three different ways over time. Bonnie
initializes the file content to a new name θnw, binding its access to a name θc known to
Clyde; the content θnw is a future write handle to the file. Additionally, she programs the
file to transition into a publicly usable phase as soon as that content is read off (since
she has other tasks for the file). Since Clyde knows θc, he can read the file to obtain θnw.
Later, Bonnie brings the file back into restricted usage, with θnw as its new write handle.
She then listens for the secret she expects from Clyde. Accordingly Clyde creates a new
secret and writes it to the file by invoking (the earlier obtained) θnw. Both Bonnie and
Clyde now share the new secret, and can safely start their session.

Let B
def= {Bonnie}, C

def= {Clyde}, BC
def= B ∪C, 1 def= Un, SecBC def= ObjBC [], and

a; b def= let x = a in b for fresh x. Assume p : ObjB [content : (1)X[, write : (X)1\],
θc : VeilBC(p.content : (1)(∃z)VeilBC(z.write : (SecBC)1)), θuc : Un, and θuw :
Un. Then we can type Bonnie’s code b under `B and Clyde’s code c under `C .

b = (νθnw : VeilBC(p.write : (SecBC)1))
(νθw : VeilB(p.write : ((∃z)VeilBC(z.write : (SecBC)1))1))

p 7→ θcθw[content Z⇒ ς(x) x←[θucθuw[content Z⇒ content]; θnw,
write(y) Z⇒ content⇐\ y;] �

. . .

(νθnc : VeilB(p.content : (1)SecBC))
p←[θncθnw[content Z⇒ content];
let x =

{
θnc in . . .

c = let x =
{
θc in (νk : SecBC)

{
x〈k〉; . . .

3.2 Properties of well-typed code
The main result for the type system of Section 3 is that well-typed code never leaks
secrets beyond declared boundaries, even under arbitrary untrusted environments. The

result relies on a standard but non-trivial preservation property: well-typed expressions
preserve their types on execution. This property justifies our typing approach.

Proposition 1 (Preservation). Let Γ `I a : T . If a −→ b, then Γ `I b : T .

Additionally, the type system has two important properties. First, the type given to an
expression is not beyond reach, i.e., at least one index in the typing group falls within
the reach of the expression type. (Additionally, reaches are preserved by subtyping.)

Proposition 2 (Reach soundness). Let Γ `I a : T 6= Null. Then ‖T‖ ∩ I 6= ∅.

Second, the type system can accommodate arbitrary expressions, as long as they do not
contain trusted names. This property is important, since we cannot assume that attackers
attempting to learn secrets would politely follow our typing discipline.

Proposition 3 (Typability). Let a be any expression without free labels or variables.
Suppose all declared types in a are Un, and Γ (n) = Un for all free names n in a. Then
Γ `I a : Un for all I.

Finally, we present the main result. Let a be trusted code typed under group I, and b be
(perhaps partially) untrusted code typed under the complement group∞−I. In general,
b may be any adversarial code written jointly by an arbitrary attacker in collusion with
trusted principals outside I; the trusted part of b may even share trusted names with a.
Then if the principals in I eventually declare an exclusive secret n, this secret can never
be learnt by executing b in composition with a.

Theorem 1 (Secrecy). Let Γ `I a : S and Γ `∞−I b : T . If a � b −→? (νm̃ :
Ũ ′) (νn : U) c such that ‖U‖ ⊆ I, then c 6−→? � n.

The proof is based on a simple argument: if n can be learnt, then T must be the same
as U—but the reach of T must contain at least one index in ∞ − I, i.e., outside I
(contradiction). A weaker version of the theorem that deals with top-level secrets also
holds: for all names m such that ‖Γ (m)‖ ⊆ I, it must be the case that a � b 6−→? � m.

4 Conclusion

Static analyses have been quite helpful in guaranteeing high-level safety properties of
distributed systems: indeed, a significant body of work focuses specifically on safe re-
source usage [13, 5, 22, 24, 25, 6–8, 29]. Some analyses use access levels, as declared
via static type annotations, to guarantee the absence of access violations at runtime
[21, 28, 7, 29]. In our previous work [10], we go further by studying the interplay of
static secrecy specifications with dynamically acquired permissions, and verify that ac-
cess checks help respect the specifications at runtime. A similar approach is reflected
in hybrid typechecking [12], a type system for secure information flow in a Java-like
language [3], and a type system that supports dynamic revocation [19].

An alternative, and perhaps more natural stance is to allow specifications to be in-
herently dynamic to reflect changing assumptions during execution. Dynamic specifi-
cations are often desirable when reasoning about resources in the long run. When addi-
tional runtime guarantees can be exploited, dynamic specifications typically also allow

finer analyses than static specifications. Along those lines, one body of work studies
the enforcement of policies specified as security automata [31, 18]. Yet another stud-
ies systems with declassification, i.e., conservative relaxation of secrecy assumptions
at runtime [27]. There is also some recent work on compromised secrets [15, 17] in
the context of network protocols. In comparison, our analyses apply more generally to
changing assumptions at runtime. Perhaps closest to our work are analyses developed
for dynamic access control in languages with locality and migration [20, 16]. Similar
ideas also appear in a type system for noninterference that allows the use of dynamic
security labels [33].

Our contributions in this paper are two-fold. We develop low-level access con-
trol features in an existing object language to make it suitable as a core calculus for
studying security properties of concurrent, stateful resources. We then show a typing
approach for verifying high-level intentions on resource manipulation in the resulting
language. The type system allows dynamic access control specifications, and crucially
relies on corresponding low-level guarantees provided by the language runtime to ver-
ify those specifications. This combination helps in developing precise security analyses
for shared resources that are used under changing assumptions over time.

Acknowledgments. Martı́n Abadi suggested concς as a possible starting point for the
calculus. In addition, he and Cormac Flanagan helped with comments on an earlier
draft. This work was partly supported by the National Science Foundation under Grants
CCR-0208800 and CCF-0524078, and by Livermore National Laboratory, Los Alamos
National Laboratory, and Sandia National Laboratory under Contract B554869.

References

1. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theoretical
Computer Science, 298(3):387–415, 2003.

2. M. Abadi and L. Cardelli. An imperative object calculus. In TAPSOFT’95: Theory and
Practice of Software Development, pages 471–485. Springer, 1995.

3. A. Banerjee and D. Naumann. Using access control for secure information flow in a Java-like
language. In CSFW’03: Computer Security Foundations Workshop, pages 155–169. IEEE,
2003.

4. P. D. Blasio and K. Fisher. A calculus for concurrent objects. In CONCUR’96: Concurrency
Theory, pages 655–670. Springer, 1996.

5. P. D. Blasio, K. Fisher, and C. Talcott. A control-flow analysis for a calculus of concurrent
objects. IEEE Transactions on Software Engineering, 26(7):617–634, 2000.

6. C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-based access control.
In CSFW’04: Computer Security Foundations Workshop, pages 48–60. IEEE, 2004.

7. M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: The calculus of
boxed ambients. ACM Transactions on Programming Languages and Systems, 26(1):57–
124, 2004.

8. M. Bugliesi, D. Colazzo, and S. Crafa. Type based discretionary access control. In CON-
CUR’04: Concurrency Theory, pages 225–239. Springer, 2004.

9. L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. Information and
Computation, 196(2):127–155, 2005.

10. A. Chaudhuri and M. Abadi. Secrecy by typing and file-access control. In CSFW’06: Com-
puter Security Foundations Workshop. To appear. IEEE, 2006.

11. T. Coquand. Pattern matching with dependent types. In Workshop on Types for Proofs and
Programs. Electronic proceedings, 1992.

12. C. Flanagan. Hybrid type checking. In POPL ’06: Principles of programming languages,
pages 245–256. ACM, 2006.

13. C. Flanagan and M. Abadi. Object types against races. In CONCUR ’99: Concurrency
Theory, pages 288–303. Springer, 1999.

14. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing. In
HLCL’98: High-Level Concurrent Languages, pages 248–264. Elsevier, 1998.

15. A. D. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the
pi-calculus. In CONCUR’05: Concurrency Theory, pages 186–201. Springer, 2005.

16. D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges
acquisition. In ICALP’03: International Colloquium on Automata, Languages, and Pro-
gramming, pages 119–132. Springer, 2003.

17. C. Haack and A. Jeffrey. Timed spi-calculus with types for secrecy and authenticity. In
CONCUR’05: Concurrency Theory, pages 202–216. Springer, 2005.

18. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined reference monitoring on
.NET. In PLAS’06: Programming Languages and Analysis for Security. To appear. ACM,
2006.

19. C. Hawblitzel and T. von Eicken. Type system support for dynamic revocation. In Workshop
on Compiler Support for System Software. Electronic proceedings, 1999.

20. M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and mo-
bility control in distributed systems. In FOSSACS’03: Foundations of Software Science and
Computational Structures, pages 282–298. Springer, 2003.

21. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In HLCL
’98: High-Level Concurrent Languages, pages 174–188. Elsevier, 1998.

22. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous pi-
calculus. ACM Transactions on Programming Languages and Systems, 24(5):566–591,
2002.

23. Z. D. Kirli. Confined mobile functions. In CSFW’01: Computer Security Foundations Work-
shop, pages 283–294. IEEE, 2001.

24. J. Kleist and D. Sangiorgi. Imperative objects as mobile processes. Science of Computer
Programming, 44(3):293–342, 2002.

25. G. Miklau and D. Suciu. Controlling access to published data using cryptography. In
VLDB’03: Very Large Data Bases, pages 898–909. Springer, 2003.

26. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised).
The MIT Press, 1997.

27. A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In CSFW’04:
Computer Security Foundations Workshop, pages 172–186. IEEE, 2004.

28. R. D. Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control. Theoretical
Computer Science, 240(1):215–254, 2000.

29. F. Pottier, C. Skalka, and S. Smith. A systematic approach to static access control. ACM
Transactions on Programming Languages and Systems, 27(2):344–382, 2005.

30. D. D. Redell. Naming and protection in extendible operating systems. Technical Report 140,
Project MAC, MIT, 1974.

31. F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System
Security, 3(1):30–50, 2000.

32. V. T. Vasconcelos. Typed concurrent objects. In ECOOP’94: European Conference on
Object-Oriented Programming, pages 100–117. Springer, 1994.

33. L. Zheng and A. Myers. Dynamic security labels and noninterference. In FAST’04: Formal
Aspects in Security and Trust, pages 27–40. Springer, 2004.

