EON: Modeling and Analyzing
Dynamic Access Control Systems with Logic Programs

Avik Chaudhuri

University of California
Santa Cruz, USA
avi k@s. ucsc. edu

Prasad N

prasadn@i cr

G. Ramalingam
Microsoft Research
Bangalore, India
grama@n crosoft.com

ABSTRACT

We present EON, a logic-programming language and tool tuat ¢
be used to model and analyze dynamic access control systams.
language extends Datalog with some carefully designedcats
that allow the introduction and transformation of new riefas. For
example, these constructs can model the creation of presessl
objects, and the modification of their security labels attime.
The information-flow properties of such systems can be aedly
by asking queries in this language. We show that query etiatua
in EON can be reduced to decidable query satisfiability inag-fr
ment of Datalog, and further, under some restrictions, ficieft
query evaluation in Datalog. We implement these reductioesir
tool, and demonstrate its scope through several case studipar-
ticular, we study in detail the dynamic access control modéthe
Windows Vista and Asbestos operating systems. We also atitom
ically prove the security of a webserver running on Asbestos

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and ProtectionAccess con-
trols, Information flow controls, VerificationF.3.1 |Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs-Specification techniques, Mechanical veri-
ficationn F.4.1 Mathematical Logic and Formal Languages]:
Mathematic Logic—ogic and constraint programming

General Terms
Security, Verification, Languages, Algorithms

Keywords

dynamic access control, logic programming, automatidication

1. INTRODUCTION

Most modern operating systems implement access control mod
els that try to strike a reasonable balance between seamdtprac-
tice. Unfortunately, finding such a balance can be quitecdtsi

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

CCS’08,0ctober 27-31, 2008, Alexandria, Virginia, USA.

Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

Microsoft Research
Bangalore, India

aldurg Sriram K. Rajamani
Microsoft Research
Bangalore, India

osoft.com sriram@n crosoft.com

Lakshmisubrahmanyam Velaga
Indian Institute of Management

Bangalore, India
| akshm s07@ i nb.ernet.in

security concerns often lead to inflexible restrictionsiohido not
always seem practical. To tackle this conflict, these systipi-
cally admit various ways of controlling access at runtime.

This paper is about verifying such access control systents au
matically. We focus on systems in which processes and ahgzet
labeled with security levels, and processes are prevenbed dic-
cessing objects based on their labels. Such access coydtehss
represent the state of the art in both the commercial worttithe
academic world, exemplified by Windows Vista and Asbestd$ [1
They are typically weaker than the pioneering models of &ipis
proach, due to Bell-LaPadula [3] and Biba [4], which haversdr
secrecy and integrity properties, but turn out to be tocictste in
practice [15]. In particular, some facility to control ldbet run-
time often seems to be necessary in these systems.

We illustrate this point with an example. Consider a model in
which objects downloaded from the Internet are labéled;, and
Hi gh processes are prevented from executiogvobjects. In this
model, suppose thatk gh process needs to run an executaple
downloaded from the Internet (say, to install a new apghcét
and the integrity off can be established (say, by verifying a dig-
ital certificate). Then, théli gh process should be able to ryh
by upgrading it toHi gh. On the other hand, if the integrity ¢f
cannot be established, thie gh process should still be able to run
f by downgrading itself td_ow (following the principle of least
privilege [14]).

Windows Vista implements an access control model alongethes
lines. In particular, Windows Vista’'s access control maaiehs to
prevent privilege escalation, data tampering, and codpéaimg by
viruses by enforcing a system-wide integrity policy basedbbels.
However, to admit the above scenarios, the model allowddabe
be lowered or raised at runtime. This requires explicit atigation
by the user. While an informed user may be able to decide wheth
such authorization is safe, there is a real danger that arfarnied
user may inadvertently authorize unsafe information fld#. in-
stance, &i gh process can run bow executablef, as above, by
downgrading itself td.ow. As such, runningf cannot do much
damage—in particularf cannot writeHi gh objects, sincd.ow
processes are prevented from writidggh objects in the model.
However, anotheH gh process may upgradgéto Hi gh and run
it, without verifying its integrity. Unfortunatelyf may be a virus
that can then writéli gh objects.

The Asbestos operating system implements a related acmess ¢
trol model. In this model, process labels are dynamicaliytea
on communication with other processes, and such taintsrape p
agated to isolate processes based on the secrets they Gaey.

model aims to prevent leaking of those secrets. At the same ti
the model allows a customized form of declassification, apdsby
admits some information-flow vulnerabilities.

Although Windows Vista and Asbestos differ in their details
both systems implement dynamic access control modelsdlmase
labels, that try to balance concerns of security and practiche
information-flow properties of these systems have not beén f
studied. In this paper, we develop a technique to model aalyza
such systems, and to automatically find information-flowks in
those systems, or conversely prove their security.

At the heart of our technique is a new logic-programming lan-
guage called EON, that extends Datalog with dynamic opeyato
for creating and modifying simple objects. We show how we can
code information-flow violations as queries in this langeiagnd
use query evaluation to find possible vulnerabilities. E@S $ome
carefully designed restrictions—new names can be intredioaly
through unary relations, only unary relations can be tiemnséd,
and some monotonicity conditions must be satisfied. Thedgae
tions are obeyed naturally by our specifications of Windowstd/
and Asbestos. We show that with these restrictions, queaiuev
ation for EON is decidable. Our crucial insight is that witiese
restrictions, it is possible to reduce query evaluation @NEto
query satisfiability in a fragment of Datalog. Then, we adapt
algorithm due to Halevet al.[12] (with minor corrections), to de-
cide this satisfiability problem. Further, if the EON prograoes
not have negations over derived relations, we show a sinmpter
duction to query evaluation in Datalog, which allows us ttveo
the program and generate attacks or proofs very efficiently.

We implement these reductions in our tool, and evaluate in de
tail the security of Windows Vista and Asbestos with EON. Our
experiments highlight EON’s programmability. For instanave
study the impact of various design choices, by making srill,
cal changes in specific models and observing their influendbe
attacks or proofs generated. We also model specific usage dis
plines, and prove that some attacks are not possible if ttissée
plines are enforced (either statically or at runtime). Ims&ON
seems to be an effective tool to specify, understand, anfy \zer-
cess control models. We expect that this approach can betosed
study other dynamic systems just as well.

The rest of the paper is organized as follows. The first ha@t{S
tions 2—4) is devoted to theory. The next half is devoted iap
cations. In Section 2, we describe the syntax and semarftibe o
EON language. In Section 3, we show how query evaluation in
EON can be reduced to query satisfiability in a fragment ofabat
log. (A satisfiability algorithm for this fragment is review in [7].)

In Section 4, we show how query evaluation in a fragment of EON
can be reduced to efficient query evaluation in Datalog. lo-Se
tion 5, we show applications of our technique through séweta
periments with the EON tool. In Section 6, we discuss relatedk.
Finally, in Section 7, we discuss our contributions and taohe.

2. THE EON LANGUAGE

itive literal S is of the formR(t1,...,tm»), whereR is a relation,
m > 0, and each; is a variable or a constant. #egative literalis
of the form!S. A clauseis of the form

S — El,...,[ln.

where each; is a positive or negative literal. We refer to the left
hand side of — as thehead and the right hand side of- as the
body A Datalog program is a collection of clauses.

A clause without a body is fact A clause issafeif every vari-
able in the clause appears in some positive literal in the.béd
program is safe if all clauses in the program are safe.

A relationdependsn another if there is a clause in the program
that has the former relation in the head and the latter indldg the
dependency isegativeif the literal that contains the latter relation
is negative. Abase relatiordoes not depend on any other relation.
A base factis a fact on a base relation. A programsisatified if
there is no negative dependency in any dependency cyclesbetw
relations in the program.

In a safe stratified program, a claus® “— Li,..., £,." with
variablesr is interpreted as the first-order logic formwa&. £, A
---ANL, = S. Aprogram is interpreted as the conjunction of the
interpretations of its clauses.

A databaseis a set of base facts. Given a progr&and a
databas®B, letZ(FF, DB) be the set of facts that are implied by the
interpretation off UDB. This set can be computed efficiently [20].

21 Syntax

In EON, we extend Datalog with two dynamic operatongw
andnext. Before we formally describe their syntax and semantics,
we present a simple example to illustrate the language. eXam-
ple describes a dynamic system where new administratonssand
can be added to the system over time, any usesn be promoted
to an administrator by another administragoand any administra-
tor can control the system. Thew operator models the creation
of fresh constants, and thext operator models the transformation
of relations over those constants:

new Admi n.

new User.

next Adm n(z) :— User (z), Admi n(y).
Control (z) :— Admi n(z).

Can a user that is not an administrator control the system?
? User (z), !Adm n(z), Control (z).

This query evaluates to false according to the operatiosralas-
tics, described in Sections 2.2 and 2.3. Intuitively, thegpam
does not reach a state whésger (z) andCont r ol (x) are both
true butAdmi n(z) is not. In contrast, the following query asks if a
user that is not an administrator caventuallycontrol the system:

? User (z), !Adm n(z) § Control (z).

Heres denotes sequencing of queries. This query evaluates to true
intuitively, the program can reach a state whigser (x) is true but
Admi n(z) is not, then reach a state wh&ent r ol (z) is true. (In

In this section, we introduce the EON language, and describe the |atter state, we expect thadmi n(z) is also true.)

its syntax and semantics. We begin by providing a brief ie\oé
Datalog. We then extend Datalog with some carefully desighe

Formally, an EON program is a set of EON clauses. £ & a
set of unary base relations, calldgnamic relationsand 3 range

namic operators(Section 2.1), and present the semantics of these gver subsets of. Intuitively, these relations can be introduced

operators (Section 2.2). Finally, we define the syntax anthséics
of queries in the language (Section 2.3).

Datalog is a convenient logic-programming language toesgr
relational access control models [18, 16, 10, 2]. In Dataéqaps-

Yn [7], we show that even a slight generalization of theseatpes leads
to undecidability of query evaluation in the language.

or transformed by the dynamic operators. The grammar of EON
clauses is shown below.

= EON clause

S :—L1,..., L. clause

new B :— R. create object
next B(z),!B'(z) — R(x). modify object

For our convenience, we require that the body aka& or next
clause contains exactly one positive literal. In examplessome-
times omit that literal, or write several literals insteaihce the
required literal can be equivalently defined by a Datalogs#a

The Datalog fragment of an EON progrdhis written asP. We
say thatP is safe if® is safe, and is stratified ifP is stratified. In
the sequel, we consider only safe stratified programs.

2.2 Semantics

We now give an operational semantics for EON programs.
Specifically, we describe the reduction of an EON progitaby a

binary relation—— over databases; thus, an EON program defines
a (possibly nondeterministic) transition system over basas.

We first describe the semantics of thew operator. The clause
“new B :— R.”is enabledif R evaluates to true in the current
database. Execution of the clause creates a fresh constant
addsB(c) to the database, for evefy in .

R € I(P,DB)
DB" = {B(c) | B € B}

DB £ DBUDBT

newB (— R. €P
cis a fresh constant

Next, we describe the semantics of thext operator. The clause
“next B(z), !B’ (x) :— R(x).”is enabledif there is some constant
csuch thatR(c) evaluates to true in the current database. Execution
of the clause modifies the interpretation of some relatiars for
c. Specifically, it adds3(c) to the database for every in 5 and
removesB(c) from the database for ever® in B’. Note that if
there are several constamtsuch thatR(c) evaluates to true in the
current database, then execution of the clause non-detistioally
choose®nesuchc for the update.

next B(z),!B'(z) :— R(z). € P R(c) € Z(P,DB)
DBT = {B(c)|BeB} DB ={B(c)|BecB}

DB —— DBUDB"\DB~

. P
The reflexive transitive closure ef— is written as——*.

2.3 Queries

Queries in EON can include basic (Datalog-style) queriesy t
can further use the operatpto sequence such queries.

Q= EON query
S basic query
S35 Q sequencing

As usual, for our convenience we require that a basic query co
tains exactly one positive literal; elsewhere, we oftertevseveral
literals instead. Let range over substitutions of variables by con-
stants. The judgmefB, DB’, o » Q means that:

“Starting from a databas@B, the progran eventu-
ally reaches a databa&#B’, satisfying the quenQ
with substitutions™".

We first describe the semantics of basic queries. If theainiti
databasé)B evolves to a databageB’ such thatSc evaluates to
true inDB’, then the program satisfies the basic qugnyith sub-
stitutiono.

DB —* DB So € I(P,DB)
DB,DB’, o Fp S

Next, we describe the semantics of sequencing. If the Initia
databaséDB evolves to a databageB’ such that the basic query
S is satisfied with substitution, and DB’ evolves to a database

DB” such that the querQ is satisfied with substitutios, then the
program satisfies the quesy s Q with substitutions.

DB,DB,ocFz S DB ,DB”,c ks Q
DB,DB”,o ks S § Q

3. QUERY EVALUATION IN EON

We now describe how EON queries can be evaluated. Formally,
the query evaluation problem for EON is:

Given an EON progran® and an EON queng, are
there some databad#B and substitutioro such that
&,DB, o Fp Q7

We show that this problem is decidable under some suitable as
sumptions of monotonicity (see below). The essence of @o-al
rithm is to reduce the EON query evaluation problem to a cei
satisfiability problem over Datalog.

Recall that, given a Datalog prograih and a databas®B,
Z(F,DB) denotes the result of evaluatifigover DB. Given a pos-
itive literal S, we use the notatioBB ¢ S to indicate that there
is some substitutioar such thatZ (F, DB) containsSo. Now, S is
satisfiablein F if there exists a databadB such thalDB +r S.

The following satisfiability problem over Datalog is deditta

THEOREM1 (A DECIDABLE FRAGMENT OF DATALOG [12]).
Satisfiability is decidable for safe stratified Datalog pragns with
unary base relations.

Recall that a database is a set of base facts. Given an EON pro-
gramP, we say that a databasaéachablen P if it can be reached
from the initial databasey by a sequence of transitions defined by
P. Now, the only base facts in any reachable database are over
relations in€. In the sequel, we focus on such databases. In par-
ticular, we view a databadeB as a pair(U, I), whereU is a set of
constants and : £ — 2Y.

Given a databaseB = (U, I') and a subset of constamxs C U,
we define the restriction @B to X, denoted)B| x, to be(X, I'x),
wherelx (B) = I(B)NX. We say thaDB; < DB if there exists
an X such thaDB; = DB|x.

Now, a positive literalS is monotonicin P if for all DB; and
DBQ, if DB, l—@ S and]D)IB%l < DBQ, then]DIB%z }_DA}’ S.

3.1 Basic queries, unguarded transitions

Suppose that we are given a basic quéryo evaluate on an
EON programP. We assume tha$ is monotonic inP. Further,
suppose that all dynamic clause$imareunguarded A new clause
is unguarded if its body is a face.Q, “Tr ue.") in the program. A
next clause is unguarded if the relation in its body e relation
The concept of a pure relation is defined inductively as fodloa
(unary) relationR is pure if eitherR € &, or every clause in the
program withR in its head is of the formR(z) :— L1,..., L.,
where eaclL; is eitherR; (z) or | R; () for some pureR;.

Note that an unguardatew clause is always enabled. Whether
an unguardedext clause is enabled for a constandepends only
on the value of the relations i for c.

Now, we evaluateS on P by translatingP to a Datalog program
||, and deciding if there exists a databdze such thaDB I,

S andDB is reachable if?. The latter problem is reduced to a basic
satisfiability problem of the fornB 5, [S], by encoding the
reachability condition intgP | and defining S | to beS augmented
with the reachability condition.

Given a constant that belongs to a databaB® = (U, I), we
define itsatomic stateto be the se{B € £ | ¢ € I(B)}. We say
that an atomic stat& C £ is reachable if there exists a reachable
databas®B that contains a constant whose atomic stat.is

LEMMA 1. Given an EON progran® in which all dynamic
clauses are unguarded, a databd3B is reachable iff all constants
in the database have a reachable atomic state.

3.1.1 From EON to Datalog

THEOREM 2. Given an EON progran® in which all dynamic
clauses are unguarded, a monotonic basic queng true inP iff
the query| S| is satisfiable in the Datalog prograf®|.

3.1.2 An optimization

We now show how reachable atomic states can be encoded in The use of (double) negation to define the transformed query

Datalog. Specifically, given a EON progrd we define a set of
Datalog claused (P) for a unary relatiorReachabl e, such that
every constant irReachabl e has a reachable atomic state, and
every constant that has a reachable atomic stateReathabl e.
Some of these clauses are not safe. Later, we present a tlanse
formation that uniformly transforms all clauses to ensafety.

We begin by defining some auxiliary relations. L&t =
{Bi1,...,By}. ForeachB; (i € {1, ..., k}), we include the fol-
lowing Datalog clauses, that check whether a pair of cotstzave
the same value aB;:

SanmeB;(z,y) :— Bi(x), Bi(y).
SaneB;(z,y) :— !Bi(x), !Bi(y).

Now, consider an unguarde@w clause of the form:
new B;,,...,Bi,,.

Let{Bj,,...,Bj,} = E\{Bi,,- .., Bi,, }- We replace this clause
with the following reachability clause in Datalog:

Reachabl e(z) B;, (z),...,B,, (x),
!le (CC), ey !Bjn (m)
This clause may be read as follows: a satisfying databasthéor
transformed Datalog program may contain a constanthose
atomic state i§ B;, , ... ,Bs,, }. Intuitively, new constants in EON
are represented by existentially quantified variables iaDg.
Now, consider an unguarde@xt clause of the form:

next B;, (z),...,Bi,, (x),
!Bj](m),...,!Bjn(m) — R(x)

Let {Bk],...,BkT} = g\{Bi17---7BimyBj17---7Bjn}- Ris
pure; so we replace this clause with the following reaclitgbil
clause in Datalog:

Reachabl e(z) :—
Reachabl e(y), R(y),
B;, (z),...,B,, (x)
!le (‘T)7 MR !Bjn (‘T)7
SaneBy, (z,y),...,Same By, (z,y).

This clause may be read as follows: a satisfying databasthéor
transformed Datalog program may contain a constanthose
atomic state isB U {B,,...,Bi,,} \ {Bj;,.-.,Bj,}, if that
database also contains a constatitat satisfief?(y) and has some
atomic staté3. Intuitively, the Datalog variables andy represent
the same EON constant, in possibly different “states”, diwehich
can be reached from the other.

Finally, the following clause checks whether there is ang-co
stant in a satisfying database for the transformed Datalogram
whose atomic state is unreachable:

BadState :— !Reachabl e(z).

The set of clause® (P) contains all of the clauses above. Now,
letU € & be a fresh relation, which models the range of substitu-
tions. For any clausé € 7 (P), we obtain a transformed clause
|C | by augmenting the body ¢fwith an additional conditiot(x)
for every variabler in C. The claus€(| is guaranteed to be safe.

Now, let [P| = {|C] | C € PUT(P)}. Let|S| be the query
S,!Badst at e augmented with an additional conditidifx) for
every variabler in S. We then have the following result.

|S| can lead to potential inefficiencies in the satisfiabilitgaal
rithm (described in [7]). We can eliminate the use of thisatem
by transforming every Datalog claugkin the given progran®
as follows: we augment the body of the clause with the cooliti
Reachabl e(z) for every variabler in the body. (It is possible to
further optimize this transformation, by adding the coiaditonly
for variables that do not occur in the head of the clause, r&$ s
we add a similar condition for all variables occurringSr)

3.2 Basic queries, monotonic transitions

Guarded dynamic clauses do not significantly complicate the
transformation. The reachability clause generated for ardpd
dynamic clause now includes the guareé (the literal in the body
of the dynamic clause) in the body of the reachability clavdee
correctness proofs require the guards to be monotonic.ifRadly,

a generalization of Lemma 1 holds true even for programs with
guarded dynamic clauses, as long as the guards are monotonic

Recall that in the case of unguarded dynamic clauses, the
Reachabl e relation depends only on the relationsfinthe auxil-
iary relationsSane B;, and itself. However, the encoding of guards
in reachability clauses makes tReachabl e relation dependent
on other relations mentioned in those guards. If we now dofhe
timization of Section 3.1.2, which adds reachability cdiotis to
the clauses of the given program, we may introduce cycliedep
dences betweeReachabl e and other relations. Thus, we must
verify that the transformed program is stratified beforeckimg
satisfiability on the transformed program. Interestingliurns out
thatthe transformed program is stratified if and only if the gusard
are monotonic This result yields a simple method to test for the
monotonicity of guards.

3.3 Querieswith sequencing

Finally, we show how we can handle queries with sequencing.
We assume that every basic query in such queries is monotonic
Consider the quens ¢ Q. We first assume that and Q share
exactly one variable:.. LetDone € & be a fresh relation, an@
be of the formS; § ... § S,, for somen > 1. We augment the
original EON program with the following dynamic clause:

next Done(z) :— S.

We then evaluate the queBone(x),S1 § ...
mented EON program.

More generally, we add @ext clause with a fresBone relation
for each variable shared &y and Q, and augmen® accordingly
to account for those variables. On the other hand,ahdQ do not
share any variable, we addhaw clause with a fresBone relation,
and augmen® with Done(z), wherez is a fresh variable.

s Sn on the aug-

4. EFFICIENT QUERY EVALUATION
IN A FRAGMENT OF EON

Under further assumptions, we now show that query evaluatio
in EON can be reduced to simple query evaluation in Dataltis T
result is independent of what we present above. The maimadva
tage of this transformation is efficiency—while checkingisfaa-
bility of Datalog programs may take exponential time in therst
case, evaluating Datalog programs takes only polynoniag ti

The requirements for this transformation are as followsergh
should be no (in)equality constraints over variables. Iripalar,
variables cannot be repeated in the head of a clause. Nexg th
should be no negations on non-base (derived) relatiortspwah
there may be negations on base relations. These conditionsut
to be quite reasonable in practice. In particular, our modélof
Vista and Asbestos in Section 5 satisfy these conditions namst
of our queries on these models satisfy these conditions ks we

We assume that sequencing is compiled away as in our origi-

nal reduction, and consider only basic queries. Furtheasgeme
that no constants appear in the EON program itself. (Thestran
formation can be extended in a straightforward way to allow-c
stants.) The intuition behind the transformation is asofef. Let
E ={B,..
stantc as the vectofvs, . .., vi) wherev; is 1 if B;(c) is true and
0 otherwise. We say that two constantandc’ aresimilar if they

., Br}. We can represent the atomic state of a con-

THEOREM 3. Given an EON prograri® with the above restric-
tions, a quenyQ is true inP iff the query| Q| is true in the Datalog
program |PP|.

Proof details for all our results appear separately in [l are
omitted here due to lack of space.

5. EXPERIMENTSWITH THE EON TOOL

The transformations described in Sections 3 and 4 are imple-
mented in the EON tool [7]. Further, the back end includedémp
mentations of satisfiability and evaluation algorithmsrdvatalog,
and the front end supports some syntax extensions over E@N, s
asembedded scripfg].

We now present a series of examples that illustrate how the EO
tool can be used to model and analyze dynamic access coydrol s
tems. We begin with Windows Vista’s access control modet{Se

have the same atomic state. Now in our case, a Datalog programtion 5.1). We automatically find some integrity vulneraig in

cannot distinguish between similar constants, it is not possible
to define a quen®(z) that is satisfied by and notc’. (More gen-
erally, if ¢; is similar toc; for 1 < i < r, thenR(c1,...,c) is
true iff R(cl, ..., c,.) is true in the program.) Thus we can define a
query|R|(z1,...,z,) whichistrue iff R(x) is true for anyz with
atomic statéz1, ..., zx) that is generated by the EON program.

For every non-base relatioR of arity », we define a new re-
lation |R| of arity rk. Given any Datalog claus€, we re-
place it with a transformed clausg’| as follows. For ev-
ery variable z in the clause, we introducé& new variables
z1,...,Zk. Then, every literal of the fornR(y1, ..., yr), where
R is a non-base relation, is transformed into a corresponiiting
eral |[R](yi1,---,Y1ks---,Yr1,--.,Yrk) DY replacing every oc-
currence of a variablg; by the corresponding vector of variables
yj1,---,Yjk. Further, every literal of the fornB;(z) is trans-
formed into the literalTr ue(z;) and every literal of the form
IB;(z) is transformed intoFal se(z;). (The auxiliary predi-
catesTr ue and Fal se are defined by the fact$rue(1) and
Fal se(0).) Finally, for every variable: in the head of the clause,
we add the conditioRReachabl e(z1, ..., z;) to the body of the
transformed clause. (As an optimization, we may considdinad
this reachability condition only if no non-base relatiomplied to
x in the body of the clause.) For example, the clause

R(x,y)

yields the transformed clause:

= R'(z),!Bi(x), Bz2(y)-

[R](x1, w2, y1,y2) —
| R’ |(z1,2),Fal se(z1), True(y2), Reachabl e(y1,y2).

Now, every clause of the forrméw B :— R." is transformed to

Reachabl e(z1,...,2z) — |R].
wherez; is 1 if B; € B and 0 otherwise.
Further, every clause of the forméxt B(z),!B8'(z) :— R(z)."

is transformed to

Reachabl e(z1,...,2k) —
LRJ(l’ly---,ﬁk),
Reachabl e(z1,...,zx),
Updat e(z1, 1), . . . ,Updat e(xx, zx).

whereUpdat e(z;, z;) is True(z;) if z; isin B, Fal se(z;) if x;
isin B, andz; = z; otherwise. (The literat; = z; is imple-
mented by replacing; with x; in the clause.)

We then have the following result.

this model. Then, we automatically prove that exploits forse
vulnerabilities can be eliminated by enforcing a certaiagesdis-
cipline on the model (via static analysis or runtime moriitgy.
Roughly, this means that a user can be informed about palignti
unsafe authorization decisions in this model. Next, we ictans
Asbestos’s access control model (Section 5.2). We autoadigti
validate some secrecy properties of that model. Finallynodel a
full-fledged webserver that runs on Ashestos (as describgd]),
and automatically prove a secrecy guarantee for the wedserv

5.1 Windows Vista

The goal of Windows Vista’s access control model is to mainta
boundaries around trusted objects, in order to protect tiem
less trusted processes. Trust levels are denotedtégrity labels
(ILs), such adHi gh, Med, andLow. Every object has an IL. Fur-
ther, every process is itself an object, and has an IL. A @®can
spawn new processes, create new objects, and change thkeir IL
based on its own IL. In particular, a process with/, carf:

— lower an object’s IL fronOy, only if Oy, C Pr;

— raise an object’s IL t@, only if O, C Pr, and the object is not
a process;

— read an object;

— write an object with ILOr, only if O, C Pr;

— execute an object with 1D, by lowering its own IL toP;, 1 Oy,.

Below, we present an excerpt of a model of such a system in
EON. (The full model appears in [7].) The unary base relation
in the model have the following informal meaningB: contains
processes{bj contains objects (including processes); &,
Med, Hi gh, etc.contain processes and objects with those ILs.

With new andnext clauses, we specify how an unbounded num-
ber of processes and objects, of various kinds, can be dreate

new Obj, Low.
new Obj, Med.
new Obj, Hi gh.

next P(x) :- Obj(x).

Further, withnext clauses, we specify how ILs of processes and
objects can be changed. For instanctkad process can raise the
IL of an object fromLow to Med if that object is not a process; it
can also lower the IL of an object froived to Low. A Hi gh pro-
cess can lower its own IL thed (e.g, to execute dkd object).

2In fact, the capabilities of a process may be further comgchby Win-
dows Vista’s discretionary access control model. Howewerjgnore this
model because it is rather weak; see [7] for a detailed désons

next Med(y),!Low(y)
next Low(y),!Med(y)

- Low(y), ! P(y), Med(x), P(x).
1= Med(y), Med(x), P(x).

next Med(x),!H gh(x) :- Hi gh(x),P(x).

The full model contains several other rules that are implaete
by the system. Specifying these rules manually can be tedind
error-prone; instead, EON allows us to embed scripts in cxateh
(as syntax extensions) that generate these rules autathafiq.
Finally, with Datalog clauses, we specify how processes can
Read, Wi t e, andExecut e objects. A process canRead an
objecty without any constraints. In contrastcanW it e y only
if the IL of x is Geq (greater than or equal to) the IL gf Con-
versely,z canExecut e y only if the IL of y is Geq the IL of z.

Read(x,y) :- P(x), Qoj(y).

Wite(x,y) - P(x), Geq(x,y).

Execute(x,y) :- P(x), Geq(y, X).

Geq(x,y) :- Med(x),Med(y).
Geq(x,y) :- Med(x),Lowmy).
Geq(x,y) :- Lowmx),Lowmy).

5.1.1 Integrity vulnerabilities on Windows Vista

We now ask some queries on the model above. For instance,
can aMed object be read by &ed process after it is written by a
Low process? Can an object that is written biz@w process be
eventually executed bytd gh process by downgrading tded?

? Med(y); Low(x),Wite(x,y); Med(z),Read(z,y).
? Low(x), Wite(x,y); Hgh(z); Med(z), Execute(z,y).

The former encodes a simple data-flow integrity vulnerghili
the latter encodes a simple privilege-escalation vulriknab(In
the full model, we study some more complicated vulneraédi)
When we run these queries, we obtain several exploits faetho
vulnerabilities. (Seee.qg, [6, 8], for more details on such vulner-
abilities.) For each exploit, our tool shows a derivatiogetrfrom
that tree, we find a sequence afw, next, and other clauses that
lead the system to an insecure state and derive the quernyjin-+or
stance, the former query is derived as follows: firdiea objecty
is created; nexty is downgraded th. owby aMed process; nexty
is written by aLow processr; finally, y is read by aved process
z. The latter query is derived as follows: firstLaw objecty is
created; nexty is written by al ow processe; next,y is upgraded
to Med by aMed process; next, & gh process: is downgraded
to Med; finally, y is executed by.

Thus, EON can be quite effective aslebuggingtool—if there
is a bug, EON is guaranteed to find it. But recall that if thee a
no bugs, EON is also guaranteed to terminate without findiyg a
That is, EON can be just as effective as a theorem-provinig oo
particular, we now prove that the vulnerabilities aboventdrbe
exploited if suitable constraints are imposed on the mddegirac-
tice, these constraints may be implemented either by statitysis
or by runtime monitoring on programs running in the system.

5.1.2 An usage discipline to recover integrity

Basically, we attach to each object a lalg#i gh, SMed, or
SLow, which indicates a static lower bound on the integrity of the
contents of that object; further, we attach to each procdabel
DHi gh, DMed, or DLow, which indicates a dynamic lower bound
on the integrity of the values known to that process. The sema
tics of these labels are maintained as invariants by the mdde
particular, these labels are initialized as follows.

new Obj, Low, SLow.
new Obj, Med, SMed.
new Obj, Hi gh, SHi gh.

next P(x),DHi gh(x) :- Obj(x).

Now, whenever an object’s IL is lowered, the IL should not fal
below the static label of the object.

next Low(y),!Med(y) :- Med(y), SLow(y), Med(x), P(x).

A process’s dynamic label may be lowered to reflect that it may
know the contents of an object with a lower static label.

next DLow(x),!DH gh(x) :- DHi gh(x), SLowy).

Now, a process canRead an objecty only if the dynamic label
of = is DSLeq (less than or equal to) the static labelyf Con-
versely,x canW i t e y only if the dynamic label of: is DSGeq
(greater than or equal to) the static labelyof In contrast,x can
Execut e y only if its own IL is lowered to or below the static
label ofy. This condition,SGeq(y, =), subsumes the earlier con-
dition Geq(y,).

Read(x,y) :- P(x),j(y),DSLeq(x,y).
DSLeq(x,y) :- DLowm x), SLowy) .
DSLeq(x,y) :- DLow x), SMed(y) .
DSLeq(x,y) :- DMmed(x), SMed(y) .
Wite(x,y) :- P(x),00bj(y),Geq(x,y),DSGeq(x,y).
DSGeq(x,y) :- DLow x), SLowy).
DSGeq(x,y) :- Dwed(x), SMed(y) .
- DMed(x), SLowy) .

DSCGeq(x,y) :

Execut e(x,y)

SCGeq(y, x) :- SLowy), Low X).
SGeq(y, X) :- SMed(y), Low x).
SCGeq(y, x) :- SMed(y), Med(Xx).

t- P(x), Ooj (y), SCeaq(y, x) .

Finally, recall the temporal queries that we ask above. We re
formulate the former query for this model—instead of camsing
the IL of z, we now constrain its dynamic label, which is a better
approximation of its runtime taint.
? Med(y) ; Wite(x,y),Lowmx) ; Read(z,y), DMved(z).

This query evaluates to false, showing that the encodedfidata
integrity vulnerability cannot be exploited. The lattereqy also
evaluates to false, showing that the encoded privilegataton
vulnerability cannot be exploited. The full constraineddabap-
pears in [7]. There, we show that exploits for some other domp
cated vulnerabilities are also eliminated under thesetrainss.

Thus, with EON, we not only find vulnerabilities in Windows
Vista’s access control model, but also prove that they caalibe-
nated by imposing suitable constraints on the model. Weladac
that these constraints encode a formal “discipline” tha¢dgiired
to safely exploit the flexibilities provided by the model. fact, a
similar discipline already appears in [6], with manual gsoo

5.2 Asbestos

The goal of Asbestos'’s access control model is to dynamicall
isolate trusted processes that require protection from tiested
processes. This isolation is achievedtaiyt propagation Specifi-
cally, in Asbhestos each proceBshas two labels: aend labelPs,

which is a lower bound on the security of messages that can benext

sent byP, and a receive labdPr, which is an upper bound on the
security of messages that can be receive@byrurther, each com-
munication portC' has aport label C',, which is an upper bound
on the security of messages that can be carried.bending a
message from proceg3to processy) on portC requires that:

PsEQrMCL
Further, on communication) is tainted byP:
Qs — Qs U Ps

In fact, this situation is slightly more complicated witleclas-
sification Specifically, there are a small numbersefcurity levels
(%, 0, 1, 2, 3), with minimum* and maximuns. A labelis a fi-
nite record of security levels. Labels form a lattige, LI, 1), as
follows. (HereL:, Lo range over labels, antlover label fields.)

L1 C Lo & VY. L1.€ < Lz.f

(Ll [LQ)(= maX(L1 .f, sz)

(Ll M LQ)(= min(Ll.K, LQ()
Now, an operation * is defined as follows.
* g *x if Ll =x%
Lt= { 3 otherwise

On communication@ is tainted byP only in fields that are not.
Qs — Qs U (PsMQ%)

5.2.1 Secrecy on Asbestos

To understand some security consequences of this modek let
focus on a single field, and the security levels, 1, 2, and 3.
Below, we present an excerpt of a model of such a system in EON.
Let STAR denotex, andi ,j range ovef1,2,3}. The unary base
relations in the model have the following informal meanings
contains processe$;Ri andLSj contain processes such that
zrt =1 andzs.l = |, respectivelylL STAR contains processes
x such thatrs.¢ = x andxzr.£ = 3; andM contains processes
that carry messages generated by procegsesh thatyz./ = ,
respectively. We boot our system with the following claysksse
clauses create an unbounded number of processes of vaitoigs k
and let them generate messages accordingly.

new P, LSTAR.

new P, LR1, LS1.
new P, LR2, LS1.
new P, LR3, LS1.

next M(x),LS2(x),!LS1(x) :- LS1(x),LR2(x).
next M(x),LS3(x),!LS1(x) :- LS1(x),LR3(x).

Next, we specify clauses for communication on unrestricted
ports {.e., portsC such thatC,./ = 3). The requirements and
effects of such communication appear in the bodies and hafads
these clauses, respectively. Note, in particular, howelsionsV|
are augmented on such communication. (The full model casitai
several other, similar rules, generated automaticallycoipts.)

next M2(x) :- P(x),LSTAR(y), M2(y).
next MB(x) :- P(x),LSTAR(y), M3(y).
next M2(x) :- LSTAR(X),P(y), M(y).
next MB(x) :- LSTAR(X),P(y), M3(y).

M2(x),LS2(x),!LS1(x) :-

M2(y),LS2(y), LS1(x), LR2(x) .
MB(x),LS2(x),!LS1(x) :-

MB(y),LS2(y), LS1(x), LR2(x).

next

Finally, we ask some queries. According to [11], in Asbestos
the default security level in any field of a receive label2is
Thus, having3 in some field of the receive label gives higher
read privileges than default; processes with such labedsilgh
be able to share messages that default processes cannat know
On the other hand, having in some field of the receive label
gives lower read privileges than default; processes witthsu
labels should not be able to know messages shared by default
processes. LeReadW t hout 3 denote the existence of a
processz for which M3(x) is true despiteLRi (z) for some
¢ < 3. On the other hand, leReadW t h1 denote the exis-
tence of a process for which M (z) is true for some; > 1
despiteLR1(x). These queries encode secrecy vulnerabilities.

ReadW t hout 3 : -
ReadW t hout 3 : -

MB(x), LR2(x) .
MB(x), LRL(x).

ReadWthl : -
ReadWt hl : -

M2(x), LRL(x).
MB(x), LRL(x).

? ReadW t hout 3.
? ReadW t hl.

We find exploits for both queries with EON. The derivations fo
these queries may be anticipated—messages can be deetissifi
that is, forwarded by processe$or whichLSTAR(z) is true, with-
out any constraints or effects.

Now, letBl aneReadW t hout 3 denote the existence of a pro-
cessz for whichMB(z) andLSTAR(z) are true. On the other hand,
let Bl aneReadW t h1 denote the existence of a processor
which M (z) andLSTAR(z) are true for somg > 1. We now
ask the following, revised queries that account for dediaasion.
(These queries encode violationsrobust declassificatiof21].)

Bl ameReadW t hout 3 : -
BadReadW t hout 3

MB(y), LSTAR(Y) .
;- ReadWthout 3, ! Bl aneReadW t hout 3.

Bl ameReadW t hl
Bl amneReadW t hl
BadReadWt hl : -

- M2(y), LSTAR(Y) .
i- MB(y), LSTAR(Y).
ReadW t hl, ! Bl aneReadW t h1.

? BadReadW t hout 3.
? BadReadW't hl.

Now EON does not find exploits for either query. Note that the
revised queries use negation on non-base relations, asdadke
a long time to run. We can simulate these queries withoutgusin
negation, simply by removing the following clauses and rgkhe
same queries as before.

next M2(x) :-
next M(x) :-

LSTAR(X) , M2(y) .
LSTAR(X), M3(y) .

Once again, EON does not find exploits for either query; how-
ever, the queries now run much faster. Thus, we have thenfioigp
secrecy theorem, proved automatically by EON.

THEOREM4 (SECRECY). Assume that X is either
{P| Prt = 3} or{P | Prt # 1}. If Q ¢ X, then@Q
can never carry a message generated by a process,imnless
some declassifying process carries that message as well.

5.2.2 Secrecy in a webserver running on Asbestos

We now present a significantly more ambitious example to
demonstrate the scope of our techniques. Specifically, pé& ap
EON to verify a webserver running on Asbestos. This websésve
described in detail in [11]; below, we briefly review its aitelcture.

We then present an excerpt of a model of this webserver in EON,
and study its key security guarantee. The full model appedid.

The relevant principals include a net daemon, a database,pro
and the users of the webserver. When a user connects, thaeiet d
mon spawns a dedicated worker process for that user. Theework
process can communicate back and forth with that user ogereth
further, it can access a database that is common to all uSéses.
webserver relies on sophisticated protocols for conne¢tamdling
and database interaction; the aim of these protocols iskatéspro-
cesses that run on behalf of different users, so that no asesee
a different user’s data.

In our model, we focus on two useusandv; processes that run

on behalf of these users are tagged as such on creation. We fo

cus on label fields that are relevant for secrecy—thesedeaic
andut (used for ommunication andatint propagation bw), and
vc andvt (used for ommunication andaint propagation by).
We model labels with unary base relations that specify tlte-se
rity levels in each fielde.g, for processes, LSuc1(x) denotes
zg.uc = 1; LRut 2(z) denotescr.ut = 2; andLSvcSTAR(z)
denotests.vc = STAR; similarly, e.g, for communication ports
y, Lvt 2(y) denotegy.vt = 2.

The other unary base relations in the model have the follow-
ing informal meanings. User u and User v contain processes
run by u andv, respectively;NETd contains processes run by
the net daemon; andi andW contain worker processes that are
spawned by the net daemon foandv, respectively. All of these
processes participate in a connection handling protocakthEr,

Next, we model the connection handling protocol in [11]. \Whe
a useru initiates a connection, the net daemon creates a new pro-
cess, as follows.

new NETd,
LSucl, LSut 1, LSvcl, LSvt1,
LRuc?2, LRut 2, LRvc2, LRvt 2.

This process creates a new port on which data can be sent over
the net tou. The security level in the relevant communication field
uc of the port’s label i9); thus, processes with default send labels
cannot send messages on this port.

new Portu,
LucO, Lut 2, Lvc2, Lvt 2.

The net daemon now lowers the security level in the fieddof
its send label t&TAR.

next LSUcSTAR(x),!LSucl(x) :-
NETd(x), LSucl(x), Portu(y).

Next, the net daemon lowers the security level in the relevan

taint propagation fieldit of its send label t&TAR, and becomes

ready for communication.

next LSut STAR(x),!LSutl(x), Ready(x) :-
NETd(x), LSut 1(x), LSUCSTAR(X) .

Eventually, the net daemon can raise the security levekErfiéhd
ut of its receive label t&, to receive tainted data fromn. It can
similarly raise the security level in the field of the port’s label,
to allow it to carry tainted data back to

next LRut3(x),!LRut2(x) :-
NETd(x) , LRut 2(x), LSut STAR(X) .

next Lut3(x),!Lut2(x) :-
Portu(x), Lut 2(x), NETd(y), LUCSTAR(Y) .

Ready contains any such process that is ready for communica- o

tion, after that protocol is executed. Other processes w@areby
the database proxy. In particul@Bpr oxyRu and DBpr oxyRv
contain processes that receive database recordsdiodv, respec-
tively; andDBpr oxy Su and DBpr oxy Sv contain processes that
send database records foandv, respectively.

The processes above communicate on well-defined ports.

Por t u andPor t v contain ports on which data is sent over the net
by processes running on behalfioéndv, respectivelyPor t DBu

and Por t DBv contain ports on which data is received by the
database proxy from processes running on behalf ahdv, re-
spectively. Por t Any contains unrestricted ports that are used for
all other communication.

Finally, to verify secrecy, we lelu and M/ contain processes
that carryu’s data andv’s data, respectively. We require that no
process that runs on behalfwfs eventually invl (and vice versa).

We now outline our model. We describe only clauses that i@vol
u; the clauses that involve are symmetrical. Most processes in
the system are created with default send and receive lapfahy.
security level in a default send labellisand any security level in a
default receive label i2.) For instance, user processes are created
as follows.

new User u, Ready, M,
LSucl, LSut 1, LSvcl, LSvt1,
LRuc?2, LRut 2, LRvc2, LRvt 2.

Further, the net daemon can spawn a new worker process for

new Wi,
LSucl, LSut 1, LSvcl, LSvt 1,
LRuc?2, LRut 2, LRvc2, LRvt 2.

The security levels in the fieldsc andut of the worker pro-
cess are lowered and raised¥bAR and3, respectively, before the
worker process becomes ready for communication.

next LSucSTAR(x), LSut3(x),!LSucl(x),!LSutl(x),
Ready(x) :-
Wi(x), LSucl(x), LSut 1(x),
NETd(y), LSUcSTAR(y), LSut STAR(Y) .

Elsewhere, the database proxy creates the following pseses
and ports for receiving and sending recordsuor

new DBpr oxyRu,
LSucl, LSut STAR, LSvcl, LSvt STAR,
LRuc2, LRut 3, LRvc2, LRvt 3.

new Port DBu, Luc?2, Lut 3, Lvc2, Lvt 2.
new DBpr oxySu,

LSucl, LSut 3, LSvcl, LSvt 3,
LRuc?2, LRut 3, LRvc2, LRvt 3.

Unrestricted ports can also be created.
new Port Any, Luc3, Lut 3, Lvc3, Lvt 3.

We model all valid communication links between the above pro
cesses, following the implementation described in [11].e&p
cally, let Send(z, z) denote that process may send a message
to process:. This condition is constrained by the auxiliary con-
ditions Li nk(z,y, z) andConm(z, y, z) for some porty, as fol-
lows. Li nk(z,y, 2) requires that: and z are ready for commu-
nication, andy is actually available for communication between
andz (see below)Com(z, y, z) is an encoding of the requirement
xs C zr My for communication, as described in the beginning of
Section 5.2; the rules are generated automatically bytscriyote
that some of the communication links that we model below turn
to be redundant, because of taint propagation. (Indeede $oks
allow communication that is dangerous for secrecy.)

Li nk(x,y, z) :-
Useru(x), Port Any(y), Wi(z), Ready(z).

ﬁk(X,Y,2) -
Wi(x), Ready(x), Portu(y), Ready(z).

L

ﬁk(X,Y,2) -
Wi(x), Ready(x), Port Any(y), W(z), Ready(z).

L

L

nk(x,y, z) :-
NETd(x) , Ready(x), Port Any(y), Ready(z).

L

nk(x,y, z) :-

Ready(x), Port DBu(y), DBproxyRu(z).
nk(x,y, z) :-

DBpr oxyRu(x), Port Any(y), DBproxySu(z).
nk(x,y,z) :-

DBpr oxySu(x), Port Any(y), Wi(z), Ready(z).
nk(x,y,z) :-

DBpr oxySu(x), Port Any(y), W(z), Ready(z).

L

L

L

Send(x,y,z) :- Link(x,y,z), Commx,vy,z).

Finally, we model the effects of communication. Specifigall
the clauses below encode the effects of sending a message fro
processe to procesg, as described in the beginning of Section 5.2:
the labelzg is transformed tas Ll (x5 M z§). For any field?, the
security leveks.¢ does not need to be raisediifin(25.¢, z5.0) <
zs ., thatis, ifzs./ = xorzgs.f < zs./. This condition is denoted
by LeqSTAR/(z, z). Further, the relatioivu is augmented on such
communication. (The rules are generated automaticallghbpgts.)

next Mi(z) :-
Send(x, z), Mu(x),
LeqSTARut (x, z), LeqSTARVt (X, z) .
LegSTARuc(x, z), LeqSTARvc(X, z).
next Mi(z),
LSvt3(z),!LSvt1(z) :-
Send(x, z), Mu(x),
LeqSTARut (x, z), LSvt 1(z), LSvt 3(x).
LegSTARuc(x, z), LeqSTARvc(X, z).
next Mi(z),
LSut3(z),!LSutl(z) :-
Send(x, z), Mu(x),
LSut 1(z), LSut 3(x), LeqSTARvt (X, z).
LeqSTARuc(x, z), LeqSTARvc(X, z).
next Mi(z),
LSvt3(z),!LSvt1(z),LSut3(z),!LSutl(z) :-
Send(x, z), Mu(x),
LSut1(z), LSut 3(x), LSvt1(z), LSvt 3(x).
LeqSTARuc(x, z), LeqSTARvc(X, z).

We now ask the quergecr ecyVi ol at i on, which denotes
the existence of a procesghat runs on behalf of, i.e., User v (x)
or W (z), but carrieu’s data,i.e., Mu(x).

SecrecyViol ati on
SecrecyViol ati on

i~ Userv(x), Mu(x).
- W(x), Mu(x).

? SecrecyViol ation.

EON does not find any exploits for this query. In other words,
we have the following theorem, automatically proved by EON.

THEOREM5 (DATA ISOLATION). A useru’s data is never
leaked to any process running on behalf of a different wser

We conclude by mentioning some statistics that indicatethée
of this experiment. The whole specification of the webseiser
around 250 lines of EON. The translated Datalog programaiosit
152 recursive clauses over a 46-&gyachabl e relation (that is,
over 46-bit atomic states). Our query takes around 90 msntate
evaluate on a Pentium IV 2.8GHz machine with 2 GB memory—in
contrast, the queries for the other examples take less thacoad.

Scripts for all the examples in this section are availablg]n

6. RELATED WORK

It is well-known that the “safety" problem for access cohtro
models {.e., whether a given access is allowed by a given access
control model) is undecidable in general [13, 9]. Neverhs)
there are restricted classes of access control models fichwiis
problem is decidable. Our work may be viewed as a step towards
identifying such classes of models: we design an expresaive
guage for dynamic access control systems, in which infdomat
flow properties remain decidable.

Analyzing access control models with logic programs haglyfa
long history. We focus here only on more closely related work
Recently Doughertyet al. [10] propose a technique to study the
security properties of access control policies under dyoamvi-
ronments. There, a policy is specified in a fragment of Datalo
without negation and recursion, and an environment is pdas
a finite state machine. The composition of the policy and tiv-e
ronment is then analyzed by reduction to first-order logiofalae.
While the authors identify some decidable problems in trase-
work, the lack of recursion and negation limits the exprégsbf
both models and queries, and it is not always possible toifgpec
accurate finite state machines for environments. Indeeude b
the dynamic access control models studied in this paper eamb
alyzed in their framework.

Sarna-Starosta and Stoller [18] study the Security-Ergdhnc
Linux (SELinux) system in Prolog. The SELinux system enésrc
access control policies written in SELinux’s policy langea The
authors describe a tool called PAL that translates sucleipslinto
logic programs, and analyzes them by query evaluation. aBras
et al.[16] study both SELinux and Windows XP configurations in
Datalog in a tool called Netra. Unlike PAL, Netra is both sdamd
complete, since query evaluation is decidable in Dataldgléan
Prolog is not). However, neither tool can find vulnerataktithat
are exploited dynamically. Some of these concerns are ssiehie
by Stolleret al’s recent work on policy analysis for administrative
role-based access control [19], which is similar in spaibtrs.

More recently, Beckeet al. [2] propose a language called Sec-
PAL that can express authorization policies and fine-gchithe-
egation control in decentralized systems. Their specifinatare
compiled down to programs in Datalog, much as in our workc&in
Datalog is a subset of EON, it follows that EON is at least as ex
pressive as SecPAL. On the other hand, it is not clear wh&béer

PAL is as expressive as EON; the former is tailored to exprass
thorization and delegation policies, while the latter remdargely
agnostic in that respect. An interesting aspect of SecPAhas
it allows negations within queries. While EON allows suclgae
tions, the fragment discussed in Section 4 does not. Howexer
have checked that this restriction can be lifted from thagfnent
without compromising correctness or efficiency.

Other relevant work includes Blanchet’s ProVerif [5], whniis
a powerful tool that can analyze security protocols writtethe
applied pi-calculus. The underlying engine rewrites thetquols
and associated equational theories into Prolog-like raled uses
customized resolution procedures to answer queries abotgcy
and authenticity properties. ProVerif is sound but not cletep it
may not terminate on queries, and it may also fail to proveisr d
prove queries. Indeed, while ProVerif can handle Windowsta/s

access control model, it does not terminate on our model ef As

bestos’s webserver. In sum, EON is less expressive thareRAfpV
but for models that satisfy our restrictions, EON guarasmtmind
and complete results.

Finally, we are not the first to propose a dynamic languagedas
on Datalog. Related languages have been studied, for oestag

Abadi and Manna [1] and Orgun [17]. However, we seem to be the

first to introduce aew operator to Datalog, and show that it can be
reduced to existential quantification in Datalog. Such aerator
allows us to express specifications that quantify over amunted
number of processes and objects.

7. CONCLUSIONS

In this paper, we present EON, a logic-programming language
and tool that can be used to model and analyze dynamic accesg12]

control systems. Security violations can be modeled as aemhp
queries in this language, and query evaluation can be uskalto

[4] K. J. Biba. Integrity considerations for secure compute
systems. Technical Report TR-3153, MITRE Corp., 1977.

[5] B. Blanchet. An efficient cryptographic protocol verifie
based on prolog rules. BSFW’'01: Computer Security
Foundations Workshompage 82. IEEE, 2001.

[6] A. Chaudhuri, P. Naldurg, and S. Rajamani. A type system
for data-flow integrity on Windows Vista. IRLAS’08:
Programming Languages and Analysis for Secupgges
89-100. ACM, 2008.

[7]1 A. Chaudhuri, P. Naldurg, S. Rajamani, G. Ramalingand, an
L. Velaga. EON: Modeling and analyzing dynamic access
control systems with logic programs. Technical Report
MSR-TR-2008-21, Microsoft Research, 2008. &é&¢ p:

/I www. soe. ucsc. edu/ ~avi k/ proj ect s/ EQON .

[8] M. Conover. Analysis of the windows vista security madel
Symantec Report. Available atwv. symant ec. cont
avcenter/reference/ Wndows_Vista_
Security_Mdel _Anal ysis. pdf.

[9] D. E. Denning. A lattice model of secure information flow.

Communications of the ACM9(5):236—243, 1976.

D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Spgoig

and reasoning about dynamic access-control policies. In

IJCAR'06: International Joint Conference on Automated

Reasoning2006.

P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Maziéres, F. Kaashoek, and

R. Morris. Labels and event processes in the Asbestos

operating system. IBOSP’05: Symposium on Operating

Systems Principlepages 17-30. ACM, 2005.

A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Stat

analysis in datalog extensionlmurnal of the ACM

48(5):971-1012, 2001.

[10]

[11]

attacks. We show that query evaluation in EON can be reduced t [13] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On

decidable query satisfiability in a fragment of Datalog, ander
further restrictions, to efficient query evaluation in Data

protection in operating systems. 8DSP’75: Symposium on
Operating systems Principlegages 14-24. ACM, 1975.

Our design of EON requires much care to keep query evaluation [14] B. W. Lampson. ProtectioMCM Operating Systems Review

decidable. In particular, we require that any base relatianis in-
troduced or transformed be unary—allowing dynamic binaageb
relations easily leads to undecidability [7]. Moreover, kgguire
transitions to have monotonic guards, and queries to be tanito

These restrictions do not prevent us from modeling statidref
art access control models, such as those implemented byowsd
Vista and Asbestos. With unary base relations aed clauses,
we can create and label processes and objects. Furthemaxith
clauses, we can model runtime effects such as dynamic acoess
trol, communication, and taint propagation. Thus, EON $urnt
to be a good fit for modeling dynamic access control systems.

Further, we demonstrate that EON can verify various segcurit
properties of interest. Since our query evaluation stsatedpoth
sound and complete, EON either finds bugs or decisively grthe
absence of bugs. We expect that there are other classes@isys
that can be modeled and analyzed using this approach.

8. REFERENCES

[1] M. Abadi and Z. Manna. Temporal logic programming.
Journal of Symbolic Computing(3):277—-295, 1989.

[2] M. Becker, C. Fournet, and A. Gordon. Design and semantic
of a decentralized authorization languageCI8F'07:
Computer Security Foundations SymposilisEE, 2007.

[3] D.E. Belland L. J. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Report
M74-244, MITRE Corp., 1975.

8(1):18-24, Jan 1974.
[15] P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor,
J. Turner, and J. Farrell. The inevitability of failure: The
flawed assumption of security in modern computing
environments. Technical report, NSA, 1995.
[16] P. Naldurg, S. Schwoon, S. Rajamani, and J. LambertaNet
seeing through access control HMSE’06: Formal Methods
in Security Engineeringpages 55-66. ACM, 2006.
[17] M. A. Orgun. On temporal deductive databases.
Computational Intelligencel2:235-259, 1996.
B. Sarna-Starosta and S. D. Stoller. Policy analysis fo
security-enhanced linux. WITS'04: Workshop on Issues in
the Theory of Security2004. Available aht t p: / / wwaw.
cs. sunysh. edu/ ~stol | er/ WTS2004. ht nl .
S. D. Stoller, P. Yang, C. Ramakrishnan, and M. I. Gofman
Efficient policy analysis for administrative role basedess
control. INCCS’07: Conference on Computer and
Communications SecuritphCM, 2007.
J. D. Ullman.Principles of Database and Knowledge-base
Systems, Volume II: The New Technolog@smputer
Science Press, New York, 1989.
S. Zdancewic and A. C. Myers. Robust declassification. |
CSFW’'01: Computer Security Foundations Workshmmes
5-16. IEEE, 2001.

[18]

[19]

[20]

[21]

