
EON: Modeling and Analyzing
Dynamic Access Control Systems with Logic Programs

Avik Chaudhuri
University of California

Santa Cruz, USA
avik@cs.ucsc.edu

Prasad Naldurg
Microsoft Research

Bangalore, India
prasadn@microsoft.com

Sriram K. Rajamani
Microsoft Research

Bangalore, India
sriram@microsoft.com

G. Ramalingam
Microsoft Research

Bangalore, India
grama@microsoft.com

Lakshmisubrahmanyam Velaga
Indian Institute of Management

Bangalore, India
lakshmis07@iimb.ernet.in

ABSTRACT
We present EON, a logic-programming language and tool that can
be used to model and analyze dynamic access control systems.Our
language extends Datalog with some carefully designed constructs
that allow the introduction and transformation of new relations. For
example, these constructs can model the creation of processes and
objects, and the modification of their security labels at runtime.
The information-flow properties of such systems can be analyzed
by asking queries in this language. We show that query evaluation
in EON can be reduced to decidable query satisfiability in a frag-
ment of Datalog, and further, under some restrictions, to efficient
query evaluation in Datalog. We implement these reductionsin our
tool, and demonstrate its scope through several case studies. In par-
ticular, we study in detail the dynamic access control models of the
Windows Vista and Asbestos operating systems. We also automat-
ically prove the security of a webserver running on Asbestos.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols, Information flow controls, Verification; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Specification techniques, Mechanical veri-
fication; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematic Logic—Logic and constraint programming

General Terms
Security, Verification, Languages, Algorithms

Keywords
dynamic access control, logic programming, automatic verification

1. INTRODUCTION
Most modern operating systems implement access control mod-

els that try to strike a reasonable balance between securityand prac-
tice. Unfortunately, finding such a balance can be quite delicate:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08,October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

security concerns often lead to inflexible restrictions, which do not
always seem practical. To tackle this conflict, these systems typi-
cally admit various ways of controlling access at runtime.

This paper is about verifying such access control systems auto-
matically. We focus on systems in which processes and objects are
labeled with security levels, and processes are prevented from ac-
cessing objects based on their labels. Such access control systems
represent the state of the art in both the commercial world and the
academic world, exemplified by Windows Vista and Asbestos [11].
They are typically weaker than the pioneering models of thisap-
proach, due to Bell-LaPadula [3] and Biba [4], which have strong
secrecy and integrity properties, but turn out to be too restrictive in
practice [15]. In particular, some facility to control labels at run-
time often seems to be necessary in these systems.

We illustrate this point with an example. Consider a model in
which objects downloaded from the Internet are labeledLow, and
High processes are prevented from executingLow objects. In this
model, suppose that aHigh process needs to run an executablef
downloaded from the Internet (say, to install a new application),
and the integrity off can be established (say, by verifying a dig-
ital certificate). Then, theHigh process should be able to runf
by upgrading it toHigh. On the other hand, if the integrity off
cannot be established, theHigh process should still be able to run
f by downgrading itself toLow (following the principle of least
privilege [14]).

Windows Vista implements an access control model along these
lines. In particular, Windows Vista’s access control modelaims to
prevent privilege escalation, data tampering, and code tampering by
viruses by enforcing a system-wide integrity policy based on labels.
However, to admit the above scenarios, the model allows labels to
be lowered or raised at runtime. This requires explicit authorization
by the user. While an informed user may be able to decide whether
such authorization is safe, there is a real danger that an uninformed
user may inadvertently authorize unsafe information flows.For in-
stance, aHigh process can run aLow executablef , as above, by
downgrading itself toLow. As such, runningf cannot do much
damage—in particular,f cannot writeHigh objects, sinceLow
processes are prevented from writingHigh objects in the model.
However, anotherHigh process may upgradef to High and run
it, without verifying its integrity. Unfortunately,f may be a virus
that can then writeHigh objects.

The Asbestos operating system implements a related access con-
trol model. In this model, process labels are dynamically tainted
on communication with other processes, and such taints are prop-
agated to isolate processes based on the secrets they carry.The

model aims to prevent leaking of those secrets. At the same time,
the model allows a customized form of declassification, and thereby
admits some information-flow vulnerabilities.

Although Windows Vista and Asbestos differ in their details,
both systems implement dynamic access control models, based on
labels, that try to balance concerns of security and practice. The
information-flow properties of these systems have not been fully
studied. In this paper, we develop a technique to model and analyze
such systems, and to automatically find information-flow attacks in
those systems, or conversely prove their security.

At the heart of our technique is a new logic-programming lan-
guage called EON, that extends Datalog with dynamic operators
for creating and modifying simple objects. We show how we can
code information-flow violations as queries in this language, and
use query evaluation to find possible vulnerabilities. EON has some
carefully designed restrictions—new names can be introduced only
through unary relations, only unary relations can be transformed,
and some monotonicity conditions must be satisfied. These restric-
tions are obeyed naturally by our specifications of Windows Vista
and Asbestos. We show that with these restrictions, query evalu-
ation for EON is decidable. Our crucial insight is that with these
restrictions, it is possible to reduce query evaluation in EON to
query satisfiability in a fragment of Datalog. Then, we adaptan
algorithm due to Halevyet al. [12] (with minor corrections), to de-
cide this satisfiability problem. Further, if the EON program does
not have negations over derived relations, we show a simplerre-
duction to query evaluation in Datalog, which allows us to solve
the program and generate attacks or proofs very efficiently.

We implement these reductions in our tool, and evaluate in de-
tail the security of Windows Vista and Asbestos with EON. Our
experiments highlight EON’s programmability. For instance, we
study the impact of various design choices, by making small,lo-
cal changes in specific models and observing their influence on the
attacks or proofs generated. We also model specific usage disci-
plines, and prove that some attacks are not possible if thosedisci-
plines are enforced (either statically or at runtime). In sum, EON
seems to be an effective tool to specify, understand, and verify ac-
cess control models. We expect that this approach can be usedto
study other dynamic systems just as well.

The rest of the paper is organized as follows. The first half (Sec-
tions 2–4) is devoted to theory. The next half is devoted to appli-
cations. In Section 2, we describe the syntax and semantics of the
EON language. In Section 3, we show how query evaluation in
EON can be reduced to query satisfiability in a fragment of Data-
log. (A satisfiability algorithm for this fragment is reviewed in [7].)
In Section 4, we show how query evaluation in a fragment of EON
can be reduced to efficient query evaluation in Datalog. In Sec-
tion 5, we show applications of our technique through several ex-
periments with the EON tool. In Section 6, we discuss relatedwork.
Finally, in Section 7, we discuss our contributions and conclude.

2. THE EON LANGUAGE
In this section, we introduce the EON language, and describe

its syntax and semantics. We begin by providing a brief review of
Datalog. We then extend Datalog with some carefully designed dy-
namic operators1 (Section 2.1), and present the semantics of these
operators (Section 2.2). Finally, we define the syntax and semantics
of queries in the language (Section 2.3).

Datalog is a convenient logic-programming language to express
relational access control models [18, 16, 10, 2]. In Datalog, apos-

1In [7], we show that even a slight generalization of these operators leads
to undecidability of query evaluation in the language.

itive literal S is of the formR(t1, . . . , tm), whereR is a relation,
m ≥ 0, and eachti is a variable or a constant. Anegative literalis
of the form!S . A clauseis of the form

S :− L1, . . . ,Ln.

where eachLi is a positive or negative literal. We refer to the left
hand side of:− as thehead, and the right hand side of:− as the
body. A Datalog program is a collection of clauses.

A clause without a body is afact. A clause issafeif every vari-
able in the clause appears in some positive literal in the body. A
program is safe if all clauses in the program are safe.

A relationdependson another if there is a clause in the program
that has the former relation in the head and the latter in the body; the
dependency isnegativeif the literal that contains the latter relation
is negative. Abase relationdoes not depend on any other relation.
A base factis a fact on a base relation. A program isstratified if
there is no negative dependency in any dependency cycle between
relations in the program.

In a safe stratified program, a clause “S :− L1, . . . ,Ln." with
variablesex is interpreted as the first-order logic formula∀ex. L1 ∧
· · ·∧Ln =⇒ S . A program is interpreted as the conjunction of the
interpretations of its clauses.

A databaseis a set of base facts. Given a programF and a
databaseDB, letI(F, DB) be the set of facts that are implied by the
interpretation ofF∪DB. This set can be computed efficiently [20].

2.1 Syntax
In EON, we extend Datalog with two dynamic operators:new

andnext. Before we formally describe their syntax and semantics,
we present a simple example to illustrate the language. Thisexam-
ple describes a dynamic system where new administrators andusers
can be added to the system over time, any userx can be promoted
to an administrator by another administratory, and any administra-
tor can control the system. Thenew operator models the creation
of fresh constants, and thenext operator models the transformation
of relations over those constants:

new Admin.
new User.
next Admin(x) :− User(x), Admin(y).
Control(x) :− Admin(x).

Can a user that is not an administrator control the system?

? User(x), !Admin(x), Control(x).

This query evaluates to false according to the operational seman-
tics, described in Sections 2.2 and 2.3. Intuitively, the program
does not reach a state whereUser(x) andControl(x) are both
true butAdmin(x) is not. In contrast, the following query asks if a
user that is not an administrator caneventuallycontrol the system:

? User(x), !Admin(x) # Control(x).

Here# denotes sequencing of queries. This query evaluates to true;
intuitively, the program can reach a state whereUser(x) is true but
Admin(x) is not, then reach a state whereControl(x) is true. (In
the latter state, we expect thatAdmin(x) is also true.)

Formally, an EON program is a set of EON clauses. LetE be a
set of unary base relations, calleddynamic relations, andB range
over subsets ofE . Intuitively, these relations can be introduced
or transformed by the dynamic operators. The grammar of EON
clauses is shown below.

C ::= EON clause
S :− L1, . . . ,Ln. clause
new B :− R. create object
next B(x), !B′(x) :− R(x). modify object

For our convenience, we require that the body of anew or next

clause contains exactly one positive literal. In examples,we some-
times omit that literal, or write several literals instead,since the
required literal can be equivalently defined by a Datalog clause.

The Datalog fragment of an EON programP is written asbP. We
say thatP is safe ifbP is safe, andP is stratified ifbP is stratified. In
the sequel, we consider only safe stratified programs.

2.2 Semantics
We now give an operational semantics for EON programs.

Specifically, we describe the reduction of an EON programP by a

binary relation
P

−→ over databases; thus, an EON program defines
a (possibly nondeterministic) transition system over databases.

We first describe the semantics of thenew operator. The clause
“new B :− R.” is enabledif R evaluates to true in the current
database. Execution of the clause creates a fresh constantc and
addsB(c) to the database, for everyB in B.

new B :− R. ∈ P R ∈ I(bP, DB)

c is a fresh constant DB
+ = {B(c) | B ∈ B}

DB
P

−→ DB ∪ DB
+

Next, we describe the semantics of thenext operator. The clause
“next B(x), !B′(x) :−R(x).” is enabledif there is some constant
c such thatR(c) evaluates to true in the current database. Execution
of the clause modifies the interpretation of some relations in E for
c. Specifically, it addsB(c) to the database for everyB in B and
removesB(c) from the database for everyB in B′. Note that if
there are several constantsc such thatR(c) evaluates to true in the
current database, then execution of the clause non-deterministically
choosesonesuchc for the update.

next B(x), !B′(x) :− R(x). ∈ P R(c) ∈ I(bP, DB)

DB
+ = {B(c) | B ∈ B} DB

− = {B(c) | B ∈ B′}

DB
P

−→ DB ∪ DB
+\DB

−

The reflexive transitive closure of
P
−→ is written as

P
−→⋆.

2.3 Queries
Queries in EON can include basic (Datalog-style) queries; they

can further use the operator# to sequence such queries.

Q ::= EON query
S basic query
S # Q sequencing

As usual, for our convenience we require that a basic query con-
tains exactly one positive literal; elsewhere, we often write several
literals instead. Letσ range over substitutions of variables by con-
stants. The judgmentDB, DB

′, σ ⊢P Q means that:

“Starting from a databaseDB, the programP eventu-
ally reaches a databaseDB

′, satisfying the queryQ
with substitutionσ".

We first describe the semantics of basic queries. If the initial
databaseDB evolves to a databaseDB

′ such thatSσ evaluates to
true inDB

′, then the program satisfies the basic queryS with sub-
stitutionσ.

DB
P
−→⋆

DB
′ Sσ ∈ I(bP, DB

′)

DB, DB
′, σ ⊢P S

Next, we describe the semantics of sequencing. If the initial
databaseDB evolves to a databaseDB

′ such that the basic query
S is satisfied with substitutionσ, andDB

′ evolves to a database

DB
′′ such that the queryQ is satisfied with substitutionσ, then the

program satisfies the queryS # Q with substitutionσ.

DB, DB
′, σ ⊢P S DB

′, DB
′′, σ ⊢P Q

DB, DB
′′, σ ⊢P S # Q

3. QUERY EVALUATION IN EON
We now describe how EON queries can be evaluated. Formally,

the query evaluation problem for EON is:

Given an EON programP and an EON queryQ, are
there some databaseDB and substitutionσ such that
∅, DB, σ ⊢P Q?

We show that this problem is decidable under some suitable as-
sumptions of monotonicity (see below). The essence of our algo-
rithm is to reduce the EON query evaluation problem to a decidable
satisfiability problem over Datalog.

Recall that, given a Datalog programF and a databaseDB,
I(F, DB) denotes the result of evaluatingF overDB. Given a pos-
itive literal S , we use the notationDB ⊢F S to indicate that there
is some substitutionσ such thatI(F, DB) containsSσ. Now,S is
satisfiablein F if there exists a databaseDB such thatDB ⊢F S .
The following satisfiability problem over Datalog is decidable.

THEOREM 1 (A DECIDABLE FRAGMENT OF DATALOG [12]).
Satisfiability is decidable for safe stratified Datalog programs with
unary base relations.

Recall that a database is a set of base facts. Given an EON pro-
gramP, we say that a database isreachablein P if it can be reached
from the initial database∅ by a sequence of transitions defined by
P. Now, the only base facts in any reachable database are over
relations inE . In the sequel, we focus on such databases. In par-
ticular, we view a databaseDB as a pair(U, I), whereU is a set of
constants andI : E → 2U .

Given a databaseDB = (U, I) and a subset of constantsX ⊆ U ,
we define the restriction ofDB toX, denotedDB|X , to be(X, IX),
whereIX(B) , I(B)∩X. We say thatDB1 ≤ DB2 if there exists
anX such thatDB1 = DB2|X .

Now, a positive literalS is monotonicin P if for all DB1 and
DB2, if DB1 ⊢bP

S andDB1 ≤ DB2, thenDB2 ⊢bP
S.

3.1 Basic queries, unguarded transitions
Suppose that we are given a basic queryS to evaluate on an

EON programP. We assume thatS is monotonic inP. Further,
suppose that all dynamic clauses inP areunguarded. A new clause
is unguarded if its body is a fact (e.g., “True.") in the program. A
next clause is unguarded if the relation in its body is apure relation.
The concept of a pure relation is defined inductively as follows: a
(unary) relationR is pure if eitherR ∈ E , or every clause in the
program withR in its head is of the form “R(x) :− L1, . . . ,Ln.”,
where eachLi is eitherRi(x) or !Ri(x) for some pureRi.

Note that an unguardednew clause is always enabled. Whether
an unguardednext clause is enabled for a constantc depends only
on the value of the relations inE for c.

Now, we evaluateS on P by translatingP to a Datalog program
⌊P⌋, and deciding if there exists a databaseDB such thatDB ⊢⌊P⌋

S andDB is reachable inP. The latter problem is reduced to a basic
satisfiability problem of the formDB ⊢⌊P⌋ ⌊S⌋, by encoding the
reachability condition into⌊P⌋ and defining⌊S⌋ to beS augmented
with the reachability condition.

Given a constantc that belongs to a databaseDB = (U, I), we
define itsatomic stateto be the set{B ∈ E | c ∈ I(B)}. We say
that an atomic stateX ⊆ E is reachable if there exists a reachable
databaseDB that contains a constant whose atomic state isX.

LEMMA 1. Given an EON programP in which all dynamic
clauses are unguarded, a databaseDB is reachable iff all constants
in the database have a reachable atomic state.

3.1.1 From EON to Datalog
We now show how reachable atomic states can be encoded in

Datalog. Specifically, given a EON programP, we define a set of
Datalog clausesT (P) for a unary relationReachable, such that
every constant inReachable has a reachable atomic state, and
every constant that has a reachable atomic state is inReachable.
Some of these clauses are not safe. Later, we present a clausetrans-
formation that uniformly transforms all clauses to ensure safety.

We begin by defining some auxiliary relations. LetE =
{B1, . . . , Bk}. For eachBi (i ∈ {1, . . . , k}), we include the fol-
lowing Datalog clauses, that check whether a pair of constants have
the same value atBi:

SameBi(x, y) :− Bi(x), Bi(y).
SameBi(x, y) :− !Bi(x), !Bi(y).

Now, consider an unguardednew clause of the form:

new Bi1 , . . . ,Bim
.

Let {Bj1 , . . . ,Bjn
} = E\{Bi1 , . . . , Bim

}. We replace this clause
with the following reachability clause in Datalog:

Reachable(x) :− Bi1(x), . . . ,Bim
(x),

!Bj1 (x), . . . , !Bjn
(x).

This clause may be read as follows: a satisfying database forthe
transformed Datalog program may contain a constantx whose
atomic state is{Bi1 , . . . ,Bim

}. Intuitively, new constants in EON
are represented by existentially quantified variables in Datalog.

Now, consider an unguardednext clause of the form:

next Bi1(x), . . . ,Bim
(x),

!Bj1 (x), . . . , !Bjn
(x) :− R(x).

Let {Bk1
, . . . , Bkr

} = E\{Bi1 , . . . , Bim
, Bj1 , . . . , Bjn

}. R is
pure; so we replace this clause with the following reachability
clause in Datalog:

Reachable(x) :−
Reachable(y), R(y),
Bi1(x), . . . ,Bim

(x),
!Bj1(x), . . . , !Bjn

(x),
SameBk1

(x, y), . . . ,SameBkr
(x, y).

This clause may be read as follows: a satisfying database forthe
transformed Datalog program may contain a constantx whose
atomic state isB ∪ {Bi1 , . . . ,Bim

} \ {Bj1 , . . . ,Bjn
}, if that

database also contains a constanty that satisfiesR(y) and has some
atomic stateB. Intuitively, the Datalog variablesx andy represent
the same EON constant, in possibly different “states", one of which
can be reached from the other.

Finally, the following clause checks whether there is any con-
stant in a satisfying database for the transformed Datalog program
whose atomic state is unreachable:

BadState :− !Reachable(x).

The set of clausesT (P) contains all of the clauses above. Now,
let U ∈ E be a fresh relation, which models the range of substitu-
tions. For any clauseC ∈ T (P), we obtain a transformed clause
⌊C⌋ by augmenting the body ofC with an additional conditionU(x)
for every variablex in C. The clause⌊C⌋ is guaranteed to be safe.

Now, let ⌊P⌋ = {⌊C⌋ | C ∈ bP ∪ T (P)}. Let ⌊S⌋ be the query
S , !BadState augmented with an additional conditionU(x) for
every variablex in S . We then have the following result.

THEOREM 2. Given an EON programP in which all dynamic
clauses are unguarded, a monotonic basic queryS is true inP iff
the query⌊S⌋ is satisfiable in the Datalog program⌊P⌋.

3.1.2 An optimization
The use of (double) negation to define the transformed query
⌊S⌋ can lead to potential inefficiencies in the satisfiability algo-
rithm (described in [7]). We can eliminate the use of this negation
by transforming every Datalog clauseC in the given programP

as follows: we augment the body of the clause with the condition
Reachable(x) for every variablex in the body. (It is possible to
further optimize this transformation, by adding the condition only
for variables that do not occur in the head of the clause, as long as
we add a similar condition for all variables occurring inS .)

3.2 Basic queries, monotonic transitions
Guarded dynamic clauses do not significantly complicate the

transformation. The reachability clause generated for a guarded
dynamic clause now includes the guard (i.e., the literal in the body
of the dynamic clause) in the body of the reachability clause. The
correctness proofs require the guards to be monotonic. Specifically,
a generalization of Lemma 1 holds true even for programs with
guarded dynamic clauses, as long as the guards are monotonic.

Recall that in the case of unguarded dynamic clauses, the
Reachable relation depends only on the relations inE , the auxil-
iary relationsSameBi, and itself. However, the encoding of guards
in reachability clauses makes theReachable relation dependent
on other relations mentioned in those guards. If we now do theop-
timization of Section 3.1.2, which adds reachability conditions to
the clauses of the given program, we may introduce cyclic depen-
dences betweenReachable and other relations. Thus, we must
verify that the transformed program is stratified before checking
satisfiability on the transformed program. Interestingly,it turns out
that the transformed program is stratified if and only if the guards
are monotonic. This result yields a simple method to test for the
monotonicity of guards.

3.3 Queries with sequencing
Finally, we show how we can handle queries with sequencing.

We assume that every basic query in such queries is monotonic.
Consider the queryS # Q. We first assume thatS andQ share
exactly one variablex. Let Done ∈ E be a fresh relation, andQ
be of the formS1 # . . . # Sn, for somen ≥ 1. We augment the
original EON program with the following dynamic clause:

next Done(x) :− S .

We then evaluate the queryDone(x),S1 # . . . # Sn on the aug-
mented EON program.

More generally, we add anext clause with a freshDone relation
for each variable shared byS andQ, and augmentQ accordingly
to account for those variables. On the other hand, ifS andQ do not
share any variable, we add anew clause with a freshDone relation,
and augmentQ with Done(z), wherez is a fresh variable.

4. EFFICIENT QUERY EVALUATION
IN A FRAGMENT OF EON

Under further assumptions, we now show that query evaluation
in EON can be reduced to simple query evaluation in Datalog. This
result is independent of what we present above. The main advan-
tage of this transformation is efficiency—while checking satisfia-
bility of Datalog programs may take exponential time in the worst
case, evaluating Datalog programs takes only polynomial time.

The requirements for this transformation are as follows. There
should be no (in)equality constraints over variables. In particular,
variables cannot be repeated in the head of a clause. Next, there
should be no negations on non-base (derived) relations, although
there may be negations on base relations. These conditions turn out
to be quite reasonable in practice. In particular, our models of of
Vista and Asbestos in Section 5 satisfy these conditions, and most
of our queries on these models satisfy these conditions as well.

We assume that sequencing is compiled away as in our origi-
nal reduction, and consider only basic queries. Further, weassume
that no constants appear in the EON program itself. (The trans-
formation can be extended in a straightforward way to allow con-
stants.) The intuition behind the transformation is as follows. Let
E = {B1, . . . , Bk}. We can represent the atomic state of a con-
stantc as the vector(v1, . . . , vk) wherevi is 1 if Bi(c) is true and
0 otherwise. We say that two constantsc andc′ aresimilar if they
have the same atomic state. Now in our case, a Datalog program
cannot distinguish between similar constants,i.e., it is not possible
to define a queryR(x) that is satisfied byc and notc′. (More gen-
erally, if ci is similar toc′i for 1 ≤ i ≤ r, thenR(c1, . . . , cr) is
true iff R(c′1, . . . , c

′
r) is true in the program.) Thus we can define a

query⌊R⌋(x1, . . . , xk) which is true iffR(x) is true for anyx with
atomic state(x1, . . . , xk) that is generated by the EON program.

For every non-base relationR of arity r, we define a new re-
lation ⌊R⌋ of arity rk. Given any Datalog clauseC, we re-
place it with a transformed clause⌊C⌋ as follows. For ev-
ery variable x in the clause, we introducek new variables
x1, . . . , xk. Then, every literal of the formR(y1, . . . , yr), where
R is a non-base relation, is transformed into a correspondinglit-
eral ⌊R⌋(y11, . . . , y1k, . . . , yr1, . . . , yrk) by replacing every oc-
currence of a variableyj by the corresponding vector of variables
yj1, . . . , yjk. Further, every literal of the formBi(x) is trans-
formed into the literalTrue(xi) and every literal of the form
!Bi(x) is transformed intoFalse(xi). (The auxiliary predi-
catesTrue and False are defined by the factsTrue(1) and
False(0).) Finally, for every variablex in the head of the clause,
we add the conditionReachable(x1, . . . , xk) to the body of the
transformed clause. (As an optimization, we may consider adding
this reachability condition only if no non-base relation isapplied to
x in the body of the clause.) For example, the clause

R(x, y) :− R′(x), !B1(x),B2(y).

yields the transformed clause:

⌊R⌋(x1, x2, y1, y2) :−
⌊R′⌋(x1, x2),False(x1),True(y2),Reachable(y1, y2).

Now, every clause of the form “new B :− R." is transformed to

Reachable(z1, . . . , zk) :− ⌊R⌋.

wherezi is 1 if Bi ∈ B and 0 otherwise.
Further, every clause of the form “next B(x), !B′(x) :− R(x)."

is transformed to

Reachable(z1, . . . , zk) :−
⌊R⌋(x1, . . . , xk),
Reachable(x1, . . . , xk),
Update(x1, z1), . . . ,Update(xk, zk).

whereUpdate(xi, zi) is True(zi) if xi is inB, False(zi) if xi

is in B′, andzi = xi otherwise. (The literalzi = xi is imple-
mented by replacingzi with xi in the clause.)

We then have the following result.

THEOREM 3. Given an EON programP with the above restric-
tions, a queryQ is true inP iff the query⌊Q⌋ is true in the Datalog
program⌊P⌋.

Proof details for all our results appear separately in [7], and are
omitted here due to lack of space.

5. EXPERIMENTS WITH THE EON TOOL
The transformations described in Sections 3 and 4 are imple-

mented in the EON tool [7]. Further, the back end includes imple-
mentations of satisfiability and evaluation algorithms over Datalog,
and the front end supports some syntax extensions over EON, such
asembedded scripts[7].

We now present a series of examples that illustrate how the EON
tool can be used to model and analyze dynamic access control sys-
tems. We begin with Windows Vista’s access control model (Sec-
tion 5.1). We automatically find some integrity vulnerabilities in
this model. Then, we automatically prove that exploits for those
vulnerabilities can be eliminated by enforcing a certain usage dis-
cipline on the model (via static analysis or runtime monitoring).
Roughly, this means that a user can be informed about potentially
unsafe authorization decisions in this model. Next, we consider
Asbestos’s access control model (Section 5.2). We automatically
validate some secrecy properties of that model. Finally, wemodel a
full-fledged webserver that runs on Asbestos (as described in [11]),
and automatically prove a secrecy guarantee for the webserver.

5.1 Windows Vista
The goal of Windows Vista’s access control model is to maintain

boundaries around trusted objects, in order to protect themfrom
less trusted processes. Trust levels are denoted byintegrity labels
(ILs), such asHigh, Med, andLow. Every object has an IL. Fur-
ther, every process is itself an object, and has an IL. A process can
spawn new processes, create new objects, and change their ILs,
based on its own IL. In particular, a process with ILPL can2:

– lower an object’s IL fromOL only if OL ⊑ PL;
– raise an object’s IL toOL only if OL ⊑ PL and the object is not

a process;
– read an object;
– write an object with ILOL only if OL ⊑ PL;
– execute an object with ILOL by lowering its own IL toPL⊓OL.

Below, we present an excerpt of a model of such a system in
EON. (The full model appears in [7].) The unary base relations
in the model have the following informal meanings:P contains
processes;Obj contains objects (including processes); andLow,
Med, High, etc.contain processes and objects with those ILs.

With new andnext clauses, we specify how an unbounded num-
ber of processes and objects, of various kinds, can be created.

new Obj,Low.
new Obj,Med.
new Obj,High.

next P(x) :- Obj(x).
...

Further, withnext clauses, we specify how ILs of processes and
objects can be changed. For instance, aMed process can raise the
IL of an object fromLow to Med if that object is not a process; it
can also lower the IL of an object fromMed to Low. A High pro-
cess can lower its own IL toMed (e.g., to execute aMed object).
2In fact, the capabilities of a process may be further constrained by Win-
dows Vista’s discretionary access control model. However,we ignore this
model because it is rather weak; see [7] for a detailed discussion.

next Med(y),!Low(y) :- Low(y),!P(y),Med(x),P(x).
next Low(y),!Med(y) :- Med(y),Med(x),P(x).

next Med(x),!High(x) :- High(x),P(x).
...

The full model contains several other rules that are implemented
by the system. Specifying these rules manually can be tedious and
error-prone; instead, EON allows us to embed scripts in our model
(as syntax extensions) that generate these rules automatically [7].

Finally, with Datalog clauses, we specify how processes can
Read, Write, andExecute objects. A processx canRead an
objecty without any constraints. In contrast,x canWrite y only
if the IL of x is Geq (greater than or equal to) the IL ofy. Con-
versely,x canExecute y only if the IL of y is Geq the IL of x.

Read(x,y) :- P(x),Obj(y).

Write(x,y) :- P(x),Geq(x,y).

Execute(x,y) :- P(x),Geq(y,x).

Geq(x,y) :- Med(x),Med(y).
Geq(x,y) :- Med(x),Low(y).
Geq(x,y) :- Low(x),Low(y).
...

5.1.1 Integrity vulnerabilities on Windows Vista
We now ask some queries on the model above. For instance,

can aMed object be read by aMed process after it is written by a
Low process? Can an object that is written by aLow process be
eventually executed by aHigh process by downgrading toMed?

? Med(y); Low(x),Write(x,y); Med(z),Read(z,y).
? Low(x),Write(x,y); High(z); Med(z),Execute(z,y).

The former encodes a simple data-flow integrity vulnerability;
the latter encodes a simple privilege-escalation vulnerability. (In
the full model, we study some more complicated vulnerabilities.)
When we run these queries, we obtain several exploits for those
vulnerabilities. (See,e.g., [6, 8], for more details on such vulner-
abilities.) For each exploit, our tool shows a derivation tree; from
that tree, we find a sequence ofnew, next, and other clauses that
lead the system to an insecure state and derive the query. Forin-
stance, the former query is derived as follows: first, aMed objecty
is created; next,y is downgraded toLow by aMed process; next,y
is written by aLow processx; finally, y is read by aMed process
z. The latter query is derived as follows: first, aLow objecty is
created; next,y is written by aLow processx; next,y is upgraded
to Med by aMed process; next, aHigh processz is downgraded
to Med; finally, y is executed byz.

Thus, EON can be quite effective as adebuggingtool—if there
is a bug, EON is guaranteed to find it. But recall that if there are
no bugs, EON is also guaranteed to terminate without finding any!
That is, EON can be just as effective as a theorem-proving tool. In
particular, we now prove that the vulnerabilities above cannot be
exploited if suitable constraints are imposed on the model.In prac-
tice, these constraints may be implemented either by staticanalysis
or by runtime monitoring on programs running in the system.

5.1.2 An usage discipline to recover integrity
Basically, we attach to each object a labelSHigh, SMed, or

SLow, which indicates a static lower bound on the integrity of the
contents of that object; further, we attach to each process alabel
DHigh, DMed, or DLow, which indicates a dynamic lower bound
on the integrity of the values known to that process. The seman-
tics of these labels are maintained as invariants by the model. In
particular, these labels are initialized as follows.

new Obj,Low,SLow.
new Obj,Med,SMed.
new Obj,High,SHigh.

next P(x),DHigh(x) :- Obj(x).
...

Now, whenever an object’s IL is lowered, the IL should not fall
below the static label of the object.

next Low(y),!Med(y) :- Med(y),SLow(y),Med(x),P(x).
...

A process’s dynamic label may be lowered to reflect that it may
know the contents of an object with a lower static label.

next DLow(x),!DHigh(x) :- DHigh(x),SLow(y).
...

Now, a processx canRead an objecty only if the dynamic label
of x is DSLeq (less than or equal to) the static label ofy. Con-
versely,x canWrite y only if the dynamic label ofx is DSGeq
(greater than or equal to) the static label ofy. In contrast,x can
Execute y only if its own IL is lowered to or below the static
label ofy. This condition,SGeq(y, x), subsumes the earlier con-
dition Geq(y, x).

Read(x,y) :- P(x),Obj(y),DSLeq(x,y).

DSLeq(x,y) :- DLow(x),SLow(y).
DSLeq(x,y) :- DLow(x),SMed(y).
DSLeq(x,y) :- DMed(x),SMed(y).
...

Write(x,y) :- P(x),Obj(y),Geq(x,y),DSGeq(x,y).

DSGeq(x,y) :- DLow(x),SLow(y).
DSGeq(x,y) :- DMed(x),SMed(y).
DSGeq(x,y) :- DMed(x),SLow(y).
...

Execute(x,y) :- P(x),Obj(y),SGeq(y,x).

SGeq(y,x) :- SLow(y),Low(x).
SGeq(y,x) :- SMed(y),Low(x).
SGeq(y,x) :- SMed(y),Med(x).
...

Finally, recall the temporal queries that we ask above. We re-
formulate the former query for this model—instead of constraining
the IL of z, we now constrain its dynamic label, which is a better
approximation of its runtime taint.

? Med(y) ; Write(x,y),Low(x) ; Read(z,y),DMed(z).

This query evaluates to false, showing that the encoded data-flow
integrity vulnerability cannot be exploited. The latter query also
evaluates to false, showing that the encoded privilege-escalation
vulnerability cannot be exploited. The full constrained model ap-
pears in [7]. There, we show that exploits for some other compli-
cated vulnerabilities are also eliminated under these constraints.

Thus, with EON, we not only find vulnerabilities in Windows
Vista’s access control model, but also prove that they can beelimi-
nated by imposing suitable constraints on the model. We conclude
that these constraints encode a formal “discipline" that isrequired
to safely exploit the flexibilities provided by the model. Infact, a
similar discipline already appears in [6], with manual proofs.

5.2 Asbestos
The goal of Asbestos’s access control model is to dynamically

isolate trusted processes that require protection from less trusted
processes. This isolation is achieved bytaint propagation. Specifi-
cally, in Asbestos each processP has two labels: asend labelPS ,
which is a lower bound on the security of messages that can be
sent byP , and a receive labelPR, which is an upper bound on the
security of messages that can be received byP . Further, each com-
munication portC has aport label CL, which is an upper bound
on the security of messages that can be carried byc. Sending a
message from processP to processQ on portC requires that:

PS ⊑ QR ⊓ CL

Further, on communication,Q is tainted byP :

QS ← QS ⊔ PS

In fact, this situation is slightly more complicated withdeclas-
sification. Specifically, there are a small number ofsecurity levels
(⋆, 0, 1, 2, 3), with minimum⋆ and maximum3. A label is a fi-
nite record of security levels. Labels form a lattice(⊑,⊔,⊓), as
follows. (HereL1, L2 range over labels, andℓ over label fields.)

L1 ⊑ L2 ⇔ ∀ℓ. L1.ℓ ≤ L2.ℓ

(L1 ⊔ L2).ℓ = max(L1.ℓ, L2.ℓ)

(L1 ⊓ L2).ℓ = min(L1.ℓ, L2.ℓ)

Now, an operation _⋆ is defined as follows.

L⋆.ℓ =


⋆ if L.ℓ = ⋆
3 otherwise

On communication,Q is tainted byP only in fields that are not⋆.

QS ← QS ⊔ (PS ⊓Q⋆
S)

5.2.1 Secrecy on Asbestos
To understand some security consequences of this model, letus

focus on a single fieldℓ, and the security levels⋆, 1, 2, and3.
Below, we present an excerpt of a model of such a system in EON.
Let STAR denote⋆, andi,j range over{1, 2, 3}. The unary base
relations in the model have the following informal meanings: P
contains processes;LRi andLSj contain processesx such that
xR.ℓ = i andxS.ℓ = j, respectively;LSTAR contains processes
x such thatxS.ℓ = ⋆ andxR.ℓ = 3; andMj contains processesx
that carry messages generated by processesy such thatyR.ℓ = j,
respectively. We boot our system with the following clauses; these
clauses create an unbounded number of processes of various kinds,
and let them generate messages accordingly.

new P,LSTAR.
new P,LR1,LS1.
new P,LR2,LS1.
new P,LR3,LS1.

next M2(x),LS2(x),!LS1(x) :- LS1(x),LR2(x).
next M3(x),LS3(x),!LS1(x) :- LS1(x),LR3(x).
...

Next, we specify clauses for communication on unrestricted
ports (i.e., portsC such thatCL.ℓ = 3). The requirements and
effects of such communication appear in the bodies and headsof
these clauses, respectively. Note, in particular, how the relationsMj
are augmented on such communication. (The full model contains
several other, similar rules, generated automatically by scripts.)

next M2(x) :- P(x),LSTAR(y),M2(y).
next M3(x) :- P(x),LSTAR(y),M3(y).

next M2(x) :- LSTAR(x),P(y),M2(y).
next M3(x) :- LSTAR(x),P(y),M3(y).

next M2(x),LS2(x),!LS1(x) :-
M2(y),LS2(y),LS1(x),LR2(x).

next M3(x),LS2(x),!LS1(x) :-
M3(y),LS2(y),LS1(x),LR2(x).

...

Finally, we ask some queries. According to [11], in Asbestos
the default security level in any field of a receive label is2.
Thus, having3 in some field of the receive label gives higher
read privileges than default; processes with such labels should
be able to share messages that default processes cannot know.
On the other hand, having1 in some field of the receive label
gives lower read privileges than default; processes with such
labels should not be able to know messages shared by default
processes. LetReadWithout3 denote the existence of a
processx for which M3(x) is true despiteLRi(x) for some
i < 3. On the other hand, letReadWith1 denote the exis-
tence of a processx for which Mj(x) is true for somej > 1
despiteLR1(x). These queries encode secrecy vulnerabilities.

ReadWithout3 :- M3(x),LR2(x).
ReadWithout3 :- M3(x),LR1(x).

ReadWith1 :- M2(x),LR1(x).
ReadWith1 :- M3(x),LR1(x).

? ReadWithout3.
? ReadWith1.

We find exploits for both queries with EON. The derivations for
these queries may be anticipated—messages can be declassified,
that is, forwarded by processesz for whichLSTAR(z) is true, with-
out any constraints or effects.

Now, letBlameReadWithout3 denote the existence of a pro-
cessz for whichM3(z) andLSTAR(z) are true. On the other hand,
let BlameReadWith1 denote the existence of a processz for
which Mj(z) andLSTAR(z) are true for somej > 1. We now
ask the following, revised queries that account for declassification.
(These queries encode violations ofrobust declassification[21].)

BlameReadWithout3 :- M3(y),LSTAR(y).
BadReadWithout3 :- ReadWithout3,!BlameReadWithout3.

BlameReadWith1 :- M2(y),LSTAR(y).
BlameReadWith1 :- M3(y),LSTAR(y).
BadReadWith1 :- ReadWith1,!BlameReadWith1.

? BadReadWithout3.
? BadReadWith1.

Now EON does not find exploits for either query. Note that the
revised queries use negation on non-base relations, and thus take
a long time to run. We can simulate these queries without using
negation, simply by removing the following clauses and asking the
same queries as before.

next M2(x) :- LSTAR(x),M2(y).
next M3(x) :- LSTAR(x),M3(y).

Once again, EON does not find exploits for either query; how-
ever, the queries now run much faster. Thus, we have the following
secrecy theorem, proved automatically by EON.

THEOREM 4 (SECRECY). Assume that X is either
{P | PR.ℓ = 3} or {P | PR.ℓ 6= 1}. If Q /∈ X, then Q
can never carry a message generated by a process inX, unless
some declassifying process carries that message as well.

5.2.2 Secrecy in a webserver running on Asbestos
We now present a significantly more ambitious example to

demonstrate the scope of our techniques. Specifically, we apply
EON to verify a webserver running on Asbestos. This webserver is
described in detail in [11]; below, we briefly review its architecture.
We then present an excerpt of a model of this webserver in EON,
and study its key security guarantee. The full model appearsin [7].

The relevant principals include a net daemon, a database proxy,
and the users of the webserver. When a user connects, the net dae-
mon spawns a dedicated worker process for that user. The worker
process can communicate back and forth with that user over the net;
further, it can access a database that is common to all users.The
webserver relies on sophisticated protocols for connection handling
and database interaction; the aim of these protocols is to isolate pro-
cesses that run on behalf of different users, so that no user can see
a different user’s data.

In our model, we focus on two usersu andv; processes that run
on behalf of these users are tagged as such on creation. We fo-
cus on label fields that are relevant for secrecy—these includeuc
andut (used for communication and taint propagation byu), and
vc andvt (used for communication and taint propagation byv).
We model labels with unary base relations that specify the secu-
rity levels in each field:e.g., for processesx, LSuc1(x) denotes
xS.uc = 1; LRut2(x) denotesxR.ut = 2; andLSvcSTAR(x)
denotesxS.vc = STAR; similarly, e.g., for communication ports
y, Lvt2(y) denotesyL.vt = 2.

The other unary base relations in the model have the follow-
ing informal meanings. Useru and Userv contain processes
run by u and v, respectively;NETd contains processes run by
the net daemon; andWu andWv contain worker processes that are
spawned by the net daemon foru andv, respectively. All of these
processes participate in a connection handling protocol. Further,
Ready contains any such process that is ready for communica-
tion, after that protocol is executed. Other processes are run by
the database proxy. In particular,DBproxyRu andDBproxyRv
contain processes that receive database records foru andv, respec-
tively; andDBproxySu andDBproxySv contain processes that
send database records foru andv, respectively.

The processes above communicate on well-defined ports.
Portu andPortv contain ports on which data is sent over the net
by processes running on behalf ofu andv, respectively.PortDBu
and PortDBv contain ports on which data is received by the
database proxy from processes running on behalf ofu andv, re-
spectively.PortAny contains unrestricted ports that are used for
all other communication.

Finally, to verify secrecy, we letMu andMv contain processes
that carryu’s data andv’s data, respectively. We require that no
process that runs on behalf ofv is eventually inMu (and vice versa).

We now outline our model. We describe only clauses that involve
u; the clauses that involvev are symmetrical. Most processes in
the system are created with default send and receive labels.(Any
security level in a default send label is1, and any security level in a
default receive label is2.) For instance, user processes are created
as follows.

new Useru,Ready,Mu,
LSuc1,LSut1,LSvc1,LSvt1,
LRuc2,LRut2,LRvc2,LRvt2.

...

Next, we model the connection handling protocol in [11]. When
a useru initiates a connection, the net daemon creates a new pro-
cess, as follows.

new NETd,
LSuc1,LSut1,LSvc1,LSvt1,
LRuc2,LRut2,LRvc2,LRvt2.

This process creates a new port on which data can be sent over
the net tou. The security level in the relevant communication field
uc of the port’s label is0; thus, processes with default send labels
cannot send messages on this port.

new Portu,
Luc0,Lut2,Lvc2,Lvt2.

...

The net daemon now lowers the security level in the fielduc of
its send label toSTAR.

next LSucSTAR(x),!LSuc1(x) :-
NETd(x),LSuc1(x),Portu(y).

...

Next, the net daemon lowers the security level in the relevant
taint propagation fieldut of its send label toSTAR, and becomes
ready for communication.

next LSutSTAR(x),!LSut1(x),Ready(x) :-
NETd(x),LSut1(x),LSucSTAR(x).

...

Eventually, the net daemon can raise the security level in the field
ut of its receive label to3, to receive tainted data fromu. It can
similarly raise the security level in the fieldut of the port’s label,
to allow it to carry tainted data back tou.

next LRut3(x),!LRut2(x) :-
NETd(x),LRut2(x),LSutSTAR(x).

next Lut3(x),!Lut2(x) :-
Portu(x),Lut2(x),NETd(y),LucSTAR(y).

...

Further, the net daemon can spawn a new worker process foru.

new Wu,
LSuc1,LSut1,LSvc1,LSvt1,
LRuc2,LRut2,LRvc2,LRvt2.

...

The security levels in the fieldsuc andut of the worker pro-
cess are lowered and raised toSTAR and3, respectively, before the
worker process becomes ready for communication.

next LSucSTAR(x),LSut3(x),!LSuc1(x),!LSut1(x),
Ready(x) :-

Wu(x),LSuc1(x),LSut1(x),
NETd(y),LSucSTAR(y),LSutSTAR(y).

...

Elsewhere, the database proxy creates the following processes
and ports for receiving and sending records foru.

new DBproxyRu,
LSuc1,LSutSTAR,LSvc1,LSvtSTAR,
LRuc2,LRut3,LRvc2,LRvt3.

new PortDBu,Luc2,Lut3,Lvc2,Lvt2.

new DBproxySu,
LSuc1,LSut3,LSvc1,LSvt3,
LRuc2,LRut3,LRvc2,LRvt3.

...

Unrestricted ports can also be created.

new PortAny,Luc3,Lut3,Lvc3,Lvt3.

We model all valid communication links between the above pro-
cesses, following the implementation described in [11]. Specifi-
cally, let Send(x, z) denote that processx may send a message
to processz. This condition is constrained by the auxiliary con-
ditionsLink(x, y, z) andComm(x, y, z) for some porty, as fol-
lows. Link(x, y, z) requires thatx andz are ready for commu-
nication, andy is actually available for communication betweenx
andz (see below).Comm(x, y, z) is an encoding of the requirement
xS ⊑ zR⊓yL for communication, as described in the beginning of
Section 5.2; the rules are generated automatically by scripts. Note
that some of the communication links that we model below turnout
to be redundant, because of taint propagation. (Indeed, some links
allow communication that is dangerous for secrecy.)

Link(x,y,z) :-
Useru(x),PortAny(y),Wu(z),Ready(z).

...
Link(x,y,z) :-

Wu(x),Ready(x),Portu(y),Ready(z).
...
Link(x,y,z) :-

Wu(x),Ready(x),PortAny(y),Wv(z),Ready(z).
...

Link(x,y,z) :-
NETd(x),Ready(x),PortAny(y),Ready(z).

Link(x,y,z) :-
Ready(x),PortDBu(y),DBproxyRu(z).

Link(x,y,z) :-
DBproxyRu(x),PortAny(y),DBproxySu(z).

Link(x,y,z) :-
DBproxySu(x),PortAny(y),Wu(z),Ready(z).

Link(x,y,z) :-
DBproxySu(x),PortAny(y),Wv(z),Ready(z).

...

Send(x,y,z) :- Link(x,y,z), Comm(x,y,z).

Finally, we model the effects of communication. Specifically,
the clauses below encode the effects of sending a message from
processx to processz, as described in the beginning of Section 5.2:
the labelzS is transformed tozS ⊔ (xS ⊓ z⋆

S). For any fieldℓ, the
security levelzS.ℓ does not need to be raised ifmin(z⋆

S.ℓ, xS.ℓ) ≤
zS .ℓ, that is, ifzS.ℓ = ⋆ or xS.ℓ ≤ zS.ℓ. This condition is denoted
byLeqSTARℓ(x, z). Further, the relationMu is augmented on such
communication. (The rules are generated automatically by scripts.)

next Mu(z) :-
Send(x,z),Mu(x),
LeqSTARut(x,z),LeqSTARvt(x,z).
LeqSTARuc(x,z),LeqSTARvc(x,z).

next Mu(z),
LSvt3(z),!LSvt1(z) :-

Send(x,z),Mu(x),
LeqSTARut(x,z),LSvt1(z),LSvt3(x).
LeqSTARuc(x,z),LeqSTARvc(x,z).

next Mu(z),
LSut3(z),!LSut1(z) :-

Send(x,z),Mu(x),
LSut1(z),LSut3(x),LeqSTARvt(x,z).
LeqSTARuc(x,z),LeqSTARvc(x,z).

next Mu(z),
LSvt3(z),!LSvt1(z),LSut3(z),!LSut1(z) :-

Send(x,z),Mu(x),
LSut1(z),LSut3(x),LSvt1(z),LSvt3(x).
LeqSTARuc(x,z),LeqSTARvc(x,z).

...

We now ask the querySecrecyViolation, which denotes
the existence of a processx that runs on behalf ofv, i.e.,Userv(x)
or Wv(x), but carriesu’s data,i.e., Mu(x).

SecrecyViolation :- Userv(x),Mu(x).
SecrecyViolation :- Wv(x),Mu(x).

? SecrecyViolation.

EON does not find any exploits for this query. In other words,
we have the following theorem, automatically proved by EON.

THEOREM 5 (DATA ISOLATION). A user u’s data is never
leaked to any process running on behalf of a different userv.

We conclude by mentioning some statistics that indicate thescale
of this experiment. The whole specification of the webserveris
around 250 lines of EON. The translated Datalog program contains
152 recursive clauses over a 46-aryReachable relation (that is,
over 46-bit atomic states). Our query takes around 90 minutes to
evaluate on a Pentium IV 2.8GHz machine with 2 GB memory—in
contrast, the queries for the other examples take less than asecond.

Scripts for all the examples in this section are available in[7].

6. RELATED WORK
It is well-known that the “safety" problem for access control

models (i.e., whether a given access is allowed by a given access
control model) is undecidable in general [13, 9]. Nevertheless,
there are restricted classes of access control models for which this
problem is decidable. Our work may be viewed as a step towards
identifying such classes of models: we design an expressivelan-
guage for dynamic access control systems, in which information-
flow properties remain decidable.

Analyzing access control models with logic programs has a fairly
long history. We focus here only on more closely related work.
Recently Doughertyet al. [10] propose a technique to study the
security properties of access control policies under dynamic envi-
ronments. There, a policy is specified in a fragment of Datalog
without negation and recursion, and an environment is specified as
a finite state machine. The composition of the policy and the envi-
ronment is then analyzed by reduction to first-order logic formulae.
While the authors identify some decidable problems in this frame-
work, the lack of recursion and negation limits the expressivity of
both models and queries, and it is not always possible to specify
accurate finite state machines for environments. Indeed, none of
the dynamic access control models studied in this paper can be an-
alyzed in their framework.

Sarna-Starosta and Stoller [18] study the Security-Enhanced
Linux (SELinux) system in Prolog. The SELinux system enforces
access control policies written in SELinux’s policy language. The
authors describe a tool called PAL that translates such policies into
logic programs, and analyzes them by query evaluation. Prasad
et al. [16] study both SELinux and Windows XP configurations in
Datalog in a tool called Netra. Unlike PAL, Netra is both sound and
complete, since query evaluation is decidable in Datalog (while in
Prolog is not). However, neither tool can find vulnerabilities that
are exploited dynamically. Some of these concerns are addressed
by Stolleret al.’s recent work on policy analysis for administrative
role-based access control [19], which is similar in spirit to ours.

More recently, Beckeret al. [2] propose a language called Sec-
PAL that can express authorization policies and fine-grained del-
egation control in decentralized systems. Their specifications are
compiled down to programs in Datalog, much as in our work. Since
Datalog is a subset of EON, it follows that EON is at least as ex-
pressive as SecPAL. On the other hand, it is not clear whetherSec-

PAL is as expressive as EON; the former is tailored to expressau-
thorization and delegation policies, while the latter remains largely
agnostic in that respect. An interesting aspect of SecPAL isthat
it allows negations within queries. While EON allows such nega-
tions, the fragment discussed in Section 4 does not. However, we
have checked that this restriction can be lifted from that fragment
without compromising correctness or efficiency.

Other relevant work includes Blanchet’s ProVerif [5], which is
a powerful tool that can analyze security protocols writtenin the
applied pi-calculus. The underlying engine rewrites the protocols
and associated equational theories into Prolog-like rules, and uses
customized resolution procedures to answer queries about secrecy
and authenticity properties. ProVerif is sound but not complete; it
may not terminate on queries, and it may also fail to prove or dis-
prove queries. Indeed, while ProVerif can handle Windows Vista’s
access control model, it does not terminate on our model of As-
bestos’s webserver. In sum, EON is less expressive than ProVerif;
but for models that satisfy our restrictions, EON guarantees sound
and complete results.

Finally, we are not the first to propose a dynamic language based
on Datalog. Related languages have been studied, for instance, by
Abadi and Manna [1] and Orgun [17]. However, we seem to be the
first to introduce anew operator to Datalog, and show that it can be
reduced to existential quantification in Datalog. Such an operator
allows us to express specifications that quantify over an unbounded
number of processes and objects.

7. CONCLUSIONS
In this paper, we present EON, a logic-programming language

and tool that can be used to model and analyze dynamic access
control systems. Security violations can be modeled as temporal
queries in this language, and query evaluation can be used tofind
attacks. We show that query evaluation in EON can be reduced to
decidable query satisfiability in a fragment of Datalog, andunder
further restrictions, to efficient query evaluation in Datalog.

Our design of EON requires much care to keep query evaluation
decidable. In particular, we require that any base relationthat is in-
troduced or transformed be unary—allowing dynamic binary base
relations easily leads to undecidability [7]. Moreover, werequire
transitions to have monotonic guards, and queries to be monotonic.

These restrictions do not prevent us from modeling state-of-the-
art access control models, such as those implemented by Windows
Vista and Asbestos. With unary base relations andnew clauses,
we can create and label processes and objects. Further, withnext

clauses, we can model runtime effects such as dynamic accesscon-
trol, communication, and taint propagation. Thus, EON turns out
to be a good fit for modeling dynamic access control systems.

Further, we demonstrate that EON can verify various security
properties of interest. Since our query evaluation strategy is both
sound and complete, EON either finds bugs or decisively proves the
absence of bugs. We expect that there are other classes of systems
that can be modeled and analyzed using this approach.

8. REFERENCES
[1] M. Abadi and Z. Manna. Temporal logic programming.

Journal of Symbolic Computing, 8(3):277–295, 1989.
[2] M. Becker, C. Fournet, and A. Gordon. Design and semantics

of a decentralized authorization language. InCSF’07:
Computer Security Foundations Symposium. IEEE, 2007.

[3] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Report
M74-244, MITRE Corp., 1975.

[4] K. J. Biba. Integrity considerations for secure computer
systems. Technical Report TR-3153, MITRE Corp., 1977.

[5] B. Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. InCSFW’01: Computer Security
Foundations Workshop, page 82. IEEE, 2001.

[6] A. Chaudhuri, P. Naldurg, and S. Rajamani. A type system
for data-flow integrity on Windows Vista. InPLAS’08:
Programming Languages and Analysis for Security, pages
89–100. ACM, 2008.

[7] A. Chaudhuri, P. Naldurg, S. Rajamani, G. Ramalingam, and
L. Velaga. EON: Modeling and analyzing dynamic access
control systems with logic programs. Technical Report
MSR-TR-2008-21, Microsoft Research, 2008. Seehttp:
//www.soe.ucsc.edu/~avik/projects/EON/.

[8] M. Conover. Analysis of the windows vista security model.
Symantec Report. Available atwww.symantec.com/
avcenter/reference/Windows_Vista_
Security_Model_Analysis.pdf.

[9] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[10] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. In
IJCAR’06: International Joint Conference on Automated
Reasoning, 2006.

[11] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris. Labels and event processes in the Asbestos
operating system. InSOSP’05: Symposium on Operating
Systems Principles, pages 17–30. ACM, 2005.

[12] A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Static
analysis in datalog extensions.Journal of the ACM,
48(5):971–1012, 2001.

[13] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On
protection in operating systems. InSOSP’75: Symposium on
Operating systems Principles, pages 14–24. ACM, 1975.

[14] B. W. Lampson. Protection.ACM Operating Systems Review,
8(1):18–24, Jan 1974.

[15] P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor,
J. Turner, and J. Farrell. The inevitability of failure: The
flawed assumption of security in modern computing
environments. Technical report, NSA, 1995.

[16] P. Naldurg, S. Schwoon, S. Rajamani, and J. Lambert. Netra:
seeing through access control. InFMSE’06: Formal Methods
in Security Engineering, pages 55–66. ACM, 2006.

[17] M. A. Orgun. On temporal deductive databases.
Computational Intelligence, 12:235–259, 1996.

[18] B. Sarna-Starosta and S. D. Stoller. Policy analysis for
security-enhanced linux. InWITS’04: Workshop on Issues in
the Theory of Security, 2004. Available athttp://www.
cs.sunysb.edu/~stoller/WITS2004.html.

[19] S. D. Stoller, P. Yang, C. Ramakrishnan, and M. I. Gofman.
Efficient policy analysis for administrative role based access
control. InCCS’07: Conference on Computer and
Communications Security. ACM, 2007.

[20] J. D. Ullman.Principles of Database and Knowledge-base
Systems, Volume II: The New Technologies. Computer
Science Press, New York, 1989.

[21] S. Zdancewic and A. C. Myers. Robust declassification. In
CSFW’01: Computer Security Foundations Workshop, pages
5–16. IEEE, 2001.

