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Abstract. By shifting the burden of proofs to the user, a proof-carrying
authorization (PCA) system can automatically enforce complex access
control policies. Unfortunately, managing those proofs can be a daunting
task for the user. In this paper we develop a Bash-like language, PCAL,
that can automate correct and efficient use of a PCA interface. Given a
PCAL script, the PCAL compiler tries to statically construct the proofs
required for executing the commands in the script, while re-using proofs
to the extent possible and rewriting the script to construct the remaining
proofs dynamically. We obtain a formal guarantee that if the policy does
not change between compile time and run time, then the compiled script
cannot fail due to access checks at run time.

1 Introduction

Proof-carrying authorization (PCA) [3, 5, 6, 19, 15, 17] is a modern access control
technology, where an access control policy is formalized as a set of logical formu-
las, and a principal is allowed to perform an operation on a resource only if that
principal can produce a logical proof showing that the policy entails that the
principal may perform that operation on that resource. While this architecture
allows automatic enforcement of complex access control policies, it substantially
increases the burden of the user, since each request to perform an operation
must be accompanied by one or more proofs. Furthermore, even if the user em-
ploys a theorem prover to construct the proofs, the user must still ensure that
enough proofs are generated for each request to succeed, while minimizing the
costs of proof construction at run time. In this paper we develop a program-
ming language that can assist the user in performing such tasks correctly and
automatically in a system with PCA. We have implemented a compiler for our
language that works in conjunction with a PCA-based file system [15].

Our language, PCAL, extends the Bash scripting language with some PCA-
specific annotations; the PCAL compiler translates programs with these anno-
tations to ordinary Bash scripts, to be executed in a system with PCA. More
precisely, PCAL annotations can specify what proofs the programmer expects
to hold at particular program points. Based on these annotations, the compiler
performs the following tasks.
1. It checks that the programmer’s expectations about proofs suffice to allow

successful execution of every shell command in the script. For this, the com-
piler needs to know what permissions are required to execute each shell
command. We provide this information through a configuration file.



2. Next, the compiler uses a theorem prover and information about the ac-
cess control policy to try to statically construct proofs corresponding to the
programmer’s annotations. In cases where static proof construction fails, be-
cause the annotations do not convey enough static information, the compiler
generates code that constructs the proof at run time by calling the theorem
prover from the command line.

3. Finally, the compiler adds code to pass appropriate proofs for each shell
command to the PCA interface.

Thus, the output of the compiler is a Bash script which, beyond the usual
commands, contains some code to generate proofs at run time (when it can-
not generate such proofs at compile time), and some code to pass the proofs,
generated either statically or dynamically, to the PCA interface.

Using PCAL offers at least two advantages over a naive approach, where a
user generates and passes to the PCA interface enough proofs of access before
running an unannotated script.

1. Because of the static checks and dynamic code generated by the compiler,
it is guaranteed that the resulting script will at least try to construct all
necessary proofs of access. Thus, the script can fail only if the user does
not have enough privileges to run it, and not because the user forgot to
create some proofs. Indeed, we prove a formal theorem which states that if
compilation of a program succeeds and the policy does not change between
compilation and program execution, then the program cannot fail due to an
access check (Theorem 2). This is very significant for scripts where the user
cannot determine a priori what operations the script will perform.

2. Since the compiler sees all commands that the script will execute, it re-uses
proofs to the extent possible and reduces the proof construction overhead,
which a naive user may not be able to do. This is particularly relevant for
POSIX-like policies where accessing a file requires an “execute” permission
on all its ancestor directories. If several files in a directory need to be pro-
cessed, there is no need to construct proofs for the ancestor directories again
and again. The PCAL compiler takes advantage of this and other similar
structure in policies and combines it with information about a program’s
commands to minimize proof construction.

By design, PCAL and its compiler are largely independent of the logic used
to express policies. The compiler requires a theorem prover compatible with
the logic used, but it does not analyze formulas or proofs itself. As a result,
the compiler can be (trivially) modified to use a different logic. Similarly, the
compiler is parametric in the shell commands it supports. It assumes a map
from each shell command to the permissions needed to execute it, and a single
shell command to pass proofs to the PCA interface. By replacing this map and
the command, the compiler can be used to support any PCA interface, not
necessarily a file system.

PCAL is distinct from other work that combines PCA with a programming
language [17, 4]. In all such prior work, the language is used to enforce access con-
trol statically. On the other hand, PCAL uses a combination of static checks and



dynamic code to ensure compliance with the requirements of the PCA interface.
Static enforcement is a special case of this approach, where an input program is
rejected unless the compiler can construct all required proofs at compile time.
Furthermore, in all prior work proofs are data structures and programmers must
write explicit code to construct them. In particular, programmers must under-
stand the logic. In contrast, PCAL separates proofs from programs, and shifts the
burden of constructing proofs (and understanding the logic) from programmers
to an automatic theorem prover. We believe that this not only makes PCAL’s
design modular, but also easier to use.

Contributions We believe that we are the first to propose, design, and imple-
ment a language that uses a combination of static checks and dynamic code to
optimize the proof burden of a PCA-compliant program. This setting presents
some unique technical challenges, and our design and implementation require
some novel elements to deal with those challenges.

1. While we would like to discharge as many proofs as possible statically, we
must be concerned about possibly invalidating the assumptions underlying
those proofs at run time. For instance, the state of the system may not
remain invariant between compile time and run time. This requires a careful
separation of (dynamic) state conditions from other (static) constraints.

2. Since the values of some program variables cannot be determined at compile
time, the PCAL compiler constructs quantified proofs which are parametric
over these program variables. These variables are substituted at run time to
obtain ground proofs. (See Section 5 for details.)

3. Another notable feature of PCAL is that programmer annotations have both
static and dynamic semantics. Statically, they specify authorization condi-
tions and other constraints that should hold at run time, thereby aiding
verification of correctness by the compiler. Dynamically, they justify any
assumptions on the existence of authorization proofs and other constraints
made by the compiler, thereby allowing sound optimizations.

4. For practical reasons, we must also be concerned about balancing the rel-
ative strengths and weaknesses of a theorem prover (to discharge proofs)
and compiler (to analyze programs). We achieve such a balance by working
at several levels of abstraction. While all functions and predicates used in
a script have concrete implementations at run time, the compiler only par-
tially interprets these functions and predicates with abstract rewrite rules,
so that the program can be analyzed with appropriate precision by symbolic
techniques. Furthermore, calls to the theorem prover are simplified, so that
the theorem prover can treat all functions and predicates as uninterpreted,
and thus can search for proofs efficiently. Tying these levels of abstraction
together requires some care in the implementation. This is discussed further
in Section 5.

5. We prove formally that the behavior of a compiled program is the same as
that of the source program (Theorem 1). The proof of this theorem requires
a precise characterization of assumptions made on the theorem prover, the



proof verifier, and the relation between the environment in which the pro-
gram is compiled and that in which it is executed. We believe that this
characterization is a significant contribution of this work, because it is fun-
damental to any architecture that uses a similar approach.

Organization The rest of the paper is organized as follows. After closing this
section with a brief review of related work, in Section 2 we discuss some back-
ground material covering PCA, and the assumptions we make about the interface
it provides. Section 3 introduces PCAL and its compiler through an example.
Formal details of the language, its compilation, and correctness theorems are cov-
ered in Section 4. Some important implementation-related issues are discussed
in Section 5.

Related Work There are two prior lines of work on combining proofs of autho-
rization with languages. The first line of work includes the languages Aura [17,
21] and PCML5 [4], where PCA as well as a logic for expressing policies are
embedded in the type system, and proofs are data structures that programs can
analyze. This contrasts with PCAL, where proofs cannot be analyzed. PCAL’s
approach is advantageous because it decouples the logic from the language, thus
making it easy to use the same compiler with different logics. It also alleviates
the programmer’s burden of understanding the logic. On the other hand, in Aura
and PCML5, parts of proofs can be re-used in different places, thus allowing po-
tentially more efficient proof construction than in PCAL. However, it is unclear
whether this advantage extends when automatic theorem provers are used in
either Aura or PCML5.

The second line of work includes several languages that culminate in the
most recent F7 [11, 8]. These languages use an external logic like PCAL, but
the objective is to express logical invariants. The programmer can introduce
logical assumptions at different program points, and check statically at other
program points that those assumptions entail some other formula(s). However,
in PCAL, it is not necessary that each programmer annotation about a proof
succeed statically; if it fails, code to construct the proof at run time is automat-
ically inserted. This approach is similar to hybrid typechecking [10]. Indeed, a
significant philosophical difference between PCAL and previous lines of work is
that PCAL does not try to enforce security on its own; instead it is meant as a
tool to help programs comply with a PCA interface that enforces security.

PCA, the architecture that PCAL supports, was introduced by Appel and
Felten [3]. It has been applied in different settings including authorization for web
services [5], the Grey system [6], and a file system [15]. The latter implementation
is the basic test bench for PCAL. The specific logic used for writing policies in
this paper is BL [12, 13]. It is related to, but more expressive than, many other
logics and languages for writing access policies (e.g., [1, 2, 14, 7, 16, 20, 9]).

2 Background

In this section we provide a brief overview of PCA, and list particular assump-
tions that PCAL makes about the underlying PCA-based system interface.



PCA [3, 5, 6, 15, 17, 19] is a general architecture for enforcing access control
in settings that require complex, rule-based policies. Policy rules are expressed
as formulas in some fixed logic, and enforced automatically using formal proofs.
Let L denote a set of formulas that represent the access policy (see Section 3
for an example). The system interface grants user A permission η (e.g., read,
write, etc) on a resource t (e.g., a file) only if A produces a formal proof γ which
shows that L entails a formula auth(A, η, t) in the logic’s proof system, or in
formal notation γ :: L ` auth(A, η, t). The formula auth(A, η, t) means that A
has permission η on resource t. Its exact form depends on the logic in use and
the resources being protected, but is irrelevant for the purposes of this paper.
(Here it suffices to assume that auth(A, η, t) is an atomic formula.) The system
interface checks the proof that A provides to make sure that it uses the logic’s
inference rules correctly, and that it proves the intended formula. To this end,
it is assumed that there is a fast procedure to verify proofs.

Although users are free to construct proofs by any means, it is convenient
to have an automatic theorem prover to perform this task. Further, the system
interface must provide a mechanism by which users can submit proofs either prior
to or along with an access request. The goal of PCAL is to help programmers
create programs (Bash scripts) that generate required proofs while minimizing
performance overhead, and correctly pass these proofs to the system interface.

Assumptions PCAL’s compiler supports rich logics for writing policies, in
which proofs may depend not only on the formulas constituting the policy (de-
noted L), but also on system state (e.g., meta data of files and clock time). The
latter is abstractly denoted by the letter H, and we write γ :: H;L ` s to mean
that γ is a formal proof which shows that in the system state H, policies L entail
formula s (e.g., s may be auth(A, η, t)).

PCAL also requires that an automatic theorem prover for the logic be avail-
able, both through an API and as a command line tool. The former is used by
the compiler to construct as many of the required proofs as possible at compile
time, while the latter is used by the output script to construct the remaining
proofs at run time. A call to the theorem prover (either through the API or the
command line) is formally summarized by the notation H;L ` s ↘ γ, which
means that asking the theorem prover to construct a proof for s from policy L
in state H results in the proof γ. Dually, H;L 6` s ↘ means that the theorem
prover fails to construct a corresponding proof. The latter does not imply the
absence of a proof in the logic, since the theorem prover may implement an
incomplete search procedure. The following command is assumed to invoke the
prover from the command line and store in the file .pf a proof which establishes
auth(A, η, t) from the policies in /.pl and the prevailing system state.

prove auth(A, η, t) /.pl > .pf

For passing proofs to the system interface, we assume a simple protocol:
a command inject is called from the command line to give a proof to the
system interface, which puts it in a store that is indexed by the triple (A, η, t)
authorized by the proof. During the invocation of a system API, relevant proofs



are retrieved from this store and checked. For example, the following command
injects the proof in the file .pf into the interface’s store.

inject .pf

While proofs required by the file system to execute commands at run time
must be ground, proofs produced at compile time may contain free variables,
which we assume are listed in order, and which need to be instantiated at run
time. For such proofs, the run-time substitutions of such variables are also pro-
vided to the inject command (with option -subst), so that the injected proofs
are always ground. For example, the following command substitutes the run-time
values of some Bash variables (in order) for the free variables in the proof read
from file .pf and stores the resulting proof in the system interface.

inject .pf -subst $_PRIN $z $x $y $bar $foo

3 Overview of PCAL

In this section, we run through a small example to demonstrate the steps of our
compilation. (We formalize PCAL in Section 4.) For this example, let there be
a predicate extension and functions path and base, such that (informally):

– extension(f, e) holds if file f has extension e;
– path(d, x) = p if path p is the concatenation of directory d and name x;
– base(p) = x if path(d, x) = p for some directory d.

Consider the program P in Figure 1, written in PCAL. This program iterates
through the files in some directory foo (unspecified), copying them to a directory
bar (set to "/tmp"). Furthermore, it touches those files in foo that have extension
"log". The reader may ignore the assert statements (in lines 2, 8, 12, and 13)
in a first reading; we explain their meaning below.

The system is configured to check, for any command, that certain permissions
are held on certain paths in order to execute that command. Let us assume the
following configuration:

Configuration

– Iterating over directory d requires permission read on d.
– Executing the shell command touch(f) requires permission write on file f .
– Executing the shell command cp(f1, f2) requires permission read on file f1,

and permission write on file f2.

The assert statements in P serve to establish, at run time, that the principal
running the script has particular permissions on particular paths. The compiler
tries to statically identify assert statements that must succeed at run time, and
eliminate them at compile time.

Assume that member is a predicate such that member(f, d) holds if file f is in
directory d. Consider the following policy, written in a first-order logic.



Program P

1 bar = "/tmp";

2 assert (read, foo);

3 for x in foo {

4 y = x;

5 x = base(x);

6 z = path(foo, x);

7 test extension(z, "log") {

8 assert (write, z);

9 shell touch(z)

10 };

11 z = path(bar, x);

12 assert (write, z);

13 assert (read, y);

14 shell cp(y, z)

15 }

Program Q

1 bar = "/tmp";

2 assert (read, foo);

3 for x in foo {

4 y = x;

5 x = base(x);

6 z = path(foo, x);

7 test extension(z, "log") {

8 -- assert (write, z);

9 shell touch(z)

10 };

11 z = path(bar, x);

12 -- assert (write, z);

13 -- assert (read, y);

14 shell cp(y, z)

15 }

Script S

!/bin/bash

function base { _RET=${1##*/} }

function path { _RET=$1/$2 }

function extension { if [ ${1##*.} = $2 ]; then _RET="ok"; fi }

_PRIN="User"

foo="/home"

1 bar="/tmp"

2 prove auth ($_PRIN, read, $foo) /.pl > .pf

inject .pf

3 for x in ‘ls $foo‘; do x=$foo/$x

4 y=$x

5 _RET="_"; base $x; x=$_RET

6 _RET="_"; path $foo $x; z=$_RET

7 _RET="_"; extension $z "log"; if [ $_RET = "ok" ]; then

8 inject /.pf/1 -subst $_PRIN $z $x $y $bar $foo

9 touch $z

10 fi

11 _RET="_"; path $bar $x; z=$_RET

12 inject /.pf/2 -subst $_PRIN $z $x $y $bar $foo

13 inject /.pf/3 -subst $_PRIN $z $x $y $bar $foo

14 cp $y $z

15 done

Fig. 1. Translation of an input program P , via an intermediate programQ, to an output
script S. (The configuration, policy, and rewrite theory provided to the compiler are
shown elsewhere.)



Policy

auth("User", read, "/home").
∀A.∀x. auth(A, write, path("/tmp", x)).
∀A.∀x.∀y. member(x, y)⇒ auth(A, read, y)⇒

auth(A, read, x) ∧
extension(x, "log")⇒ auth(A, write, x).

Informally, the policy asserts the following:
– the principal "User" has permission read on directory "/home"
– any principal A has permission write on any file in the directory "/tmp"
– for any principal A, file x, and directory y, if x is in y and A has permission

read on y, then A has permission read on x, and furthermore, if x has
extension "log" then A has permission write on x.

Finally, consider the following theory on the function symbols path and base,
that abstracts the concrete semantics of these functions.

Theory

∀x.∀y. member(x, y)⇒ path(y, base(x)) = x

Given the configuration, policy, and theory above, our compiler automatically
translates P to the intermediate program Q in Figure 1. In Q, all assert state-
ments except that in line 2 are eliminated, since the compiler can infer that they
must succeed at run time. Such inference requires collection of path conditions,
partial evaluation of terms modulo the given equational theory, and calls to the
theorem prover. We describe the compiler in detail in Sections 4 and 5.

In particular, for the assert statement in line 8, the compiler reasons au-
tomatically as follows. Let _PRIN be the principal running the script. Line 8 is
reached only if the following conditions hold for some z, x, x′, and foo:

(1) extension(z, "log").
(2) z = path(foo, x).
(3) x = base(x′).
(4) member(x′, foo).
(5) The statement assert (read, foo) in line 2 succeeds.

From condition (5), we can conclude that
(6) auth(_PRIN, read, foo).

Simplifying conditions (2) and (3) using the given theory, we have

(7) z = x′.

Now from conditions (1), (4), (6), and (7) and the given policy, the theorem
prover can conclude that auth(_PRIN, write, z), which is sufficient to eliminate
the assert statement in line 8.

Next, we want to be able to run the intermediate program Q on a file system
that supports PCA. The compiler translates Q to the equivalent Bash script S
in Figure 1. The commands prove and inject perform functions described in



Section 2. The header (the part of S before the numbered lines) defines all free
variables (_PRIN and foo) and uninterpreted functions and predicates (path,
base, extension) in P . The implementations of such functions and predicates
are sound with respect to the equational theory used by the compiler.

We close this section by discussing our trust assumptions. A policy is trusted,
so any interpreted predicates in a policy (such as member and extension) must
have trusted implementations (provided by the system). In contrast, a program
is not trusted. The compiler may or may not be trusted. If the compiler is
trusted, then the system can trust scripts produced by the compiler, and run
such scripts without checking the proofs that they inject. This is significant in
implementations where proofs may be large and proof verification may be costly.
However, such a compiler cannot assume semantic properties of the functions
used in a program (such as base and path) unless those functions have trusted
implementations that are provided by the system. On the other hand, if the
compiler is not trusted then the system must run all scripts with access checks.
We implicitly assume the latter scenario in the sequel, and provide additional
guarantees for the scenario in which the compiler is trusted (Theorem 2).

4 PCAL: Syntax, Semantics, and Compilation

We now formalize the PCAL language and its compiler. We present the syntax
of PCAL programs, define their operational semantics, and finally define our
compilation procedure and show that it preserves the behavior of programs.

For simplicity of presentation, we abstract various details of the implementa-
tion. (See Section 5 for a more detailed discussion.) Instead of Bash, we consider
an extension of PCAL as the target language for compilation; programs in this
target language can be easily rewritten to Bash. We also treat all function sym-
bols as uninterpreted, although in principle, equations over terms may be freely
added in the run time semantics (to model concrete implementations) and in the
compiler (to model abstract properties of such implementations).

We assume that η, x, and t range over permissions, variables, and terms whose
grammars are borrowed from the logic used to represent policies. ϕ denotes a
logical predicate whose truth depends only on the system state (i.e., a predicate
that is not defined by logical rules). PCAL programs are sequences of statements
e described by the grammar below. Directories, files, and paths are represented
as terms, and χ is a special variable that denotes the principal running a program.

Syntax

e ::= statements
for x in t {P} for each file f in directory t, bind x to f and do P
test ϕ {P} if condition ϕ holds, do P
x = t assign t to x
shell n(t1, . . . , tk) call shell command n with parameters t1, . . . , tk
assert (η, t) assert that principal χ has permission η on path t

P,Q ::= programs



e;Q run e, then do Q
end skip/halt

We also consider below an extension of PCAL which acts as the target lan-
guage for the compiler. α = prove (η, t) and inject (η, t) γ are formal representa-
tions of the commands prove and inject from Section 2. γ ranges over proofs
and α denotes a variable bound to a proof (which, in the actual implementation,
is a temporary file that stores the proof; see Section 5).

Extended syntax

e ::= statements
. . .
α = prove (η, t) prove that principal χ has permission η on path t

and bind the proof to α
inject (η, t) γ inject proof γ that authorizes (χ, η, t)

Semantics A PCAL program runs in an environment θ of the form (∆,L),
where ∆ is a function from shell command names to lists of permissions (config-
uration) and L is the set of logical formulas used to determine access (policy).
Informally, if ∆(n) = η1, . . . , ηk then executing shell command n(t1, . . . , tk) re-
quires permissions η1, . . . , ηk on paths t1, . . . , tk respectively.

A state ρ is a triple (H,S, ξ), where H an abstract, logical representation of
the part of the system state on which proofs of access depend, S is a function
from paths to terms (data store), and ξ is a partial function from triples (A, η, t)
to proofs (proof store). H must contain, at the least, information about members
of directories. We write members(H, t) to denote the list of files in directory t in
the system state H. Proofs injected using inject (η, t) γ are added to ξ.

Reductions are of the form ρ, P
θ,χ−→ ρ′, P ′, meaning that program P at

state ρ, run by principal χ in environment θ, reduces to program P ′ at state ρ′.

Reduction rules rely on the external judgmentH,S
n(t1,...,tk)
I H ′, S′, which means

that executing the shell command n(t1, . . . , tk) updates the system state H and
data store S to H ′ and S′ respectively. H |= ϕ means that ϕ holds in H, and
H 6|= ϕ means that ϕ does not hold in H. In practice, whether ϕ holds in H or
not is decided using a trusted decision procedure provided by the system.

Reduction ρ, P
θ,χ−→ ρ′, P ′

(Reduct for)
ρ = (H, , ) members(H, t) = t1, . . . , tk

ρ, for x in t {P};Q θ,χ−→ ρ, P{t1/x}; . . . ;P{tk/x};Q

(Reduct test)
ρ = (H, , ) H � ϕ

ρ, test ϕ {P};Q θ,χ−→ ρ, P ;Q

ρ = (H, , ) H 6� ϕ

ρ, test ϕ {P};Q θ,χ−→ ρ,Q

(Reduct assign) ρ, x = t;Q
θ,χ−→ ρ,Q{t/x}



(Reduct shell) θ = (∆,L) ∆(n) = η1, . . . , ηk ρ = (H,S, ξ)
ξ(χ, ηi, ti) = γi γi :: H;L ` auth(χ, ηi, ti)

H,S
n(t1,...,tk)
I H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk);P
θ,χ−→ ρ′, P

(Reduct assert) θ = ( ,L) ρ = (H,S, ξ)
H;L ` auth(χ, η, t)↘ γ ρ′ = (H,S, ξ[(χ, η, t) 7→ γ])

ρ, assert (η, t);P
θ,χ−→ ρ′, P

(Reduct prove) θ = ( ,L) ρ = (H, , ) H;L ` auth(χ, η, t)↘ γ

ρ, α = prove (η, t);P
θ,χ−→ ρ, P{γ/α}

(Reduct inject) ρ = (H,S, ξ) ρ′ = (H,S, ξ[(χ, η, t) 7→ γ])

ρ, inject (η, t) γ;P
θ,χ−→ ρ′, P

– (Reduct for) unrolls a loop P for each file x in a directory t. (Reduct test)
simplifies test ϕ {P};Q to P ;Q if H |= ϕ, and to Q otherwise. (Reduct
assign) is straightforward.

– (Reduct shell) finds proofs γ1, . . . , γn needed to authorize the shell com-
mand n(t1, . . . , tk) in the proof store ξ. It then checks these proofs (premise
γi :: H;L ` auth(χ, ηi, ti)), and executes the shell command (premise

H,S
n(t1,...,tk)
I H ′, S′).

– (Reduct assert) calls the theorem prover to construct a proof γ which
shows that χ has permission η on path t (premise H;L ` auth(χ, η, t)↘ γ),
and gives it to the system interface by putting it in the store ξ.

– (Reduct prove) constructs a proof γ and binds α to it. (Reduct inject)
places a proof γ in the proof store ξ. By these rules, the effect of the command
sequence α = prove (η, t); inject (η, t) α is exactly the same as the command
assert (η, t). However, assert (η, t) occurs only in source programs whereas
prove (η, t) and inject (η, t) γ occur only in compiled programs.

Compilation Next, we formalize compilation of PCAL programs. As the com-
piler traverses a program, it maintains a database of facts that must be true
at the program point that the compiler is looking at. These facts are formally
represented by Γ = (σ,M,Φ,Ξ).

– σ is a list of substitutions of the form {t/x}. The latter means that program
variable x is bound to term t.

– M is a list of predicates of the form member(x, t), meaning that x is in
directory t (x is a variable representing a file system object).

– Φ is a list of interpreted predicates ϕ that can be assumed to hold at a
program point. These are gathered from commands test ϕ {. . .}.

– Ξ is a set of triples (A, η, t) for which the compiler has constructed autho-
rization proofs, or those for which it is certain proofs will exist at run time.



Below, we show compilation judgments of the form Γ ` P H,θ,χ
 P ′, meaning

that under assumptions Γ , program P compiles to program P ′ in environment
θ and system state H. χ is given to the compiler at the time of invocation; it
represents the user who is expected to run the compiled program. H is the state
of the system in which the compiled program is expected to run. It may either be
the system state at the time of compilation (if it is expected that the compiled
program will run in the same state), or it may be a state that the user provides.
Both χ and H are needed to call the theorem prover during compilation.

For any syntactic entity E, we write Eσ to denote the result of applying
the substitution σ to E. W(P ) denotes the variables that are assigned in the
program P , and σ\x denotes the restriction of σ that removes the mappings
for all variables in x. Finally, |Ξ| denotes a logical representation of Ξ: |Ξ| =
{auth(A, η, t) | (A, η, t) ∈ Ξ}.

Compilation Γ ` P H,θ,χ
 P ′

(Comp end) Γ ` end;P
H,θ,χ
 P Γ ` end

H,θ,χ
 end

(Comp for)
Γ = (σ,M,Φ,Ξ) x fresh in Γ x =W(P )

σ′ = σ\x M ′ = M, member(x, t)

(σ′,M ′, Φ, Ξ) ` P H,θ,χ
 P ′ (σ′,M,Φ,Ξ) ` Q H,θ,χ

 Q′

Γ ` for x in t {P};Q H,θ,χ
 for x in t {P ′};Q′

(Comp test)
Γ = (σ,M,Φ,Ξ) x =W(P ) σ′ = σ\x Φ′ = Φ,ϕ

(σ′,M,Φ′, Ξ) ` P H,θ,χ
 P ′ (σ′,M,Φ,Ξ) ` Q H,θ,χ

 Q′

Γ ` test ϕ {P};Q H,θ,χ
 test ϕ {P ′};Q′

(Comp assign) Γ = (σ,M,Φ,Ξ) σ′ = σ, {t/x} (σ′,M,Φ,Ξ) ` P H,θ,χ
 P ′

Γ ` x = t;P
H,θ,χ
 x = t;P ′

(Comp shell)
θ = (∆, ) ∆(n) = η1, . . . , ηk Γ = (σ, , , Ξ)

(χ, ηiσ, tiσ) ∈ Ξ for each i Γ ` P H,θ,χ
 P ′

Γ ` shell n(t1, . . . , tk);P
H,θ,χ
 shell n(t1, . . . , tk);P ′

(Comp assert static)
Γ = (σ,M,Φ,Ξ) θ = ( ,L)

H,Φσ;L,Mσ, |Ξ| ` auth(χ, ησ, tσ)↘ γ

Ξ ′ = Ξ, (χ, ησ, tσ) Γ ′ = (σ,M,Φ,Ξ ′) Γ ′ ` P H,θ,χ
 P ′

Γ ` assert (η, t);P
H,θ,χ
 inject (η, t) γ;P ′

(Comp assert dynamic)
Γ = (σ,M,Φ,Ξ) θ = ( ,L)

H,Φσ;L,Mσ, |Ξ| 6` auth(χ, ησ, tσ)↘
Ξ ′ = Ξ, (χ, ησ, tσ) Γ ′ = (σ,M,Φ,Ξ ′) Γ ′ ` P H,θ,χ

 P ′

Γ ` assert (η, t);P
H,θ,χ
 α = prove (η, t); inject (η, t) α;P ′



– (Comp end) terminates compilation when end is encountered.
– (Comp for) compiles for x in t {P};Q by compiling P to P ′ under the added

assumption member(x, t) (which must hold inside the body of the loop), and
compiling Q to Q′. In each case, any prior substitutions for variables x
assigned in P are removed from σ, because they may be invalidated during
the execution of the loop (premises x =W(P ) and σ′ = σ\x).

– (Comp test) is similar to (Comp for), except that in this case the as-
sumption ϕ is added when compiling the body of the branch P .

– (Comp assign) records the effect of assignment x = t by augmenting sub-
stitution σ with {t/x}. This augmented substitution is used to compile the
remaining program.

– (Comp shell) checks that there exists a proof to authorize each permission
needed to execute a shell command n(t1, . . . , tk). For this it looks up the set
of previously constructed proofs Ξ. (Proofs are added to this set in the next
two rules).

– (Comp assert static) and (Comp assert dynamic) are used to compile
the command assert (η, t) in different cases. To decide which rule to use,
the compiler tries to statically prove auth(χ, ησ, tσ) by calling the theorem
prover (the application of σ to η and t propagates known constraints on
equality to the proposition being proved; this increases the chances of finding
a proof). The context in which the proof is constructed not only contains H
and the policy L, but also information about directory memberships (Mσ),
predicates tested in outer scopes (Φσ), and previously constructed proofs |Ξ|.
If proof construction succeeds, (Comp assert static) is used: assert (η, t)
is replaced by inject (η, t) γ, which gives the (statically) generated proof γ to
the system interface at run time. Also, the fact that the new proof exists is
recorded by modifying Ξ to Ξ ′ = Ξ, (χ, ησ, tσ), and using Ξ ′ to compile the
remaining program P . If the proof construction fails, rule (Comp assert
dynamic) is used: the compiler generates code both to construct the proof at
run time and to inject it into the system interface. Accordingly, assert (η, t)
is compiled to α = prove (η, t); inject (η, t) α. Even in this case, it is safe
to assume that a proof of auth(χ, ησ, tσ) will exist when P executes (else
α = prove (η, t) will block at run time), so Ξ is changed as before.

Formal Guarantees We close this section by stating the formal guarantees of
compilation. Proof sketches appear in the appendix.

We begin by defining an ordering ≤ on system states. Roughly, H ≤ H ′ if
any formula that can be proved under H can also be proved under H ′.

Definition 1 (≤). For any H and H ′, let H ≤ H ′ if for all L, s, and γ, if
H;L ` s↘ γ then H ′;L ` s↘ γ′.

Next, we assume the following axioms for the various external judgments.
Roughly, Axiom (1) states that system states are updated monotonically by
shell-command executions. Axioms (2) and (3) are assumptions on the theorem
prover: proof construction must be closed under substitution and cut. Finally,



Axiom (4) states that any proof produced by the theorem prover can be verified
(i.e., the theorem prover is bug-free).

Axioms

(1) if H,S
n(t1σ,...,tkσ)
I H ′, S′ then H ≤ H ′

(2) if H;L ` s↘ γ then Hσ;L ` sσ ↘ γ′

(3) if H;L ` s↘ γ and H;L, s ` s′ ↘ γ′ then H;L ` s′ ↘ γ′′

(4) if H;L ` s↘ γ then γ :: H;L ` s

We can now show that compilation preserves the behavior of programs. More
precisely, if a program P compiles to a program P ′ under a system state H, and
the programs are run from a system state H ′ such that H ≤ H ′, then P and P ′

evaluate to the same data stores.

Theorem 1 (Compilation correctness). Suppose that Axioms (1–4) hold,

and (∅,∅,∅,∅) ` P
H,θ,χ
 P ′. Then for all A and ρ = (H ′, , ) such that

H ≤ H ′, we have ρ, P
θ,A−→

?

ρ′, Q for some Q if and only if ρ, P ′ θ,A−→
?

ρ′, Q′ for
some Q′.

Finally, we show that a compiled program can never fail due to an access
check, if the policy does not change between compile time and run time. Formally,
compilation preserves the behavior of programs even if the compiled programs
are run without access checks.

Definition 2 (=⇒). Let =⇒ be the same reduction relation as −→ except that
the rule (Reduct shell) is replaced by the following rule.

θ = (∆,L) ∆(n) = η1, . . . , ηk

ρ = (H,S, ξ) H,S
n(t1,...,tk)
I H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk);P
θ,χ−→ ρ′, P

Theorem 2 (Access control redundancy). Suppose that Axioms (1–4) hold,

and (∅,∅,∅,∅) ` P
H,θ,χ
 P ′. Then for all A and ρ = (H ′, , ) such that

H ≤ H ′, we have ρ, P
θ,A−→

?

ρ′, Q for some Q if and only if ρ, P ′ θ,A
=⇒

?

ρ′, Q′ for
some Q′.

5 Implementation

We have implemented the PCAL compiler to work in conjunction with PCFS [15].
We now discuss some implementation details that are left abstract in Section 4.



Rewrite rules A set of rewrite rules over terms, modeling abstract properties
of the concrete implementations of function symbols, can be provided to the
compiler to improve its precision. The compiler constructs a normalization func-
tion based on these rules, and applies this function eagerly to substitutions. This
works well even in cases where it is not possible to interpret function symbols
with directed clauses in the policy. (Modeling equations as clauses usually causes
proof searches to loop.)
Quantified proofs Statically generated proofs may contain free variables, and
as such they are parametric over those variables. In the formal semantics, such
proofs are bound and carried as values in the language (in inject statements),
so they get implicitly instantiated before injection at run time. However in our
actual implementation, such proofs are output to temporary files with distinct
names (under /.pf), and the names are carried in the language; so the free vari-
ables in such proofs must be explicitly substituted at run time. This explains why
we considered an explicit -subst option to the inject command in Section 2.

We have tested our implementation on the file system PCFS [15], using poli-
cies written in the authorization logic BL [13, 12]. The interested reader can find
one such example (involving homework management between instructors and
students of various courses) in the appendix.

6 Conclusion

PCAL combines static checks and dynamic theorem proving to automate correct
and efficient use of a PCA-based interface. PCAL’s compiler is modular: it is
parametric over both the shell commands (system interface) and the logic it
supports. Although this makes the compiler flexible, the interaction between
the core language, shell commands, and the logic is subtle and requires careful
design. The compiler is made practical through a combination of simple user
annotations, static constraint tracking, dynamically checked assertions, and run
time support from a command line theorem prover. We prove formally that these
ideas work well together. It is our belief that PCAL’s design is novel, and that
it will be a useful stepping stone for languages that support rule-based access
control interfaces in future.

There are several interesting avenues for future work. An obvious one is to
run realistic examples on PCAL, to determine what other features are needed
in practice. Another possible direction is a code execution architecture where a
trusted PCAL compiler is used to generate certified scripts that are run with
minimal access control checks. Finally, it will be interesting to apply ideas from
PCAL, particularly the use of an automatic theorem prover, in the context of
language-based security for access control interfaces (e.g., [17, 4]).
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A Proof sketches

A.1 Proof of Theorem 1

The proof relies on the following lemma. Here, we write σ < σ′ when there exists
σ′′ such that σσ′′ = σ′.

Lemma 1. Suppose that Axioms (1–4) hold. Let σ be any ground substitution,
and σ be such that σ < σ. Let θ = ,L. Let H, M , Φ, Ξ, H, and ξ be such that
H,Mσ,Φσ ≤ H and for all (χ, ησ, tσ) ∈ Ξ, we have H,L ` auth(χ, ησ, tσ) ↘

ξ(χ, ησ, tσ). Suppose that (σ,M,Φ,Ξ) ` P H,θ,χ
 P ′. We have:

– if H,S, ξ, Pσ
θ,A−→ H ′, S′, ξ′, Qσ for some Q then

H,S, ξ, P ′σ
θ,A−→

?

H ′, S′, ξ′, Q′σ for some Q′ such that

(σ′,M ′, Φ′, Ξ ′) ` Q H,θ,χ
 Q′, σ′ < σ, and H,M ′σ, Φ′σ ≤ H ′, and for all

(χ, ησ′, tσ′) ∈ Ξ ′, we have H ′,L ` auth(χ, ησ, tσ)↘ ξ′(χ, ησ, tσ).

– if H,S, ξ, P ′σ
θ,A−→ H ′, S′, ξ′, Q′σ for some Q′ then

H,S, ξ, Pσ
θ,A−→

?

H ′, S′, ξ′, Qσ for some Q such that

(σ′,M ′, Φ′, Ξ ′) ` Q H,θ,χ
 Q′, σ′ < σ, and H,M ′σ, Φ′σ ≤ H ′, and for all

(χ, ησ′, tσ′) ∈ Ξ ′, we have H ′,L ` auth(χ, ησ, tσ)↘ ξ′(χ, ησ, tσ).

Proof. By induction on the derivation structure of the compilation judgment.

Lemma 2. Lemma 1 implies Theorem 1.

Proof. By induction on the length of
θ,A−→

?

.

A.2 Proof of Theorem 2

The proof follows by observation of the proof of Lemma 1. In particular, for the
case where P is a shell command, using the relaxed (Reduct shell) rule suffices
to establish the required invariants.



B Example: Homework for Courses

Consider the following idealized scenario for homework management of vari-
ous courses at an university. There is a directory, "/courses", containing the
directories of all courses. In each course directory, there is a directory named
"instructor" and a directory named "students", both containing directories
named after all students. Furthermore, the "instructor" directory contains a
file called "homework", and each directory under "students" has a file called
"solution".

1 courses = "/courses";

2

3 assert (read, courses);

4 for course in courses {

5 assert (read, course);

6 for user in course {

7 test suffix (user, "instructor") {

8 instructor = user;

9 assert (read, instructor);

10 for fileinstr in instructor {

11 test suffix (fileinstr, "homework") {

12 assert (read, fileinstr);

13 students = course/"students";

14 assert (read, students);

15 for studdir in students {

16 hwstud = studdir/"homework";

17 assert (write, hwstud);

18 shell cp (fileinstr, hwstud)

19 }

20 }

21 }

22 };

23

24 test suffix (user, "students") {

25 assert (read, user);

26 for userdir in user {

27 studname = base (userdir);

28 solninstr = course/"instructor"/studname/"solution";

29 solnstud = userdir/"solution";

30 assert read solnstud;

31 assert write solninstr;

32 shell cp (solnstud, solninstr)

33 }

34 }

35 }

36 }

Fig. 2. PCAL program for homework example



Figure 2 shows a PCAL program that does the following. It navigates into
the "instructor" directory, and copies the "homework" file into each direc-
tory under "students" in turn. Then, it navigates into those directories and
copies the "solution" file of that student into the corresponding directory un-
der "instructor".

Next, we show the policy in effect. The policy is written in the authorization
logic BL [12, 13]. In order to represent policies made by different principals,
BL includes a modality A says s which means that administrator A states,
or believes formula s (s usually expresses a policy rule). The says modality
has been considered in prior work (e.g., [2, 18, 14, 1]), but the inference rules
defining its meaning vary. BL’s rules are shown below. In addition, any complete
axiomatization of first-order intuitionistic logic is also assumed.

` (A says (s⇒ t))⇒ ((A says s)⇒ (A says t)) (K)
` s

` A says s
(N)

` (A says s)⇒ (A′ says A says s) (I)
` A says ((A says s)⇒ s) (C)

In our specific policy, we assume that S and L are separate authorities. The
formula auth(A, η, t) is defined as S says may(A, η, t); in other words, S rep-
resents the enforcer of the policy. On the other hand, L is a local authority
that may certify some formulas that S relies on, for example, the validity of the
"/courses" directory and the membership of certain principals in special groups
for which certain policy rules may apply.

We focus on a detailed modeling of the relationship between the function
symbol / (that concatenates directory paths with file names to to give file paths)
and directory membership constraints. This allows the compiler to reason, for
example, that if f is in directory d and the suffix of f is x then f ≡ d/x. Other
rules allow principals in the group special to inherit read permissions from
ancestor directories. Finally, there are rules that are specific to instructors and
students, specifying which files in the others’ directories they are allowed to read
and write.

The policy rules are split into two parts. The first part contains the rules
stated by L:

∀c. (S says member(c, "/courses"))⇒ course(c)

special("User")

The next part contains the rules stated by S. These include all the policy
rules, plus rules that model equivalences between paths constructed using /,
base, and suffix.



∀f.∀d.∀x. member(f, d)⇒ suffix(f, x)⇒ f ≡ d/x
∀f.∀d.∀x.∀p. member(f, d)⇒ suffix(f, x)⇒ d ≡ p⇒ f ≡ p/x

∀A.∀f.∀p.∀η. f ≡ p⇒may(A, η, f)⇒may(A, η, p)

∀f. suffix(f, base(x))

∀A.∀c.∀d. (L says course(c))⇒may(A, read, c/"instructor")⇒
may(A, read, c/"students")

∧ member(d, c/"students")⇒may(A, write, d/"homework")

∀A.∀c.∀x.∀d. (L says course(c))⇒may(A, read, c/"students"/x)⇒
may(A, write, c/"instructor"/x/"solution")

∧ d ≡ c/"students"/x)⇒may(A, read, d/"solution")

∀A. may(A, read, "/courses")
∀A.∀f.∀d. (L says special(A))⇒ member(f, d)⇒

may(A, read, d)⇒may(A, read, f)

With this policy, the PCAL compiler can eliminate all assert statements in the
program of Figure 2, if the program is run by principal "User".


