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Abstract
There have been several efforts to bring static type inference to
object-oriented dynamic languages such as Ruby, Python, and Perl.
In our experience, however, such type inference systems are ex-
tremely difficult to develop, because dynamic languages are typi-
cally complex, poorly specified, and include features, such as eval
and reflection, that are hard to analyze.

In this paper, we introduce constraint-based dynamic type infer-
ence, a technique that infers static types based on dynamic program
executions. In our approach, we wrap each run-time value to asso-
ciate it with a type variable, and the wrapper generates constraints
on this type variable when the wrapped value is used. This tech-
nique avoids many of the often overly conservative approximations
of static tools, as constraints are generated based on how values are
used during actual program runs. Using wrappers is also easy to
implement, since we need only write a constraint resolution algo-
rithm and a transformation to introduce the wrappers. The best part
is that we can eat our cake, too: our algorithm will infer sound types
as long as it observes every path through each method body—note
that the number of such paths may be dramatically smaller than the
number of paths through the program as a whole.

We have developed Rubydust, an implementation of our al-
gorithm for Ruby. Rubydust takes advantage of Ruby’s dynamic
features to implement wrappers as a language library. We applied
Rubydust to a number of small programs and found it to be both
easy to use and useful: Rubydust discovered 1 real type error, and
all other inferred types were correct and readable.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
analysis; F.3.3 [Logics and Meaning of Programs]: Studies of
Program Constructs—Type structure

General Terms Languages, Theory, Verification

Keywords Dynamic type inference, static types, Ruby, dynamic
languages

1. Introduction
Over the years, there have been several efforts to bring static type
inference to object-oriented dynamic languages such as Ruby,
Python, and Perl [2–5, 7, 10, 12, 16, 18, 24, 27]. Static type in-
ference has the potential to provide the benefits of static typing—
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well-typed programs don’t go wrong [17]—without the annotation
burden of pure type checking.

However, based on our own experience, developing a static type
inference system for a dynamic language is extremely difficult.
Most dynamic languages have poorly documented, complex syn-
tax and semantics that must be carefully reverse-engineered be-
fore any static analysis is possible. Dynamic languages are usu-
ally “specified” only with a canonical implementation, and tend to
have many obscure corner cases that make the reverse engineer-
ing process tedious and error-prone. Moreover, dynamic language
programmers often employ programming idioms that impede pre-
cise yet sound static analysis. For example, programmers often give
variables flow-sensitive types that differ along different paths, or
add or remove methods from classes at run-time using dynamic
features such as reflection and eval. Combined, these challenges
make developing and maintaining a static type inference tool for a
dynamic language a daunting prospect.

To address these problems, this paper introduces constraint-
based dynamic type inference, a technique to infer static types using
information gathered from dynamic runs. More precisely, at run
time we introduce type variables for each position whose type we
want to infer—specifically fields, method arguments, and return
values. As values are passed to those positions, we wrap them in a
proxy object that records the associated type variable. The user may
also supply trusted type annotations for methods. When wrapped
values are used as receivers or passed to type-annotated methods,
we generate subtyping constraints on those variables. At the end of
the run, we solve the constraints to find a valid typing, if one exists.

We have implemented this technique for Ruby, as a tool called
Rubydust (where “dust” stands for dynamic unraveling of static
types). Unlike standard static type systems, Rubydust only con-
flates type information at method boundaries (where type vari-
ables accumulate constraints from different calls), and not within
a method. As such, Rubydust supports flow-sensitive treatment of
local variables, allowing them to be assigned values having differ-
ent types. Since Rubydust only sees actual runs of the program, it
is naturally path-sensitive and supports use of many dynamic fea-
tures. Finally, Rubydust can be implemented as a library by em-
ploying common introspection features to intercept method calls;
there is no need to reverse-engineer any subtle parsing or elabora-
tion rules and to build a separate analysis infrastructure. In sum,
Rubydust is more precise than standard static type inference, and
sidesteps many of the engineering difficulties of building a static
analysis tool suite.

Although Rubydust is based purely on dynamic runs, we can
still prove a soundness theorem. We formalized our algorithm on a
core subset of Ruby, and we prove that if the training runs on which
types are inferred cover every path in the control-flow graph (CFG)
of every method of a class, then the inferred types for that class’s
fields and methods are sound for all possible runs. In our formalism,
all looping occurs through recursion, and so the number of required



paths is at most exponential in the size of the largest method body
in a program. Notice that this can be dramatically smaller than the
number of paths through the program as whole.

Clearly, in practice it is potentially an issue that we need test
cases that cover all method paths for fully sound types. However,
there are several factors that mitigate this potential drawback.
• Almost all software projects include test cases, and those test
cases can be used for training. In fact, the Ruby community encour-
ages test-driven development, which prescribes that tests be written
before writing program code—thus tests will likely be available for
Rubydust training right from the start.
• While loops within methods could theoretically yield an un-
bounded number of paths, in our experimental benchmarks we ob-
served that most loop bodies use objects in a type-consistent man-
ner within each path within the loop body. Hence, typically, observ-
ing all paths within a loop body (rather that observing all possible
iterations of a loop) suffices to find correct types. We discuss this
more in Section 4.
• Even incomplete tests may produce useful types. In particular, the
inferred types will be sound for any execution that takes (within a
method) paths that were covered in training. We could potentially
add instrumentation to identify when the program executes a path
not covered by training, and then blame the lack of coverage if
an error arises as a result [10]. Types are also useful as documen-
tation. Currently, the Ruby documentation includes informal type
signatures for standard library methods, but those types could be-
come out of sync with the code (we have found cases of this pre-
viously [12]). Using Rubydust, we could generate type annotations
automatically from code using its test suite, and thus keep the type
documentation in-sync with the tested program behaviors.

Our implementation of Rubydust is a Ruby library that takes
advantage of Ruby’s rich introspection features; no special tools
or compilers are needed. Rubydust wraps each object o at run-
time with a proxy object that associates o with a type variable α
that corresponds to o’s position in the program (a field, argument,
or return-value). Method calls on o precipitate the generation of
constraints; e.g., if the program invokes o.m(x) then we generate a
constraint indicating that αmust have a method m whose argument
type is a supertype of the type of x. Rubydust also consumes trusted
type annotations on methods; this is important for giving types to
Ruby’s built-in standard library, which is written in C rather than
Ruby and hence is not subject to our type inference algorithm.

We evaluated Rubydust by applying it to several small pro-
grams, the largest of which was roughly 750 LOC, and used their
accompanying test suites to infer types. We found one real type
error, which is particularly interesting because the error was un-
covered by solving constraints from a passing test run. All other
programs were found to be type correct, with readable and correct
types. The overhead of running Rubydust is currently quite high,
but we believe it can be reduced with various optimizations that we
intend to implement in the future. In general we found the perfor-
mance acceptable and the tool itself quite easy to use.

In summary, our contributions are as follows:

• We introduce a novel algorithm to infer types at run-time by
dynamically associating fields and method arguments and re-
sults with type variables, and generating subtyping constraints
as those entities are used. (Section 2)
• We formalize our algorithm and prove that if training runs cover

all syntactic paths through each method of a class, then the
inferred type for that class is sound. (Section 3)
• We describe Rubydust, a practical implementation of our algo-

rithm that uses Ruby’s rich introspection features. Since Ruby-
dust piggybacks on the standard Ruby interpreter, we can natu-

caller o.m(v)
 where @g = u

callee
   def m(x) e end
 where @f = w

(5) wrap
(h) v' : αm_ret
(i) u' : α@g
 where @g = u'

(1) constrain 
(a) type(v) ≤ αx
(b) type(o) ≤ [m:αx → αm_ret ] 
(c) type(u) ≤ α@g

(3) run e ⤳ v'(2) wrap
(d) v : αx 
(e) w : α@f 

(4) constrain
(f) type(v') ≤ αm_ret 
(g) type(w') ≤ α@f 
  where @f = w'

Figure 1. Dynamic instrumentation for a call o.m(v)

rally handle all of Ruby’s rather complex syntax and semantics
without undue effort. (Section 4)
• We evaluate Rubydust on a small set of benchmarks and find it

to be useful. (Section 5)

We believe that Rubydust is a practical, effective method for
inferring useful static types in Ruby, and that the ideas of Rubydust
can be applied to other dynamic languages.

2. Overview
Before presenting our constraint-based dynamic type inference al-
gorithm formally, we describe the algorithm by example and illus-
trate some of its key features. Our examples below are written in
Ruby, which is a dynamically typed, object-oriented language in-
spired by Smalltalk and Perl. In our discussion, we will try to point
out any unusual syntax or language features we use; more complete
information about Ruby can be found elsewhere [28].

2.1 Method call and return
In our algorithm, there are two kinds of classes: annotated classes,
which have trusted type signatures, and unannotated classes, whose
types we wish to infer. We assign a type variable to each field,
method argument, and method return value in every unannotated
class. At run time, values that occupy these positions are associ-
ated with the corresponding type variable. We call this association
wrapping since we literally implement it by wrapping the value
with some metadata. When a wrapped value is used, e.g., as a re-
ceiver of a method call, or as an argument to a method with a trusted
type signature, we generate a subtyping constraint on the associated
variable. At the end of the training runs, we solve the generated
constraints to find solutions for those type variables (which yield
field and method types for unannotated classes), or we report an er-
ror if no solution exists. Note that since all instances of a class share
the same type variables, use of any instance contributes to inferring
a single type for its class.

Before working through a full example, we consider the oper-
ation of our algorithm on a single call to an unannotated method.
Figure 1 summarizes the five steps in analyzing a call o.m(v) to a
method defined as def m(x) e end, where x is the formal argument
and e is the method body. In this case, we create two type variables:
αx, to represent x’s type, and αm ret , to represent m’s return type.

In step (1), the caller looks up the (dynamic) class of the receiver
to find the type of the called method. In this case, method m has
type αx → αm ret . The caller then generates two constraints. The
constraint labeled (a) ensures the type of the actual argument is a
subtype of the formal argument type. Here, type(x) is the type
of an object, either its actual type, for an unwrapped object, or
the type variable stored in the wrapper. In the constraint (b), the
type [m : . . .] is the type of an object with a method m with the



1 # Numeric : [...+ : Numeric→ Numeric...]
2

3 class A
4 # foo : αw × αu → αfoo ret

5 def foo(w,u) # w = (b : αw), u = (1 : αu)
6 w.baz() # αw ≤ [baz : ()→ ()]
7 y = 3 + u # y = (4 : Numeric) αu ≤ Numeric
8 return bar(w) # ret = (7 : αbar ret ) αw ≤ αx

9 end # αbar ret ≤ αfoo ret

10 # bar : αx → αbar ret

11 def bar(x) # x = (b : αx)
12 x.qux() # αx ≤ [qux : ()→ ()]
13 return 7 # Numeric ≤ αbar ret

14 end
15 end
16

17 A.new.foo(B.new,1) # B.new returns a new object b
18 # B ≤ αw

19 # Numeric ≤ αu

20 # ret = (7 : αfoo ret )

Figure 2. Basic method call and return example

given type. Hence by width-subtyping, constraint (b) specifies that
o has at least an m method with the appropriate type. We generate
this constraint to ensure o’s static type type(o) is consistent with
the type for m we found via dynamic lookup. For now, ignore the
constraint (c) and the other constraints (e), (g), and (i) involving
fields @f and @g; we will discuss these in Section 2.3.

In step (2) of analyzing the call, the callee wraps its arguments
with the appropriate type variables immediately upon entry. In this
case, we set x to be v : αx, which is our notation for the value v
wrapped with type αx.

Then in step (3), we execute the body of the method. Doing so
will result in calls to other methods, which will undergo the same
process. Moreover, as v : αx may be used in some of these calls,
we will generate constraints on type(v : αx), i.e., αx, that we
saw in step (1). In particular, if v : αx is used as a receiver, we
will constrain αx to have the called method; if v : αx is used as an
argument, we will constrain it to be a subtype of the target method’s
formal argument type.

At a high-level, steps (1) and (2) maintain two critical invariants:

• Prior to leaving method n to enter another method m, we
generate constraints to capture the flow of values from n to m
(Constraints (a) and (b)).
• Prior to entering a method m, all values that could affect the

type of m are wrapped (Indicated by (d)).

Roughly speaking, constraining something with a type records how
it was used in the past, and wrapping something with a type ob-
serves how it is used in the future.

Returning from methods should maintain the same invariants as
above but in the reverse direction, from callee to caller. Thus, in
step (4), we generate constraint (f) in the callee that the type of the
returned value is a subtype of the return type, and in step (5), when
we return to the caller we immediately wrap the returned value with
the called method’s return type variable.

2.2 Complete example
Now that we have seen the core algorithm, we can work through a
complete example. Consider the code in Figure 2, which defines a
class A with two methods foo and bar, and then calls foo on a fresh
instance of A on line 17.

This code uses Ruby’s Numeric class, which is one of the built-
in classes for integers. Because Numeric is built-in, we make it
an annotated class, and supply trusted type signatures for all of
its methods. A portion of the signature is shown on line 1, which
indicates Numeric has a method + of type Numeric→Numeric.1

As in the previous subsection, we introduce type variables for
method arguments and returns, in this case αw, αu, and αfoo ret for
foo, and αx and αbar ret for bar. Then we begin stepping through
the calls. At the call on line 17, we pass in actual arguments b (the
object created by the call to B.new on the same line) and 1. Thus we
constrain the formal argument types in the caller (lines 18 and 19)
and wrap the actuals in the callee (line 5).

Next, on line 6, we use a wrapped object, so we generate a
constraint; here we require the associated type variable αw contains
a no-argument method baz. (For simplicity we show the return type
as (), though as it is unused it could be arbitrary.)

On line 7, we call 3 + u. The receiver object is 3, which has
actual class is Numeric, an annotated class. Thus, we do the normal
handling in the caller (the shaded box in Figure 1), but omit the
steps in the callee, since the annotation is trusted. Here, we gen-
erate a constraint αu ≤ Numeric between the actual and formal
argument types. We also generate a constraint (not shown in the
figure) type(3) ≤ [+ : . . .], but as type(3) = Numeric, this con-
straint is immediately satisfiable; in general, we need to generate
such constraints to correctly handle cases where the receiver is not
a constant. Finally, we wrap the return value from the caller with
its annotated type Numeric.

Next, we call method bar. As expected, we constrain the actuals
and formals (line 8), wrap the argument inside the callee (line 11),
and generate constraints during execution of the body (line 12). At
the return from bar, we constrain the return type (line 13) and wrap
in the caller (yielding the wrapped value 7 : αbar ret on line 8). As
that value is immediately returned by foo, we constrain the return
type of foo with it (line 9) and wrap in the caller (line 20).

After this run, we can solve the generated constraints to infer
types. Drawing the constraints from the example as a directed
graph, where an edge from x to y corresponds to the constraint
x ≤ y, we have:

αw
αx

αfoo_retαbar_ret
B

[baz : () → ()]

[qux : () → ()] Numeric

αuNumeric Numeric

(Here we duplicated Numeric for clarity; in practice, it is typically
represented by a single node in the graph.) As is standard, we
wish to find the least solution (equivalent to a most general type)
for each method. Since arguments are contravariant and returns
are covariant, this corresponds to finding upper bounds (transitive
successors in the constraint graph) for arguments and lower bounds
(transitive predecessors) for returns. Intuitively, this is equivalent to
inferring argument types based on how arguments are used within
a method, and computing return types based on what types flow to
return positions. For our example, the final solution is

αw = [baz : ()→ (), qux : ()→ ()] αx = [qux : ()→ ()]

αu = Numeric αbar ret = αfoo ret = Numeric

Notice that w must have bar and qux methods, but x only needs a qux
method. For return types, both bar and foo always return Numeric.

2.3 Local variables and fields
In the previous example, our algorithm generated roughly the same
constraints that a static type inference system might generate. How-

1 In Ruby, the syntax e1 + e2 is shorthand for e1. + (e2), i.e., calling the
+ method on e1 with argument e2.



21 class C
22 def foo(x)
23 z = x; z.baz();
24 z = 3; return z + 5;
25 end
26 end
27 class D
28 def bar(x) @f = x end
29 def baz() y = 3 + @f end
30 def qux() @f = ”foo” end
31 def f () bar(”foo”) end
32 end

Figure 3. Example with local variables and fields

ever, because our algorithm observes only dynamic runs, in many
cases it can be more precise than static type inference.

Consider class C in Figure 3. On entry to foo, we wrap the actual
argument v as v : αx, where αx is foo’s formal argument type. At
the assignment on line 23, we do nothing special—we allow the
language interpreter to copy a reference to v : αx into z. At the call
to baz, we generate the expected constraint αx ≤ [baz : () → ()].
More interestingly, on line 24, we reassign z to contain 3, and so at
the call to z’s + method, we do not generate any constraints on αx.
Thus, our analysis is flow-sensitive with respect to local variables,
meaning it respects the order of operations within a method.

To see why this treatment of local variable assignment is safe, it
helps to think in terms of compiler optimization. We are essentially
performing inference over a series of execution traces. We can
view each trace as a straight-line program. Consider the execution
trace of foo (which is the same as the body of the function, in this
case). If we apply copy propagation (of x and 3) to the trace we
get z=x; x.baz(); z=3; return 3 + 5; Since z is a local variable
inaccessible outside of the scope of foo, it is dead at the end of
the method, too, so we can apply dead code elimination to reduce
the trace to “x.baz(); return 3+5;”. The constraints we would
generate from this trace are equivalent to those we would generate
with our approach.

Instance fields in Ruby are not visible outside an object, but
they are shared across all methods of an object. Thus, we need to
treat them differently than locals. To see why, consider the class
D in Figure 3, which uses the instance variable @f (all instance
variables begin with @ in Ruby). Suppose that we treated fields
the same way as local variables, i.e., we did nothing special at
assignments to them. Now consider inferring types for D with
the run bar (1); baz(); qux(). During the call bar(1), we would
generate the constraint Numeric ≤ αx (the type variable for x)
and store 1 : αx in @f. Then during baz(), we would generate the
constraint αx ≤ Numeric, and the call to qux() would generate
no constraints. Thus, we could solve the constraints to get αx =
Numeric, and we would think this class has type [bar : Numeric→
(), baz : () → (), qux : () → ()]. But this result is clearly wrong,
as the “well-typed” sequence qux(); baz() produces a type error.

To solve this problem, we need to introduce a type variable
α@f for the field, and then generate constraints and wrap values
accordingly. It would be natural to do this at writes to fields, but
that turns out to be impossible with a Ruby-only, dynamic solution,
as there is no dynamic mechanism for intercepting field writes.2

Fortunately, we can still handle fields safely by applying the same

2 Recall we wish to avoid using static techniques, including program rewrit-
ing, because they require complex front-ends that understand program se-
mantics. For example, even ordering of assignment operations in Ruby can
be non-obvious in some cases [11].

33 class E
34 def foo(x, p)
35 if p then x.qux() else x.baz() end
36 end
37 def bar(p)
38 if p then y = 3 else y = ”hello” end
39 if p then y + 6 else y. length end
40 end
41 end

(a) Paths and path-sensitivity

42 class F
43 def foo(x)
44 return ( if x then 0 else ” hello ” end)
45 end
46 def bar(y,z)
47 return ( if y then foo(z) else foo(!z) end)
48 end
49 end
50 f = F.new

(b) Per-method path coverage

Figure 4. Additional Examples

principles we saw in Figure 1 for method arguments and returns.
There, we needed two invariants: (1) when we switch from method
m to method n, we need to capture the flow of values from m to n,
and (2) when we enter a method n, we need to wrap all values that
could affect the type of n. Translating this idea to fields, we need
to ensure:

• When we switch from m to n, we record all field writes per-
formed by m, since they might be read by n. This is captured
by constraints (c) and (g) in Figure 1.
• When we enter n, we need to wrap all fields n may use, so

that subsequent field reads will see the wrapped values. This is
captured by constraints (e) and (i) in Figure 1.

Adding these extra constraints and wrapping operations solves
the problem we saw above. At the call bar(1), we generate the
constraint Numeric ≤ αx, as before. However, at the end of bar,
we now generate a constraint αx ≤ α@f to capture the write. At
the beginning of baz, we wrap @f so that the body of baz will now
generate the constraints α@f ≤ Numeric. Then qux generates the
constraint String ≤ α@f . We can immediately see the constraints
String ≤ α@f ≤ Numeric are unsatisfiable, and hence we would
correctly report a type error.

Notice that this design also allows a small amount of flow-
sensitivity for fields: A field may temporarily contain a value of
a different type, as long as it is overwritten before calling another
method or returning. We do not expect that this yields much addi-
tional precision in practice, however.

Our implementation handles class variables similarly to in-
stance variables. Note that we assume single-threaded execution—
if accesses of such variables by other threads are interleaved, the
inferred constraints may be unsound.

2.4 Path, path-sensitivity, and path coverage
As our algorithm observes dynamic runs, to infer sound types
we need to observe all possible paths through branching code se-
quences. For example, we can infer types for the foo method in Fig-
ure 4(a) if we see an execution such as foo(a, true ); foo(b, false ); .



In this case, we will generate αx ≤ [qux : ...] from the first call,
and αx ≤ [baz : ...] from the second.

One benefit of observing actual dynamic runs is that we never
model unrealizable program executions. For example, consider the
bar method in Figure 4(a). In a call bar(true), line 38 assigns a
Numeric to y, and in a call bar( false ), it assigns a String to y.
Typical path-insensitive static type inference would conflate these
possibilities and determine that y could be either a Numeric or
String on line 39, and hence would signal a potential error for both
the calls to + and to length. In contrast, in our approach we do
not assign any type to local y, and we observe each path separately.
Thus, we do not report a type error for this code.

Our soundness theorem (Section 3) holds if we observe all pos-
sible paths within each method body. To see why this is sufficient,
rather than needing to observe all possible program paths, consider
the code in Figure 4(b). Assuming bar is the entry point, there are
four paths through this class, given by all possible truth value com-
binations for y and z. However, to observe all possible types, we
only need to explore two paths. If we call f .bar(true , true) and
f .bar( false , true), we will generate the following constraints:3

f.bar(true, true) f.bar(false, true)
Boolean ≤ αy Boolean ≤ αy

Boolean ≤ αz Boolean ≤ αz

αz ≤ αx Boolean ≤ αx

Numeric ≤ αfoo ret String ≤ αfoo ret

αfoo ret ≤ αbar ret αfoo ret ≤ αbar ret

Thus, we can deduce that bar may return a Numeric or a String.
(Note that our system supports union types, so we can express this
return type as String ∪ Numeric.)

The reason we only needed two paths is that type variables
on method arguments and returns act as join points, summariz-
ing the possible types of all paths within a method. In our exam-
ple, both branches of the conditional in bar have the same type,
αfoo ret . Thus, the other possible calls, f .bar(true , false ) and
f .bar( false , false ), do not affect what types bar could return.

2.5 Dynamic features
Another benefit of our dynamic type inference algorithm is that
we can easily handle dynamic features that are very challenging
for static type inference. For example, consider the following code,
which occurred in one of our experimental benchmarks:

51 def initialize (args)
52 args .keys .each do | attrib |
53 self .send(”#{attrib}=”, args[ attrib ])
54 end end

This constructor takes a hash args as an argument, and then for each
key-value pair (k, v) uses reflective method invocation via send to
call a method named after k with the argument v. Or, consider the
following code:

55 ATTRIBUTES = [”bold”, ”underscore”, ... ]
56 ATTRIBUTES.each do |attr|
57 code = ”def #{attr}(&blk) ... end”
58 eval code
59 end

For each element of the string array ATTRIBUTES, this code uses
eval to define a new method named after the element.

3 Note that an if generates no constraints on its guard as any object may
be supplied ( false and nil are false, and any other object is true). Also,
here and in our implementation, we treat true and false as having type
Boolean, though in Ruby they are actually instances of TrueClass and
FalseClass , respectively.

expressions e ::= nil | self | x | @f | x = e
| @f = e | A.new | e.m(e′) | e; e′
| if` e then e′ else e′′

methods d ::= def m(x) = e
classes c ::= class A = d?

programs P ::= c? B e

types τ ::= A.@f | A.m | A.m | ⊥ | >
| A | [m : A.m→ A.m] | τ ∪ τ ′ | τ ∩ τ ′

x ∈ local variables
@f ∈ field names
m ∈ method names

A ∈ class names
` ∈ labels

Figure 5. Syntax of source language

We encountered both of these code snippets in earlier work, in
which we proposed using run-time profiling to gather concrete uses
of send, eval , and other highly dynamic constructs, and then ana-
lyzing the profile data statically [10]. In the dynamic analysis we
propose in the current paper, no separate profiling pass is needed:
we simply let the language interpreter execute this code and ob-
serve the results during type inference. Method invocation via send
is no harder than normal dynamic dispatch; we just do the usual
constraint generation and wrapping, which, as mentioned earlier, is
actually performed inside the callee in our implementation. Method
creation via eval is also easy, since we add wrapping instrumenta-
tion by dynamically iterating through the defined methods of unan-
notated classes; it makes no difference how those methods were
created, as long as it happens before instrumentation.

3. Formal development
In this section, we describe our dynamic type inference technique
on a core Ruby-like source language.

The syntax is shown in Figure 5. Expressions include nil, self,
variables x, fields @f , variable assignments x = e, field assign-
ments @f = e, object creations A.new, method calls e.m(e′), se-
quences e; e′, and conditionals if` e then e′ else e′′. Conditionals
carry labels ` to allow us to reason about path coverage. Concep-
tually, labels may be thought of as logical propositions—literals of
the form ` and ¬` represent a branch taken or not taken, respec-
tively, at run time. We assume that all labels are distinct.

The form def m(x) = e defines a method m with formal ar-
gument x and body e. Classes c are named collections of methods.
A program consists of a set of classes and a single expression that
serves as a test. Typically, we run a test on a collection of classes to
“train” the system—i.e., infer types—and, in our proofs, run other
tests to “monitor” the system—i.e., show that the inferred types are
sound. In the formalism, we use only a single test e to train the sys-
tem, but we can always represent a set of tests by sequencing them
together into a single expression.

The syntax of types requires some explanation. Type variables
are “tagged” to avoid generating and accounting for fresh variables.
Thus, A.@f is a type variable that denotes the type of the field @f
of objects of class A; similarly, A.m and A.m are type variables
that denote the argument and result types of the method m of class
A. In addition, we have nominal typesA for objects of classA, and
structural types [m : A.m → A.m] for objects with method m
whose argument and result types can be viewed as A.m and A.m.
Finally, we have the bottom type ⊥, the top type >, union types
τ ∪ τ ′, and intersection types τ ∩ τ ′.



values v ::= l | nil
wrapped values ω ::= v : τ

field maps F ::= (@f 7→ ω)?

method mapsM ::= (m 7→ λ(x)e)?

class maps C ::= (A 7→ M)?

heapsH ::= (l 7→ A〈F〉)?
environments E ::= (x 7→ ω)?, (self 7→ l : A)?

literals p ::= (` | ¬`)
paths φ ::= p?

constraints Π ::= (τ ≤ τ ′)?, φ?

Figure 6. Auxiliary syntax

3.1 Training semantics
We now define a semantics for training. The semantics extends a
standard semantics with some instrumentation. The instrumenta-
tion does not affect the run-time behavior of programs; it merely
records run-time information that later allows us to infer types and
argue about their soundness.

To define the semantics, we need some auxiliary syntax to de-
scribe internal data structures, shown in Figure 6. Let l denote heap
locations. Values include heap locations and nil. Such values are
wrapped with types for training. A field map associates field names
with wrapped values. A method map associates method names
with abstractions. A class map associates class names with method
maps. A heap maps locations to objects A〈F〉, which denote ob-
jects of class A with field map F . An environment maps vari-
ables to wrapped values and, optionally, self to a location wrapped
with its run-time type. Formally, the run-time type of a value un-
der a heap is defined by runtypeH(l) = A if H(l) = A〈F〉 and
runtypeH(nil) = ⊥.

A path φ is a list of label literals ` or ¬`, denoted by p, that mark
conditionals encountered in a run. Constraints Π include standard
subtyping constraints τ ≤ τ ′ and coverage constraints φ, meaning
that the path φ is traversed during some call in the run.

The rules shown in Figure 7 derive big-step reduction judgments
of the formH; E ; e −→C H′; E ′;ω |Π;φ, meaning that given class
map C, expression e under heap H and environment E reduces to
wrapped value ω, covering path φ, generating constraints Π, and
returning heap H′ and environment E ′. We define the following
operations on wrapped values: if ω = v : τ then val(ω) = v,
type(ω) = τ , and ω • τ ′ = v : τ ′. In the rules, we use an
underscore in any position where an arbitrary quantity is allowed,
and we write empty set as {} to avoid confusion with φ.

By (TNIL), the type assigned to nil is ⊥, which means that
nil may have any type. (TSELF) is straightforward. In (TNEW), the
notationA〈 7→ nil : ⊥〉 indicates an instance ofAwith all possible
fields mapped to nil. (As in Ruby, fields need not be explicitly
initialized before use, and are nil by default.) (TVAR) and (TVAR=)
are standard, and generate no constraint nor perform any wrapping,
as discussed in Section 2.3.

As explained in Section 2, we permit some flow-sensitivity for
field types. Thus, (FIELD) and (FIELD=) are like (VAR) and (VAR=)
in that they generate no constraint and perform no wrapping.

(TSEQ) is straightforward. By (TCOND), either ` or ¬` is
recorded in the current path, depending on the branch traversed
for the conditional with label `. Note that ` and ¬` can never ap-
pear in the same path: looping in the formal language occurs only
via recursive calls, and callee paths are not included in caller paths.
That said, the conditional itself may be visited on many occasions
during the training run, so that both ` and ¬`may eventually appear
in coverage constraints.

(TNIL)
H; E ; nil −→C H; E ; nil : ⊥ | {}; {}

(TSELF)
E(self) = l : A

H; E ; self −→C H; E ; l : A | {}; {}
(TNEW)

l fresh H′ = H{l 7→ A〈 7→ nil : ⊥〉}
H; E ;A.new −→C H′; E ; l : A | {}; {}

(TVAR)
E(x) = ω

H; E ;x −→C H; E ;ω | {}; {}
(TVAR =)

H; E ; e −→C H′; E ′;ω | Π;φ E ′′ = E ′{x 7→ ω}
H; E ;x = e −→C H′; E ′′;ω | Π;φ

(TFIELD)
E(self) = ω l = val(ω) H(l) = 〈F〉 F(@f) = ω

H; E ; @f −→C H; E ;ω | {}; {}
(TFIELD =)

H; E ; e −→C H′; E ′;ω | Π;φ
E ′(self) = ω′ l = val(ω′)

H′(l) = A〈F〉 H′′ = H′{l 7→ A〈F{@f 7→ ω}〉}
H; E ; @f = e −→C H′′; E ′;ω | Π;φ

(TSEQ)

H; E ; e −→C H′; E ′; | Π;φ
H′; E ′; e′ −→C H′′; E ′′;ω | Π′;φ′

H; E ; (e; e′) −→C H′′; E ′′;ω | Π,Π′;φ, φ′

(TCOND)

H; E ; e −→C H′; E ′;ω | Π;φ
p = `, ep = e′ if val(ω) 6= nil
p = ¬`, ep = e′′ if val(ω) = nil
H′; E ′; ep −→C H′′; E ′′;ω′ | Π′;φ′

H; E ; if` e then e′ else e′′ −→C H′′; E ′′;ω′ | Π,Π′;φ, p, φ′

(TCALL)

H; E ; e −→C H′; E ′;ω | Π;φ τ = type(ω)
H′; E ′; e′ −→C H′′; E ′′;ω′ | Π′;φ′ τ ′ = type(ω′)

l = E ′′(self) l = val(ω′)
H′′(l) = A〈 〉 C(A) =M M(m) = λ(x)e′′

Π′′ = τ ′ ≤ [m : A.m→ A.m], τ ≤ A.m, constrainl(H′′)
H′′′ = wrapl(H

′′) E ′′′ = {self 7→ ω′ •A, x 7→ ω •A.m}
H′′′; E ′′′; e′′ −→C H; ;ω | Π;φ τ = type(ω)

Π
′

= τ ≤ A.m, constrainl(H), φ

H′
= wrapl(H) ω′ = ω •A.m

H; E ; e′.m(e) −→C H
′
; E ′′;ω′ | Π,Π′,Π′′,Π,Π

′
;φ, φ′

Figure 7. Training semantics

(TCALL) performs the actions introduced in Figure 1. First, the
type of the receiver ω′ is constrained to be a subtype of [m :
A.m → A.m], and the type of the argument ω is constrained to
be a subtype of A.m, the argument type of the callee. We evalu-
ate the body e′′ with argument x mapped to ω • A.m, which is
the argument wrapped with method argument’s type variable. The
type of the result ω is constrained to be a subtype of the result type
A.m, and returned wrapped with that type. Furthermore (TCALL)



relates the current path to the set of paths stored as coverage con-
straints. In particular, while φ, φ′ records the current path traversed
in the caller, the path φ traversed by the callee is recorded as a cov-
erage constraint in Π

′
. In addition, (TCALL) involves wrapping and

generation of subtyping constraints for fields of the caller and the
callee objects. LetH(l) = A〈F〉. We define

• wrapl(H) = H{l 7→ A〈{@f 7→ ω•A.@f |@f 7→ ω ∈ F}〉}
• constrainl(H) = {type(ω) ≤ A.@f | @f 7→ ω ∈ F}

As discussed in Section 2, we constrain the fields of the caller
object and wrap the fields of the callee object before the method
call, and symmetrically, constrain the fields of the callee object and
wrap the fields of the caller object after the method call.

Finally, the following rule describes training with programs.

(TRAIN)
C = classmap(c?) {}, {}, e −→C ; ; | Π;

c? B e ↑ solve(subtyping(Π)); coverage(Π)

where we define:
classmap(c?) = {A 7→ methodmap(d?) | class A = d? ∈ c?}

methodmap(d?) = {m 7→ λ(x)e | def m(x) = e ∈ d?}
coverage(Π) = {φ | φ ∈ Π}

We assume that solve(subtyping(Π)) externally solves the sub-
typing constraints in Π to obtain a mapping T from type variables
to concrete types (possibly involving > and ⊥, and unions and in-
tersections of nominal types and structural types). We discuss the
solving algorithm we use in our implementation in Section 4; how-
ever, our technique is agnostic to the choice of algorithm or even to
the language of solved types.

The crucial soundness measure for the inferred types is Φ =
coverage(Π), which collects all the coverage constraints in the
run. The key soundness theorem states that any run whose paths
are a subset of Φ must use types that are consistent with Φ. As
a corollary, we show that if all possible paths are covered during
inference, then all runs are type safe.

3.2 Monitoring semantics
To argue about the soundness of inferred types, next we define a
monitoring semantics. This semantics slightly extends a standard
semantics with monitoring of calls at the top level, and monitoring
of conditionals. This affects the run-time behavior of programs—
we enforce a contract between the run-time type of the argument
and the inferred argument type for any call at the top level, and re-
quire that the monitoring run only traverses paths that have already
been traversed by the training run. A top-level call is simply one
that calls into any of the classes for which we have inferred types
from outside; a call from within a typed class (either to its own
method or to one of other typed class) is considered internal.

To define the monitoring semantics, we modify the syntax of
expressions, field maps, class maps, and environments as follows.

expressions e ::= . . . | e′.m(e)

class maps C ::= (A 7→ M)?, T ,Φ
field maps F ::= (@f 7→ v)?

environments E ::= (x 7→ v)?, (self 7→ l)?

Expressions of the form e′.m(e) denote method calls at the top
level. Class maps additionally carry the solution T of the subtyping
constraints collected during training, and the coverage Φ of the
training run. Field maps and environments no longer map to types.

The rules shown in Figure 8 derive big-step reduction judgments
of the form H; E ; e | φ −→C H′; E ′; v | φ′, where φ is the
prescribed path to be traversed and φ′ is the suffix of φ that remains.

(NIL)
H; E ; nil | φ −→C H; E ; nil | φ

(SELF)
E(self) = l

H; E ; self | φ −→C H; E ; l | φ
(NEW)

l fresh H′ = H{l 7→ A〈 7→ nil〉}
H; E ;A.new | φ −→C H′; E ; l | φ

(VAR)
E(x) = v

H; E ;x | φ −→C H; E ; v | φ
(VAR =)

H; E ; e | φ −→C H′; E ′; v | φ′ E ′′ = E ′{x 7→ v}
H; E ;x = e | φ −→C H′; E ′′; v | φ′

(FIELD)
E(self) = l H(l) = 〈F〉 F(@f) = v

H; E ; @f | φ −→C H; E ; v | φ
(FIELD =)

H; E ; e | φ −→C H′; E ′; v | φ′ E ′(self) = l
H′(l) = A〈F〉 H′′ = H′{l 7→ A〈F{@f 7→ v}〉}

H; E ; @f = e | φ −→C H′′; E ′; v | φ′

(SEQ)
H; E ; e | φ −→C H′; E ′; | φ′

H′; E ′; e′ | φ′ −→C H′′; E ′′; v | φ′′

H; E ; (e; e′) | φ −→C H′′; E ′′; v | φ′′

(CALL)

H; E ; e | φ −→C H′; E ′; v | φ′

H′; E ′; e′ | φ′ −→C H′′; E ′′; l | φ′′

H′′(l) = A〈 〉 C(A) =M M(m) = λ(x)e′′

φ ∈ C H′′; {self 7→ l, x 7→ v}; e′′ | φ −→C H′′′; ; v′ |
H; E ; e′.m(e) | φ −→C H′′′; E ′′; v′ | φ′′

(MCOND)

H; E ; e | φ −→C H′; E ′; v | p, φ′

p = `, ep = e′ if v 6= nil p = ¬`, ep = e′′ if v = nil
H′; E ′; ep | φ′ −→C H′′; E ′′; v′ | φ′′

H; E ; if` e then e′ else e′′ | φ −→C H′′; E ′′; v′ | φ′′

(MCALL)

H; E ; e | φ −→C H′; E ′; v | φ′

H′; E ′; e′ | φ′ −→C H′′; E ′′; l | φ′′

H′′(l) = A〈 〉 C(A) =M
M(m) = λ(x)e′′ runtypeH′′(v) ≤ C(A.m)

φ ∈ C H′′; {self 7→ l, x 7→ v}; e′′ | φ −→C H′′′; ; v′′ |
H; E ; e′.m(e) | φ −→C H′′′; E ′′; v′′ | φ′′

Figure 8. Monitoring semantics

(NIL), (SELF), (NEW), (VAR), (FIELD), (VAR=), (FIELD=), and
(SEQ) are derived from the corresponding rules for training, simply
by erasing types, paths, and constraints. (CALL) is similar, but in
addition, it (non-deterministically) picks a path from the coverage
of the training run, which is carried by C, and prescribes that the
call should traverse that path by including it in the environment
under which that call is run.



By (MCOND), a particular branch p of a conditional may be
traversed only if the path prescribes that branch, i.e., it begins with
p. The branch is then run under a residual path φ′.

By (MCALL), a top level call requires that the run-time type of
the argument v is a subtype of the argument type of the method, as
prescribed by the solution carried by C, which we write as C(A.m).

The following rule describes monitoring of programs.
(RUN)

C = classmap(c?), T ,Φ
{}, {}, monitor(e) | {} −→C ; ; | {}

c? B e ↓
where monitor(e′) is e′ but with any method call underlined.

Of course, reduction may be stuck in several ways, so we do not
expect to derive such a judgment for every program. In particular,
we do not care when reduction is stuck due to calls on nil, viola-
tions of argument type contracts for top-level calls, and violation
of coverage contracts for conditionals: these correspond to a failed
null check, a type-incorrect program, and an inadequately moni-
tored program, respectively. However, we do care about “method
not found” errors, since they would reveal that our inferred types,
even for paths we have monitored, are unsound. The following rule
(along with other versions of the monitoring rules augmented with
error propagation, not shown) derives error judgments of the form
H; E ; e | φ  C .

(ERROR)
H; E ; e | φ −→C H′; E ′; v | φ′

H′; E ′; e′ | φ′ −→C H′′; E ′′; l | φ′′

H′′(l) = A〈 〉 C(A) =M m /∈ dom(M)

H; E ; e′.m(e) | φ  C

Finally, the following rule defines program error judgments of
the form T ; Φ ` c? B e  .

(MONITOR)
C = classmap(c?), T ,Φ {}, {}, monitor(e) | {}  C

T ; Φ ` c? B e  

3.3 Soundness
We prove the following key soundness theorem.

Theorem 3.1 (Soundness). Suppose that c? B e1 ↑ T ; Φ for some
e1. Then there cannot be e2 such that T ; Φ ` c? B e2  .

Informally, if we infer types T with a test that covers paths Φ,
then as long as we run other tests that only traverse paths in Φ and
satisfy the type contracts in T , we cannot have “method-not-found”
errors. In particular, this implies the following corollary.

Corollary 3.2. If we infer types with a test that covers all possible
paths, then our types are always sound.

We sketch our proof below. Our monitoring semantics con-
strains execution to follow only paths traversed in the training
run—this guarantees that if some expression in the methods of c? is
visited in the monitoring run, then it must be visited by the training
run. Our proof is by simulation of the executions of such expres-
sions between these runs.

We define the following simulation relation between heaps and
environments of the training run (marked by subscript ·1) and those
of the monitoring run (marked by subscript ·2).

Definition 3.3 (Simulation). H1; E1 simulatesH2; E2 under types
T , denoted byH1; E1 ∼T H2; E2, iff the following hold:

• E1 ∼T E2, i.e., E1(x) = ω1 if and only if E2(x) = v2 such
that runtypeH2

(v2) ≤ T (type(ω1)), and E1(self) = l1 : A
if and only if E2(self) = l2 : A.

• H1(E1(self)) = A〈F1〉 such that F1(@f) = ω1 if and
only if H2(E2(self)) = A〈F2〉 such that F2(@f) = v2 and
runtypeH2

(v2) ≤ T (type(ω1)).
• whenever H1(l1) = A〈F1〉 such that F1(@f) = ω1 and
l1 6= E1(self), we have type(ω1) = A.@f ; and whenever
H2(l2) = A〈F2〉 such that F2(@f) = v2 and l2 6= E2(self),
we have runtypeH2

(v2) ≤ T (type(A.@f)).

Informally, let us say that a value v2 in the monitoring run
agrees with a type τ1 associated in the training run if the run-time
type of v2 is a subtype of the solution of τ1. Then, we say that a
training state (heap and environment) simulates a monitoring state
(heap and environment) if the values of variables in the monitoring
environment agree with their types in the training environment;
the self objects in both environments have the same class; the
fields of objects in the monitoring heap agree with their types in
the training heap; and for all objects other than self, the fields of
those objects in the training heap are of the form A.@f . This last
requirement essentially says that while self fields may have flow-
sensitive types, all other fields must be “stabilized” with their flow-
insensitive types. We define this notion of stability for training and
monitoring heaps below.

Definition 3.4 (Training heap stability). H1 is training-stable iff,
whenever H1(l1) = A1〈F1〉 such that F1(@f) = ω1, we have
type(ω1) = type(A1.@f).

Definition 3.5 (Monitoring heap stability). H2 is monitoring-
stable iff, whenever H2(l2) = A2〈F2〉 such that F2(@f) = v2,
we have runtypeH2

(v2) ≤ T (type(A2.@f)).

Monitoring and training heaps can be stabilized by the opera-
tions of constraining and wrapping, respectively, as shown by the
lemmas below. Recall that these operations happen upon entry and
exit of method calls; thus, we can ensure that the flow-sensitivity of
field types does not “leak” across method calls. This is crucial for
our proof, as shown later.

Lemma 3.6 (Constraining). Suppose that H1; E1 ∼T H2; E2.
Suppose that whenever τ ≤ τ ′ ∈ constrainE1(self)(H1)), we
have T (τ) ≤ T (τ ′). ThenH2 is monitoring-stable.

Lemma 3.7 (Wrapping). Suppose that H1; E1 ∼T H2; E2. Then
wrapE1(self)(H1) is training-stable.

We now have a neat way of establishing that a training state
simulates a monitoring state. If both heaps are stabilized (say by
constraining and wrapping), and furthermore, if the environments
themselves satisfy the requirements for simulation, then the states
are related by simulation.

Lemma 3.8 (Proof technique for simulation). Suppose that H1

is training-stable; H2 is monitoring-stable; and E1 ∼T E2. Then
H1; E1 ∼T H2; E2.

This proof technique is used to show the following main lemma:
if we run the same expression in both runs and the initial training
heap simulates the initial monitoring heap, then we cannot have
method-not-found errors in the monitoring run, the result of the
monitoring run agrees with its type in the training run, and the final
training heap simulates the final monitoring heap.

Lemma 3.9 (Preservation). Suppose that B ↑ T ,Φ, in particular
deriving H1; E1; e −→C1 ;H′

1; E ′1; : τ1 | φ. Let C2 = C1, T ,Φ.
LetH2 and E2 be such thatH1; E1 ∼T H2; E2. Then:

• We cannot haveH2; E2; e  C2 .
• If H2; E2; e −→C2 H′

2; E ′2; v2 with φ, φ′ ∈ E2 and φ′ ∈ E ′2
for some φ′, then runtypeH2

(v2) ≤ C2(τ1) and H′
1; E ′1 ∼T

H′
2; E ′2.



Proof. The proof is by induction on the monitoring run. The only
difficult case is for method calls, which we sketch below. (Note
that these method calls are internal, not top-level, since only envi-
ronments for which self is defined can appear in the simulation.)

By the induction hypothesis we cannot have errors in the evalu-
ation of the argument and the receiver; let us say they evaluate to v2
and l2. Furthermore, the simulation relation must hold for resulting
states, say H1; E1 and H2; E2, and v2 and l2 must agree with the
types τ1 and τ ′1 associated with the argument and receiver in the
training run, respectively. Since τ ′1 is a subtype of a structural type
with method m, we cannot have a method-not-found error here.

The main complication now is that the method dispatched in
the training run may not be the same as that in the monitoring run,
although the latter method should be dispatched at some point in the
training run. Thus, to apply our induction hypothesis for the method
call, we need to show that the initial state for that method call in the
monitoring run is simulated by the possibly unrelated initial state
with which that method was called in the training run. However, at
this point we can apply Lemmas 3.6, 3.7, and 3.8 to relate those
states, since we constrain the initial state of the caller and wrap the
initial state of the callee. Thus, now by induction hypothesis, the
method expression evaluates to (say) v′′2 , such that the simulation
relation must hold for resulting states, sayH′′

1 ; E ′′1 andH′′
2 ; E ′′2 and

v′′2 must agree with the type τ ′′1 associated with the result in the
training run. Finally, as above, we apply Lemmas 3.6, 3.7, and 3.8
to show that the final state for the method call in the training run
simulates the final state for the method call in the monitoring run,
since we constrain the final state of the callee and wrap the final
state of the caller.

Now using Lemma 3.9, we can show that the following weaker
state invariant is preserved at the top level of a monitoring run.

Definition 3.10. At the top level, invariant(H2; E2) holds iff:

• whenever H2(l) = A〈F〉 such that F(@f) = v2, we have
runtypeH2

(v2) ≤ C2(A.@f);
• E2(self) is undefined.

Lemma 3.11. Suppose that c?B ↑ T ; Φ with C1 = classmap(c?).
Let C2 = C1, T ,Φ. LetH2 and E2 be such that invariant(H2; E2).
Then:

• We cannot haveH2; E2; monitor(e0)  C2 .
• If H2; E2; monitor(e0) −→C2 H′

2; E ′2; v2 then we must have
invariant(H′

2; E ′2).

Theorem 3.1 follows by Lemma 3.11.
Perhaps the most interesting thing about this theorem is that

it proves we do not need to train on all iterations of a loop (here
formalized as recursive calls to a function), but rather just all paths
within the loop body. Here is an example to provide some intuition
as to why. Suppose a recursive method walks over an array and
calls baz on each element, e.g.,

60 def foo(a, i )
61 return if i == a.length
62 a[ i ]. baz
63 foo(a, i+1)
64 end

Recall that a[ i ] is actually a method call to the [] method, i.e.,
a[ i ]. baz is really a .[]( i , baz). If α is the array’s contents type
variable (i.e., the array has type Array<α>), this call generates
a constraint α ≤ [baz : ... ] . This constraint, generated from a
single call to foo, affects all elements of a because when the array
was created, we added constraints that each of its element types are
compatible with α, e.g., τ1 ≤ α, τ2 ≤ α, etc. where the τi are the
element types. (Thus the solution to α will contain τ1 ∪ τ2 ∪ ...)

65 class A
66 infer types () # A is an unannotated class
67 def foo ... end
68 def bar ... end
69 end
70 class String # String is an annotated class
71 typesig (” insert : (Numeric, String) → String”)
72 typesig (”+ : ([ to s : ()→String]) → String”)
73 ...
74 end
75 class ATest
76 include Rubydust::RuntimeSystem::TestCase
77 def test 1 ... end # test cases called by Rubydust
78 def test 2 ... end
79 end

Figure 9. Using Rubydust

We can also prove the following “completeness” theorem.

Theorem 3.12 (Completeness). If there are N methods and a
maximum of K labels in each method, and each label is reachable,
then a program of size O(N · 2K) is sufficient to ensure that the
inferred types are sound over all runs.

Proof. For any method m, there can be at most 2K paths with the
labels in m; and there can be at most N such methods.

In practice, the completeness boundN ·2K is likely quite loose.
Of course, a tighter bound could be obtained by considering the
actual number of labels K in each method. Furthermore, a method
with K labels may induce far less paths than 2K—indeed, we are
estimating the number of nodes in a branching tree of height K,
which may even be K if the tree is skewed as a list, as is the case
for switch statements.

4. Implementation
In this section we describe Rubydust, an implementation of our
dynamic type inference algorithm for Ruby. Rubydust comprises
roughly 4,500 lines of code, and is written purely in standard Ruby.

Using Rubydust is straightforward, as illustrated with the exam-
ple in Figure 9. To use a program with Rubydust, the programmer
simply runs the program as ruby rubydust.rb 〈program〉. The
Ruby script rubydust.rb in turn sets up the Ruby environment
before running the target program 〈program〉. For each class whose
types should be inferred, the programmer adds a call to Rubydust’s
infer types method during the class definition (line 66). Note that

in Ruby, class definitions are executed to create the class, and hence
methods can be invoked as classes are defined.

For classes with annotated types, the programmer calls Ruby-
dust’s typesig method with a string for each type to be declared.
For example, on line 71, we declare that String :: insert takes a
Numeric and String and returns a String. As another example, on
line 72, we declare that String::+ takes a argument that has a to s
method and returns a String . We support the full type annotation
language from DRuby [12], including intersection types and gener-
ics (discussed below).

Finally, the programmer also needs to define several test cases,
which are run when the program is executed by Rubydust. After
Rubydust runs the test cases, it solves the generated constraints and
outputs the inferred types (examples in Section 5).

Next, we briefly discuss details of the instrumentation process,
constraint resolution, and some limitations of our implementation.



Instrumenting Unannotated Classes Wrapped objects v : τ are
implemented as instances of a class Proxy that has three fields: the
object that is being wrapped, its type, and the owner of the Proxy,
which is the instance that was active when the Proxy was created.
When a method is invoked on a Proxy, the object’s method missing
method will be called; in Ruby, if such a method is defined, it
receives calls to any undefined methods. Here method missing does
a little work and redirects the call to the wrapped object.

To implement the wrapping (with Proxy) and constraint gener-
ation operations, we use Ruby introspection to patch the unanno-
tated class. In particular, we rename the current methods of each
unannotated class and then add method missing to perform work
before and after delegating to the now-renamed method. We need
to patch classes to bootstrap our algorithm, as the program code
we’re tracking creates ordinary Ruby objects whose method invo-
cations we need to intercept.

On entry to and exit from a patched method, we perform all
of the constraint generation and wrapping, according to Figure 1.
Note that we perform both the caller and the callee’s actions in the
callee’s method missing. This is convenient, because it allows us
rely on Ruby’s built-in dynamic dispatch to find the right callee
method, whereas if we did work in the caller, we would need
to reimplement Ruby’s dynamic dispatch algorithm. Moreover, it
means we can naturally handle dispatches via send, which performs
reflective method invocation.

Since we are working in the callee, we need to do a little ex-
tra work to access the caller object. Inside of each patched class,
we add an extra field dispatcher that points to the Proxy object that
most recently dispatched a call to this object; we set the field when-
ever a Proxy is used to invoke a wrapped-object method. Also recall
that each Proxy has an owner field, which was set to self at the time
the proxy was created. Since we wrap arguments and fields when-
ever we enter a method, this means all Proxy objects accessible
from the current method are always owned by self . Thus, on entry
to a callee, we can find the caller object by immediately getting its
dispatching Proxy, and then finding the owner of that Proxy.

Finally, notice that the above discussion suggests we sometimes
need to access the fields of an object from a different object. This
is disallowed when trying to read and write fields normally, but
there is an escape hatch: we can access field @f of o from anywhere
by calling o. instance eval (”@f”). In our formalism, we assumed
fields were only accessible from within the enclosing object; thus,
we may be unsound for Ruby code that uses instance eval to break
the normal access rules for fields (as we do!).

Instrumenting Annotated Classes As with unannotated classes,
we patch annotated classes to intercept calls to them, and we per-
form constraint generation and wrapping for the caller side only, as
in Figure 1. We also fully unwrap any arguments to the patched
method before delegating to the original method. We do this to
support annotations on Ruby’s core library methods, which are ac-
tually implemented as native code and expect regular, rather than
Proxy-wrapped, objects. The actual method annotations for classes
are stored in the class object, and can thus be retrieved from the
patched method by inspecting self . class . For some methods, the
proxy forwards intercepted calls to the original method, unwrap-
ping all the arguments. For example, we forward calls to eql? and
hash so wrapped objects will be treated correctly within collections.

Rubydust includes support for polymorphic class and method
types. If a class has a polymorphic type signature, e.g., A<t>, we
instantiate its type parameters with fresh type variables whenever
an instance is created. We store the instantiated parameters in the
instance, so that we can substitute them in when we look up a
method signature. For methods that are polymorphic, we instantiate
their type parameters with fresh type variables at the call.

Lastly, we also support intersection types for methods, which
are common in the Ruby core library [12]. If we invoke o.m(x),
and o.m has signature (A→ B) ∩ (C → D), we use the run-time
type of x to determine which branch of the intersection applies.
(Recall we trust type annotations, so if the branches overlap, then
either branch is valid if both apply.)

Constraint solving and type reconstruction We train a program
by running it under a test suite and generating subtyping con-
straints, which are stored in globals at run time. At the end, we
check the consistency of the subtyping constraints and solve them
to reconstruct types for unannotated methods. The type language
for reconstruction is simple, as outlined in Section 3; we do not
try to reconstruct polymorphic or intersection types for methods.
Consequently, the algorithms we use are fairly standard.

We begin by computing the transitive closure of the subtyping
constraints to put them in a solved form. Then, we can essentially
read off the solution for each type variable. First, we set method
return type variables to be the union of their (immediate) lower
bounds. Then, we set method argument type variables to be the
intersection of their (immediate) upper bounds. These steps corre-
spond to finding the least type for each method. Then we set the re-
maining type variables to be either the union of their lower-bounds
or intersection of their upper-bounds, depending on which is avail-
able. Finally, we check that our solved constraints, in which type
variables are replaced by their solutions, are consistent.

Limitations There are several limitations of our current imple-
mentation, beyond what has been mentioned so far. First, for prac-
ticality, we allow calls to methods whose classes are neither marked
with infer types () nor provided with annotations; we do nothing
special to support this case, and it is up to the programmer to en-
sure the resulting program behavior will be reasonable. Second, we
do not wrap false and nil , because those two values are treated as
false by conditionals, whereas wrapped versions of them would be
true. Thus we may miss some typing constraints. However, this is
unlikely to be a problem, because the methods of false and nil are
rarely invoked. For consistency, we also do not wrap true. Third,
Rubydust has no way to intercept the creation of Array and Hash
literals, and thus initially Rubydust treats such a literal as having
elements of type >. The first time a method is invoked on an Array
or Hash literal, Rubydust iterates through the container elements
to infer a more precise type. Thus if an Array or Hash literal is re-
turned before one of its methods is invoked, Rubydust will use the
less precise > for the element type for the constraint on the return
variable. (This limitation is an oversight we will address soon.)

Fourth, for soundness, we would need to treat global variables
similarly to instance and class fields, we but do not current im-
plement this. Fifth, Ruby includes looping constructs, and hence
there are potentially an infinite number of paths through a method
body with a loop. However, as the foo example at the end of Sec-
tion 3 illustrates, if types of the loop-carried state are invariant, the
number of loop iterations is immaterial as long as all internal paths
are covered. We manually inspected the code in our benchmarks
(Section 5) and found that types are in fact invariant across loops.
Note that looping constructs in Ruby actually take a code block—
essentially a first-class method—as the loop body. If we could as-
sign type variables to all the inputs and outputs of such blocks, we
could eliminate the potential unsoundness at loops. However, Ruby
does not currently provide any mechanism to intercept code block
creation or to patch the behavior of a code block.

Sixth, we currently do not support annotations on some low-
level classes, such as IO, Thread, Exception, Proc, and Class. Also,
if methods are defined during the execution of a test case, Rubydust
will not currently instrument them. We expect to add handling of
these cases in the future.



LOC TC E(#) LCov MCov P(#) PCov OT(s) RT(s) Solving(s)
ministat-1.0.0 96 10 7 75% 11 / 15 19 84% 0.00 11.19 57.11

finitefield-0.1.0 103 9 6 98% 12 / 12 14 93% 0.00 1.74 1.28
Ascii85-1.0.0 105 7 3 95% 2 / 2 67 28% 0.01 6.81 0.17

a-star 134 1 5 100% 20 / 24 41 62% 0.04 114.81 37.46
hebruby-2.0.2 178 19 8 81% 20 / 26 36 91% 0.01 19.97 19.08

style-0.0.2 237 12 1 75% 17 / 32 88 28% 0.01 8.46 0.28
Rubyk 258 1 4 69% 15 / 20 37 68% 0.00 7.33 0.56

StreetAddress-1.0.1 772 1 10 79% 33 / 44 23 88% 0.02 4.45 24.58
TC - test cases E - manual edits LCov - line coverage MCov - method coverage / total # of methods

P - paths PCov - path coverage OT - original running time RT - Rubydust running time

Figure 10. Results

Finally, in Rubydust, infer types () is a class-level annotation—
either all methods in a class have inferred types, or none do. How-
ever, it is fairly common for Ruby programs to patch existing
classes or inherit from annotated classes. In these cases, we would
like to infer method signatures for just the newly added methods;
we plan to add support for doing so in the future.

5. Experiments
We ran Rubydust on eight small programs obtained from Ruby-
Forge and Ruby Quiz [23]. We ran on a Mac Pro with two 2.4Ghz
quad core processors with 8GB of memory running Mac OS X ver-
sion 10.6.5. Figure 10 tabulates our results. The column headers
are defined at the bottom of the figure. The first group of columns
shows the program size in terms of lines of code (via SLOCcount
[30]), the number of test cases distributed with the benchmark, and
the number of manual edits made, which includes rewriting Array
and Hash literals, and inserting calls to infer types . For the mini-
stat benchmark, two of the edits ensure the test setup code is called
only once across all tests; without this change, the constraint solver
does not complete in a reasonable amount of time. For all bench-
marks, when calculating the lines of code, number of methods, and
manual edits made we excluded testing code. For style, we also
did not count about 2,700 lines of the source file that occur after
Ruby’s END tag, which tells the interpreter to ignore anything
below that line. In this case, those lines contain static data that the
program loads at run-time by reading its own source file.

The next group of columns gives the line coverage from the test
cases (computed by rcov [21]), the method coverage, the sum of the
number paths in covered methods, and the percentage of these paths
covered by the test cases. As rcov does not compute path coverage,
we determined the last two metrics by hand—for each method, we
inserted print statements on every branch of the program to record
which branches were taken at run time. We then manually analyzed
this information to determine path coverage. When considering
paths, we tried to disregard infeasible paths (e.g., conditionals with
overlapping guards) and paths that only flagged errors. The path
coverage is generally high, with the exception of Ascii85 and style,
which have long methods with sequences of conditionals that create
an exponential number of paths.

We manually inspected the source code of the benchmark pro-
grams, and we determined that for the methods that were covered,
the type annotations inferred by Rubydust are correct. It is interest-
ing that the annotations are correct even for the two programs with
low path coverage; this suggests that for these programs, reason-
able line coverage is sufficient to infer sound types. Rubydust also
found one type error, which we discuss below.

Performance The last group of columns in Figure 10 reports
Rubydust’s running time, which we split into the time to instru-
ment and run the instrumented program, and the time to solve the
generated constraints. As we can see, the overhead of running un-
der Rubydust, even excluding solving time, is quite high compared

to running the original, uninstrumented program. Part of the reason
is that we have not optimized our implementation, and our heavy
use of wrappers likely impedes fast paths in the Ruby interpreter.
For example, values of primitive types like numbers are not really
implemented as objects, but we wrap them with objects. Neverthe-
less, we believe that some overhead is acceptable because inference
need not be performed every time the program is run.

The solving time is high, but that is likely because our solver is
written in Ruby, which is known to be slow (this is being addressed
in newer versions of Ruby). We expect this solving time would
decrease dramatically if we exported the constraints to a solver
written in a different language.

Inferred Types We now describe the benchmark programs and
show some example inferred types, as output by Rubydust.

Ministat generates simple statistical information on numerical
data sets. As an example inferred type, consider the median method,
which computes a median from a list of numbers:

1 median: ([ sort !: () → Array<Numeric>;
2 size : () → Numeric;
3 ’ [] ’ : (Numeric) → Numeric])
4 → Numeric

The method takes an object that has sort !, size , and [] methods,
and returns a Numeric. Thus, one possible argument would be an
Array of Numeric. However, this method could be used with other
arguments that have those three methods—indeed, because Ruby
is dynamically typed, programmers are rarely required to pass in
objects of exactly a particular type, as long as the passed-in objects
have the right methods (this is referred to as “duck typing” in the
Ruby community).

Finitefield, another mathematical library, provides basic opera-
tions on elements in a finite field. As an example type, consider the
inverse method, which inverts a matrix:

1 inverse : ([ ’>’: (Numeric) → Boolean;
2 ’�’: (Numeric) → Numeric;
3 ’�’: (Numeric) → Numeric;
4 ’&’: (Numeric) → Numeric;
5 ’ˆ’ : (Numeric) → Numeric]) → Numeric ”)

As above, we can see exactly which methods are required of the
argument; one concrete class that has all these methods is Numeric.

Ascii85 encodes and decodes data following Adobe’s binary-to-
text Ascii85 format. There are only two methods in this program,
both of which are covered by the seven test cases. Rubydust issues
an error during the constraint solving, complaining that Boolean is
not a subtype of [ to i : () → Numeric]. The offending parts of the
code are shown below.

1 module Ascii85
2 def self .encode(str , wrap lines =80)
3 ... if (! wrap lines ) then ... return end



4 ... wrap lines . to i
5 end ...
6 end

The author of the library uses wrap lines as an optional argument,
with a default value of 80. In one test case, the author passes in
false , hence wrap lines may be a Boolean. But as Boolean does
not have a to i method, invoking wrap lines . to i is a type error.
For example, passing true as the second argument will cause the
program to crash. It is unclear whether the author intends to allow
true as a second argument, but clearly wrap lines can potentially
be an arbitrary non-integer, since its to i method is invoked (which
would not be necessary for an integer).

A-star is a solution for the A* search problem. It includes a class
Tile to represent a position on a two-dimensional Map. Rubydust
infers that two of the methods to Tile have types:

1 y: () → Numeric
2 x: () → Numeric

The Map class uses Tile , which we can see from the inferred types
for two of Map’s methods:

1 adjacent : ([y: () → Numeric; x: () → Numeric]) → Array<Tile>
2 find route : () →
3 [push: ([y: () → Numeric; x: () → Numeric]) → Array<Tile>;
4 include ?: ([y: () → Numeric; x: () → Numeric]) → Boolean;
5 pop: () → [y: () → Numeric; x : () → Numeric];
6 to ary : () → Array<Tile>]

The adjacent method computes a set of adjacent locations (rep-
resented as an Array<Tile>) given an input Tile . The find route
method returns an array of Tile , which is an instance of the slightly
more precise structural type Rubydust infers. (Here the structural
type is actually the type of a field returned by find route .)

Hebruby is a program that converts Hebrew dates to Julian dates
and vice versa. One method type we inferred is

1 leap ?: ([ ’∗’ : (Numeric) → Numeric]) → Boolean

This method determines whether the year is a leap year. This
signature is interesting because the argument only needs a single
method, ∗, which returns a Numeric. This is the only requirement
because subsequent operations are on the return value of ∗, rather
than on the original method argument.

Rubyk is a Rubik’s Cube solver; as this program did not come
with a test suite, we constructed a test case ourselves (one of the
four edits we made to the program). Some of the inferred types are
shown below.

1 visualize :() → Array<Array<String>>
2 initialize :() → Array<Array<String>>

We can see that the visualize and initialize methods return a
representation of the cube faces as an Array<Array<String>>.

Style is a “surface-level analysis tool” for English. The program
has several methods that determine characteristics of English text.
Some sample inferred types are:

1 pronoun? :([ downcase : () → String]) → Boolean
2 passive ? :([ each : () → Array<String>]) → Boolean
3 preposition ? :([ downcase : () → String]) → Boolean
4 abbreviation ? :([ downcase : () → String]) → Boolean
5 nominalization ? :([ downcase : () → String]) → Boolean
6 interrogative pronoun ? :([ downcase : () → String]) → Boolean
7 normalize :([ downcase : () → String]) → String

Here, most of the methods first downcase their argument, and then
use the resulting String . The passive method takes an array of
Strings , representing a sentence, and iterates through the array to
determine whether the sentence is in the passive voice.

Finally, StreetAddress is a tool that normalizes U.S. street ad-
dress into different subcomponents. As an example, the parse class
method takes a String and returns an instance of the class, which is
depicted in the following output:

1 class << StreetAddress::US; # define a class method
2 parse : ( String ) → StreetAddress::US::Address
3 end

Notes We encountered all of Rubydust’s limitations in these
benchmark programs—there were tests that called out to unan-
notated and uninferred classes; that use false and nil ; that use
global variables; and that use unannotated low-level classes like
IO. However, as already mentioned, the types Rubydust inferred
were correct, and so these limitations did not affect the results.

We also encountered the use of reflective method invocation via
send described in Section 2.5. We did not encounter uses of other
dynamic features for classes whose types are inferred (though they
do occur internally in the standard library).

6. Related work
There has been significant interest in the research community in
bringing static type systems to dynamic languages. Much recent
research has developed ways to mix typed and untyped code, e.g.,
via quasi-static typing [26], occurrence typing [29], gradual typing
[25], and hybrid typing [13]. In these systems, types are supplied
by the user. In contrast, our work focuses on type inference, which
is complementary: we could potentially use our dynamic type in-
ference algorithm to infer type annotations for future checking.

Several researchers have explored type inference for object-
oriented dynamic languages, including Ruby [2, 3, 10, 12, 16, 18],
Python [4, 7, 24], and JavaScript [5, 27], among others. As dis-
cussed in the introduction, these languages are complex and have
subtle semantics typically only defined by the language implemen-
tation. This makes it a major challenge to implement and maintain
a static type inference system for these languages. We experienced
this firsthand in our development of DRuby, a static type inference
system for Ruby [3, 10, 12].

There has also been work on type inference for Scheme [31],
a dynamic language with a very compact syntax and semantics;
however, these inference systems do not support objects.

Dynamic type inference has been explored previously in several
contexts. Rapicault et al. describe a dynamic type inference algo-
rithm for Smalltalk that takes advantage of introspection features of
that language [20]. However, their algorithm is not very clearly ex-
plained, and seems to infer types for variables based on what types
are stored in that variable. In contrast, we infer more general types
based on usage constraints. For example, back in Figure 2, we dis-
covered argument x must have a qux method, whereas we believe
the approach of Rapicault et al would instead infer x has type B,
which is correct, but less general.

Guo et al. dynamically infer abstract types in x86 binaries and
Java bytecode [14]. Artzi et al. propose a combined static and dy-
namic mutability inference algorithm [6]. In both of these systems,
the inferred types have no structure—in the former system, abstract
types are essentially tags that group together values that are related
by the program, and in the latter system, parameters and fields are
either mutable or not. In contrast, our goal is to infer more standard
structural or nominal types.

In addition to inferring types, dynamic analysis has been pro-
posed to discover many other program properties. To cite three ex-



amples, Daikon discovers likely program invariants from dynamic
runs [9]; DySy uses symbolic execution to infer Daikon-like in-
variants [8]; and Perracotta discovers temporal properties of pro-
grams [32]. In these systems, there is no notion of sufficient cov-
erage to guarantee sound results. In contrast, we showed we can
soundly infer types by covering all paths through each method.

There are several dynamic inference systems that, while they
have no theorems about sufficient coverage, do use a subsequent
checking phase to test whether the inferred information is sound.
Rose et al. [22] and Agarwal and Stoller [1] dynamically infer types
that protect against races. After inference the program is annotated
and passed to a type checker to verify that the types are sound.
Similarly, Nimmer and Ernst use Daikon to infer invariants that are
then checked by ESC/Java [19]. We could follow a similar approach
to these systems and apply DRuby to our inferred types (when
coverage is known to be incomplete); we leave this as future work.

Finally, our soundness theorem resembles soundness for Mix, a
static analysis system that mixes type checking and symbolic exe-
cution [15]. In Mix, blocks are introduced to designate which code
should be analyzed with symbolic execution, and which should
be analyzed with type checking. At a high-level, we could model
our dynamic inference algorithm in Mix by analyzing method bod-
ies with symbolic execution, and method calls and field reads and
writes with type checking. However, there are several important
differences: We use concrete test runs, where Mix uses symbolic
execution; we operate on an object-oriented language, where Mix
applies to a conventional imperative language; and we can model
the heap more precisely than Mix, because in our formal language,
fields are only accessible from within their containing objects.

7. Conclusion
In this paper we presented a new technique, constraint-based dy-
namic type inference, that infers types based on dynamic execu-
tions of the program. We have proved that this technique infers
sound types as long as all possible paths through each method are
traversed during inference. We have developed Rubydust, an im-
plementation of our technique for Ruby, and have applied it to a
number of small Ruby programs to find a real error and to accu-
rately infer types in other cases. We expect that further engineering
of our tool will improve its performance. We also leave the infer-
ence of more advanced types, including polymorphic and intersec-
tion types, to future work.
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