Secrecy by Typing and File-Access Control

Avik Chaudhuri

Martin Abadi*

Computer Science Department
University of California, Santa Cruz

Abstract

Secrecy properties can be guaranteed through a combi-
nation of static and dynamic checks. The static checks may
include the application of special type systems with notions
of secrecy. The dynamic checks can be of many different
kinds; in practice, the most important are access-control
checks, often ones based on ACLs (access-control lists). In
this paper, we explore the interplay of static and dynamic
checks in the setting of a file system. For this purpose, we
study a pi calculus with file-system constructs. The calcu-
lus supports both access-control checks and a form of static
scoping that limits the knowledge of terms—including file
names and contents—to groups of clients. We design a sys-
tem with secrecy types for the calculus, using this system,
we can prove secrecy properties by static typing of pro-
grams in the presence of file-system access-control checks.

1 Introduction

Secrecy properties can be guaranteed through a combi-
nation of static and dynamic checks. The static checks may
include the application of special type systems with notions
of secrecy (e.g., [1, 2, 7]). The dynamic checks can be of
many different kinds; in practice, the most important are
access-control checks, often ones based on ACLs (access-
control lists). In this paper, we explore the interplay of such
static and dynamic checks.

The setting of our study is a fairly standard file system.
This setting is attractive because storage systems often in-
clude rather structured and sometimes interesting facilities
for dynamic checks. In particular, ACLs are often central
to storage systems; network-attached storage systems also
feature elaborate cryptographic implementations of access
control (e.g., [11, 15]). This setting is attractive also because
of the practical importance of secure storage, and because
the rigorous analysis of secure storage systems has received

*Also at Microsoft Research, Silicon Valley.

relatively little attention. (For instance, the literature seems
to contain many more proofs about key-exchange protocols
than about cryptographic file systems.)

More specifically, we study a pi calculus with file-
system constructs. The calculus supports both access-
control checks and a form of static scoping that limits the
knowledge of terms—including file names and contents—
to groups of clients. We design a system with secrecy types
for the calculus. In this system, any type can be associ-
ated with a group of clients, which we call the reach of the
type. By typing, we can then statically check certain secrecy
properties, for instance, that a term is not leaked beyond
the reach of its declared type. While the typing is static,
it applies to a program subject to dynamic access-control
checks.

For example, suppose that a client C; creates a secret m
that it does not intend to share with other clients; it then
writes m to a publicly known file. Further, suppose that
another client C'y attempts to read this file. We can ana-
lyze such a system in our calculus—this particular system
typechecks only if C'y does not have read access to that file.
Indeed, if C5 could read the file, 7 would no longer be se-
cret to C7. On the other hand, if C; does not attempt to
read the file, it is possible that the system typechecks even
if Cy has read access. Various examples indicate that our
type system is fairly permissive. Conversely, a soundness
theorem states that any process that compromises secrecy
intentions fails to typecheck. Further, typing has other in-
teresting consequences; we derive, for instance, certain in-
tegrity properties.

Somewhat similar type systems exist for other calculi,
including several pi calculi (see Section 7). The main nov-
elty of our work is the investigation of file-system con-
structs, including access-control checks. This investigation
requires new concepts and technical elements. It also en-
ables us to treat examples that appear to be outside the scope
of previous systems. The resulting secrecy properties, on
the other hand, are fortunately standard.

In our calculus we can express and analyze programs
that can request basic file operations and set file-operation
permissions. We hide the details of file-system implemen-

tations. Our intent is that many of those details should
be addressed via translations (from high-level constructs to
lower-level mechanisms) with security-preservation results
(for instance, full abstraction results). We have taken some
initial steps in this direction [8]. The present paper comple-
ments those steps, by providing a type discipline and proof
principles that apply to a source language for those trans-
lations. Thus, the techniques developed in this paper can
serve for establishing high-level secrecy guarantees, and
those guarantees should carry over to lower-level systems
obtained by translation.

The next section describes a file-system environment and
some examples. Section 3 presents a pi calculus with file-
system constructs and the system of secrecy types that we
design for this calculus; Section 4 shows an operational
semantics for the calculus. Section 5 defines a notion of
secrecy, states our main results, and studies some conse-
quences of the typing method. Section 6 enriches the file-
system environment with directory structure and finer ac-
cess control, and recovers the results of Section 5 with mi-
nor modifications to the calculus and the type system devel-
oped in Sections 3 and 4. Section 7 describes the context for
our research, mentioning some related work. Section 8 con-
cludes with a discussion of contributions and future work.

2 A file-system environment

We consider a distributed environment with a set of
clients that interact among themselves and with a com-
mon file system. The file system stores data and maintains
an access-control policy that is enforced on clients at the
interface. This section describes that environment, intro-
duces secrecy groups, and previews some examples, semi-
formally. Later sections contain the relevant formal details.

2.1 The file-system and its clients

We assume that clients are indexed by a set K, so that
the set of clients is {C, | k € K}. These indices also serve
as subjects and administrators of access control. More con-
cretely, there is a set of channels {8 | ¥ € K} on which
clients may send requests to the file system. Upon receiving
a request on (3, the file system decides whether the request
is allowed by the access-control policy for the index k. (In
an implementation, [3; may be realized with the use of an
authenticated encryption key for client k.)

The file system organizes files in flat directories; we con-
sider nested directories in Section 6. We assume that a num-
ber of directories and files are already known to the clients,
and more files can be created under directories. Access-
control rules come in three flavors: rules of the first kind
give access rights to specific files; rules of the second kind

give default access rights to arbitrary files under specific di-
rectories; rules of the third kind give rights to assert rules of
the other two kinds.

In what follows, we distinguish between file paths and
file names. A file name is atomic, as is a directory name. A
file path (for example, file(d/ f)) is completely defined by a
directory name (d) and a file name (f). Conversely, direc-
tory and file names may be used in different ways to con-
struct different paths (so file(d/ f) and file(d’/ f) are distinct
if d # d"). We sometimes call a file path simply a “file”.

A storage state is a map from files paths to file contents.
We focus on two operations on file contents, read and write,
and an operation grant on file permissions. Yet another op-
eration on file permissions, revoke, requires a more compli-
cated treatment that we omit in this version of the paper.

Let o € {W, R} range over file operations (W for write, R
for read). An access-control policy R is a set of rules of the
form o4(d/). 0 (/). /y (0x(d/%)). or y (0x(d/)).
For instance, a rule ox(d/f) would mean that client % is
allowed to do operation o on file path file(d/f); a rule
Vo (0x(d/ f)) would mean that client &’ is allowed to grant
that permission. Rules oy (d/*) and +/,, (0x(d/*)) have
analogous meanings for default permissions on directory d.

2.2 Secrecy groups

We refer to certain subsets of client indices as groups.
Some of those sets are induced by an access-control
policy—for instance, the set of clients who have read ac-
cess to a certain file (see Section 5.5). It is not true, how-
ever, that only those clients who have read access to a file
may come to know its contents: a client who has access
may read the contents, then share it with another client who
is not allowed to read the file. While such sharing is of-
ten desirable, it is reasonable to try to limit its scope—we
would want to know, for instance, if clients who have been
granted access to sensitive files are leaking their contents,
either intentionally or by mistake, to dishonest ones.

We use groups as a declarative means of specifying
boundaries within which secrets may be shared. To make
the definition of these groups more concrete, we draw a
distinction between honest clients and potentially dishonest
ones. Honest clients are those who play by the rules—they
are disciplined in the way they interact with other clients
and the file system, and this conformance may be checked
statically by inspecting their code (viz. by typechecking).
We let the set Z C K index honest clients. The remain-
ing clients are assumed to be dishonest; in general they may
make up an unknown, arbitrary attacker. Secrecy groups
span either only subsets of honest clients (thus excluding
all dishonest clients) or all clients (the group “public”).

A secrecy intention is declared by stating that a certain
name belongs to some group. In our type system, this dec-

laration is made by assuming a type for a name. In turn,
a type can be associated with a secrecy group, called its
reach. Informally, the reach of a type is the group within
which the inhabitants of that type may be shared. Typing
guarantees that secrecy intentions are never violated, i.e., a
name is never leaked outside the reach of its declared type.

2.3 Some examples (preview)

In what follows, we use a fairly standard pi-calculus syn-
tax for writing code; the syntax of the calculus is presented
formally in Section 3. We begin with the example sketched
in Section 1. We return to this example and the others, giv-
ing additional details, in Section 4.

Let £ = {1,2,3} be the set of client indices. Suppose
that the code for the clients is C | Cy | C3, with

Cy = (vm) Bi{writem,file(d/f))
Cy Ba(read p, file(d/ f)). p(x)

and Cj arbitrary code without 81 or 35 free. Thus C; in-
vents a name m and requests that the file system write m to
file(d/ f); C2 requests a read on the same file. The channel
pis passed as a “return channel” (or continuation) to receive
file contents. For a particular read request, the file system
either sends back the contents of the file on the continuation
(if the request succeeds) or does nothing (if it fails, i.e., if
the access-control policy does not allow the operation).

Suppose that we want to verify the following secrecy in-
tentions. The name m should be known only within the
group {1}. The term d is the name of a public directory
intended to contain files with public names. The term f is
a public file name; the contents of the file, however, should
remain within {1}.

Let R = {w1(d/f),Ra(d/f)}. Thus clients C; and Co
are allowed to write and read file(d/ f), respectively; client
C'3 does not have access to file(d/f). Clearly, however,
these permissions are inconsistent with the secrecy inten-
tions, since m can be leaked to Cy via file(d/f). As we
see in Section 3.5, this code does not typecheck. One might
imagine obvious fixes such as preventing C5 from reading
file(d/ f) by access control, or relaxing the scope of m to
{1,2}. These fixes make the code typecheck. (In the latter
case, it is also necessary that p not be free in C3.)

Next we discuss some more examples in order to demon-
strate other features of our type system.

1. Let C5 and Cs be as above, but let

Cy = pilgrants, file(d/f)).
(vm) By (write m, file(d/f))

and R = {wi(d/f),v/;(R2(d/f))}. This definition
allows client C to grant client C'; permission to read

file(d/ f), thus violating secrecy intentions, as above.
A similar situation arises when R = {wy(d/f),
V/5(Ra(d/ f))}. Even though C,’s grant request fails,
it is still possible that C's grants permission to Cs to
read file(d/ f). In both cases, this code does not type-
check.

. Now suppose that there is a fourth client Cy, so that

the code for the clients is C; | Cy | C3 | Cy, and let
Cy = (vm) Bi{writem,file(d/f))
Co = p(x). Ba{write z, file(d/ f'))
Cs B3(read p, file(d/ f))
Cy = [a(read g.file(d/f")). q(2)

and R = {W1(d/), Ra(d/f), Wa(d/ "), Ra(d/ ")}.
This code typechecks, although a couple of observa-
tions make the code seem dangerous at first glance.
First, C5 has all the permissions that it had above, and
more. Second, Cs listens on the continuation passed
by C' for reading the contents of file(d/ f), and shares
the received contents with Cy via another file. It thus
appears that C's is either collaborating with or using
as “deputies” Cy and Cy to leak m. Secrecy inten-
tions are still respected, however, because Cs and Cj
are well-behaved by themselves (in particular, Co does
not read from file(d/f)), and Cs can never read m
from file(d/ f) because access control would prevent
it. So secrecy intentions are not violated (i.e., m is
never leaked to C3, Cy, or Cy).

. Now consider a dual scenario, with the two clients:

C1 = (vm) Bi{read n,file(d/f)). n(x). T(m)
Co = [Bolwritep,file(d/f)). p(x)

and R = {R1(d/f),W2(d/f)}. This code does not
typecheck. Consider the following run: Co writes the
channel p on file(d/f); C; reads this channel from
file(d/ f), perhaps believing that it belongs to {1}, and
communicates m on it. Since C5 is listening on p, se-
crecy intentions are violated.

. In this variant of the preceding example, default per-

missions come into play. Suppose that

Cio= () () alf).
(1 (read n, file(d/ f)). n(x). T(m)
Cy = q(y). Bo{writep, file(d/y)). p(x)

and R = {Ry(d/*), Wa(d/*)}. Again, the code does
not typecheck. Observe that the name f is not free
in the code; it is generated during execution. How-
ever, both clients C; and C' enjoy default rights on d.
Therefore, the same attack as in (3) may be played out
after generating and sharing f.

5. Finally, consider the code C | Cy | C3, where
(vm) (vf) q(f).

(1 (read n,file(d/ f)). n(x). T(m)
Cy = q(y). Pafwritey,file(d/ "))

c, =

and Cj is arbitrary code without 31, (B2, or n free,
with R = {Ry(d/*), Wa(d/),R3(d/f")}. This code
typechecks, although at first glance it seems as dan-
gerous as the preceding one—C'; shares the sensitive
file name f with Co, while Cs has default write per-
missions on all files in d, including f; to make matters
worse, Cs writes f to a public file that C'5 can read. Se-
crecy intentions are still respected, however: Cs does
not use f to access the file system, and neither can C5
because access control would prevent it (cf. (2), that
typechecks in much the same manner). One obvious
way to violate secrecy intentions would be to give C5
default write permissions on d, in which case the code
would of course fail to typecheck.

3 A typed pi calculus with file constructs

We use a polyadic synchronous pi calculus for writing
and verifying client code. This section gives the syntax of
terms, types, and processes, then presents our type system
for this calculus, and finally considers examples.

3.1 Terms, types, and typed processes

Terms are defined by the following grammar, where k €
K and o € {W,R}.

M, N ::= terms
m,n,p,q,d, f,...,0B% name, request channel
write M write term to file
read M read file on channel
granty grant permissions
file(M/N) file path
T, ... variable

We use u, v, ... to represent names or variables. The terms

write M and read M are file-operation commands that re-
spectively mean “write contents M to” and “read on chan-
nel M contents from” a file. The term grant{ means “grant
client k permission to do o on” a directory or file.

We assume a set of clients indexed by X, and a sub-
set of honest clients indexed by Z C . We let G range
over subsets of Z. We do not consider proper subsets of }C
that contain indices in L — Z since, intuitively, a dishonest
client may share a term that it knows with any of the other
clients. The notation ¢ stands for a (possibly empty) vector
©1, ..., on. Types are defined by the following grammar:

H = groups
g trusted group
K untrusted group
T = declared types
G[T) polyadic channel
Un untrusted
H{T} file name
T = types
ks declared type
H'/H directory name
Wr(T) write contents
Rd(T) read contents
Gri grant permissions
Req; (i € Z) request channel
#H' /H{T} file path

Declared types are types with which new names can be
declared in the calculus (according to the syntax of typed
processes, below). We introduce a type sort H{T'} for
declaring file names, and the sorts H'/H and #H'/H{T}
for typing directory names and file paths respectively.

e The type H{T} is given to a file name; this typing
means that the file name may be shared within the
group H, while the contents may be shared within the
reach of the type T'. This type construct is somewhat
similar in form to the traditional type construct G[T]
for symmetric channels [7]. However, the name of a
symmetric channel can never be less secret than its
contents, since by knowing its name one can know
what it carries. On the other hand, a file with a pub-
licly known name may contain secrets, and these con-
tents may be protected by dynamic access control.

e The type H'/H is given to a directory name; this
typing means that the directory name may be shared
within the group H’, and may contain files whose
names may be shared within the group H. Note that
we do not let clients declare new directories in this
particular system; since default permissions are based
on directory names, files created under new directories
would not inherit any interesting access control. (We
remove this simplification in Section 6.)

e The type #H'/H{T} is given to a file path file(d/ f);
this typing means that the directory name d has type
H' /'H, and the file name f has type H{T}. The file
path may be shared within the group H’ NH, while the
contents may be shared within the reach of the type 7T'.

e The types Wr(T') and Rd(T) are respectively given
to commands for writing and reading file contents of
type 7.

o The type Gry, is given to a term of the form grantj.

e The type Req; is given to an honest client’s request
channel 3;.

e The special type Un is given to untrusted terms, typi-
cally those that an attacker may know.

For a type 7', the group within which the inhabitants of that
type may be shared is given by its reach || T’||, defined next:

IGITN = NITING [Wr(D)| = |

[Un[= K IRA(T)| = |IT]

[H/H| = H 1Grl| = K

[H{T}| = H IReq;|| = {i}
I#H' /H{T}H| = H'OH

Any type whose reach is C is called a public type; a term
that belongs to X is a public term, and is said to have “un-
restricted scope”. We sometimes use the phrase “scope of a
term” to mean the reach of its type, when this type is clear
from context.

Note that the reach of a file-name type H{T} or a
file-path type #H’/H{T} does not depend on the content
type T'. Note also that a directory name may be public even
if it is intended to contain files with secret names or con-
tents. Finally, the definition of reach also reflects that an
honest client never shares its request channel with any other
client; this restriction is relaxed somewhat in Section 5.4.

The grammar for processes is fairly standard:

PQ = processes
u(M).P output
u(z).P input
0 nil
PlQ composition
P replication
(vn:T")P restriction

A departure from the usual polyadic pi calculus is in the in-
clusion of a declared type T in a restriction. Intuitively,
this type indicates a secrecy intention. Notice that the lan-
guage of typed processes depends on the set Z. However,
type declarations do not affect runtime behaviour, and the
same “untyped” process can be type-annotated in several
different ways to verify various secrecy intentions.

The notions of free names and variables (fn and fv) and
closed expressions are as usual; so are various abbreviations
(e.g., IT for indexed parallel compositions).

3.2 Preliminaries on types

Typechecking a system involves typechecking the clients
and the access-control policy under the same assumptions.
For clients, the typechecking applies to honest clients; these
clients are restricted in their use of channels and file re-
quests, by the typing rules shown in Section 3.3. For the

access-control policy, the typechecking imposes restrictions
on the set of file operations that the policy may grant to dis-
honest clients; these restrictions are specified in Section 3.4.

The partition between honest and dishonest clients plays
a central role in typechecking the system. The code for
the clients as well as the access-control policy impose typ-
ing constraints that finally determine whether the partition
is valid, i.e., whether all honest clients are well-typed, and
whether the access-control policy is suitably restrictive for
the remaining (possibly dishonest) ones. Arriving at the cor-
rect partition may be delicate: overestimating the set of hon-
est clients does not help if one of those clients is ill-typed;
underestimating this set imposes more constraints on the
access-control policy. Once we do have a valid partition,
however, we can prove that an honest client (or indeed a
subset of honest clients) can protect secrets from all other
(honest and dishonest) clients.

We define typing relations . for sets of indices £. For
now, the reader may assume that £ ranges over singleton
sets {k} (where k € K) and the set K. However, the typing
rules apply for every £ C K (see Section 5.4). Informally,
typing under . requires £ to intersect the reach of every
type given by the relation. An honest client of index ¢ € 7 is
typechecked under the relation F;,. The client may know
terms that belong to any group that includes 7; however it
may not know any term that belongs to a group that does
not include 7. On the other hand, Fx is the “most liberal”
typing relation, since KC trivially intersects all groups. For
instance, the file system is typechecked under I, since its
data structures are available to all clients. More general uses
of - appear in Section 5.4, where we typecheck the code
of clients indexed by £ in combination.

3.3 Typing judgments and typing rules
Type environments contain typing assumptions for chan-

nels, file names, directory names, and variables, and are de-
fined by the following grammar.

Tu= environments
(] empty
u: T, T type declaration

If " contains a declaration u : T', we say that u € dom(I")
and I'(u) = T. There are three kinds of typing judgments:
I' F ¢ (good environment), I' - M : T (well-typed term),
and I' F, P (well-typed process). The typing rules are
shown in Figure 1. In these rules, whenever the consequent
isof the formI't, M : T or I -, P, and the antecedent
has no judgments for well-typed terms or well-typed pro-
cesses, the judgment I' F ¢ is implicitly included in the
antecedent. We alsoleti,7’ € Z,j € K —Z,and k € K.
Some of the rules are discussed next.

The rule (Term u) checks that the reach of a type T in-
tersects the typing group L. This rule is similar to those for

Good environments, Well-typed terms

(Term write)
(Term grant)

(Term read)

(Env u) (Term file) (Term file Un)
(;?’@) wg¢dom() Tro Treu:H/H Trev:H{T} Threzu:Un Trzv:Un
<o
Tou:Tko T Iz file(u/v) : #H JH{T} T Iz file(w/v) : Un

(Term read Un)

T e {H'/H,#H /H{T}} Tk, P

) Che M:T I'bz M:G[T) 'k M : Un
I' . granty : Gry -
I b write M : Wr(T) 'k, read M : Rd(T) I' -, read M : Rd(Un)
(Term (3;) T _ (Term u) (Sub)
ier ;T—rmﬁﬂ])U w:TeT LA|T|#2 Tr:M:T |T|=K
T i Un
I'Fz B : Req, £ Dheu:T Ttz M:Un
Well-typed processes
(Proc Gr;; dir) (Proc Gr;; file)
I'Fz u: Req; 'z adm : Grj ke F:H/H k2 u: Req; 'tz adm : Gry The F:#H /H{T}
HNHCT ThrkP ITNCIT=HNHCI ThrcP
I+, u(adm, F).P It w(adm, F).P
(Proc Gr;;/) (Proc Op)
'tz u: Reg; 'tz adm : Gry Tk F:T I'Fz u: Req;, Itz emd: Op(T) Tk F:#H /H{T}

Op(T) € {Rd(T"), Wr(T')} L'k P

I' ;- u(adm, F).P

'+, u(emd, F).P

(Proc out) (Proc out Un) (Proc in) ~ (Proc in Un)
Crzu:G[T] ThreM:T Fkzu:Un T'Fz M:Un Lk w:G[T] I'Fzu:Un
Ik P Ik P 0,z:Tke P T,%:Unkg P
Tk w(M).P T . a(M).P It u(Z).P Tke u(@).P
(Proc new) (Proc par)) (Proc repl)
Don:T'Fe P The P TheQ ;Pr:cgﬂ) Dhe P
Tre (vn:T")P e P|Q ‘ D FeolP

Figure 1. Typing rules for environments, terms, and processes

judging good types in group creation [7], for example. The
rule (Term f3;) assigns the type Req; to [; if ¢ indexes an
honest client in £; the rule (Term 3;) assigns the untrusted
type to 3; for all j that index dishonest clients. Request
channels with indices in Z — £ cannot be assigned types
because of scoping constraints. The rule (Proc Op) forces
honest clients to be in the reach of the type of file contents if
they request operations from the file system; recall that, in
general, file paths may be in scope even if their contents are
not. The rules (Proc Gr;; dir) and (Proc Gr;; file) check that
honest clients can never grant dishonest clients permission
to access public files with trusted contents. (The rules do
not prevent dishonest clients from obtaining permission to
access files whose paths they can never know.) On the other
hand, (Proc Gr;;/) allows an honest client to be able to grant
arbitrary permissions to other honest clients, since honest
clients would never misuse permissions. The rule (Sub) is
a subtyping rule—it allows any public type to be treated
as untrusted. As a result, public directories and public file
names may be used by and shared between all clients. Of

course, (Sub) is not invertible; in particular, an honest client
may not receive a public file name on an untrusted channel
and then request a file operation on it. Some typical “Trojan
horse” attacks are thus ruled out.

It is easy to see that the relation - is monotonic over
typing groups, i.e., if I' bz P then T I,/ P for any £’ D
L. The following proposition says that a client with public
free names and no secrecy intentions can always be typed.
This result is similar to ones that allow typing of untyped
processes in related type systems (e.g., [7]).

Proposition 3.1. We say that a process is intention-free
if all declared types in it have reach K. For any closed
intention-free client Cy, if |I'(n)|| = K for all n € fn(C},),
then T’ }_{k} Chk.

3.4 Type constraints on file-system states

File-system states are treated as special processes. A file-
system state is typed under the same assumptions that type

the system of clients, following (Proc par). Further, since
the file system is exposed to all clients, we type it under
the most liberal typing group, K. Let { range over file-
system states. A state ¢ has three components: (. R, which
is a set of access-control rules (the access-control policy);
C.p, which is a function that maps file names to file con-
tents (the storage state); and (.7, which is a function that
associates channel names with buffered queues, where each
buffer contains terms pending to be returned on the channel.
Intuitively, each channel in the domain of (. is a continu-
ation passed by possibly many read requests, and the buffer
for that channel contains the contents to be sent back in the
order the requests were received by the file system.

In the following, we write - to mean Fx. We introduce
three more kinds of judgments: I' - (R (good access-
control policy), I' - (.p (good storage state), and I' - (.
(good return heap).

Access-control policy I' - (. R iff fn((.R) C dom(I") and
forall j,5 € K —Z, 0 € {W,R}, and names f and d,

L. if either 0j(d/*) € (R or v/}, (0;(d/*)) € (.R,
then it is never the case that I' - d : K/K; and
2. if T+ file(d/f) : #K/K{T} for some T, and

either o;(d/f) € (R or /,,(0;(d/f)) € (R,
then ||| = K.

Storage state I - (.p iff fn({.p) € dom(T") and for all
files F' € dom((.p), either of the following holds:

e 'FC(p(F):Tand D - F : #H'/H{T} for
some H', H, and T

e ' (p(F):Unandif ' F : #H'/H{T} for
some H', H, and T', then || T'|| = K.

Return heap T' - (. iff fn(¢.y) € dom(T") and for all
channels n € dom({.v) and all terms M in (.y(n),
either of the following holds:

e 'FM:TandT'F n: G[T] for some G and T'.
e 'FM:UnandI'+n: Un.

The typing constraints on good access-control policies al-
low dishonest clients to access only those public files whose
contents are public. Accordingly, dishonest clients may not
have default permissions on public directories with public
files. Further, dishonest clients may not grant themselves
any of these potentially dangerous permissions. These con-
ditions are similar in spirit to the rules (Proc Gr;; dir), (Proc
Gr;; file), and (Proc Gry;/) for processes. A storage state
is well-typed if for every file in its domain, the type of its
contents matches the type of its path. A return heap is well-
typed if for every channel in the domain of the heap, the
type of terms in its buffer matches the type of its name. A
file-system state (is compatible with I, written I' - (, iff
'E¢R,T'F(.p,and ' - (..

3.5 The examples, revisited

Recall the initial example of Section 2.3. We reflect its
assumptions by letting the type declaration for m in C; be
Gi1[], and T be partially specified as follows, using the ab-
breviations G; = {1} and G2 = {1, 2}:

F=f:K{G[]},d:K/K,p:?

Suppose that we stipulate that Z = {1, 2}, thatis, C; and C
are honest but C's may not be. Under this partition, I' - R
(since R does not give any rights to C3). However, even
while I' ¢4y Cy, we have T I7(5, C5 for all type assump-
tions I'(p). Indeed, by (Proc Op), I'(p) must be of the form
G[G1]]], whose reach being contained in {1} cannot inter-
sect {2}. Thus Cy cannot be honest, and a similar argument
rules out honesty for Cs5 as well—therefore 7 is forced to
be just {1}.

Note that Cs can be typed under F3), even if it tries
to access file(d/f), since the file’s type can be subsumed
by Un. In general a dishonest client can always be typed
under an environment which types each free name with un-
restricted scope (i.e., by subsumption, with the untrusted
type). Similarly, we may assume C to be dishonest, and
by letting I'(p) = Un, we may have T' I-;53 Co. However,
then I" I/ R, since R gives rights to C on a file with trusted
contents. Thus we conclude that R is not consistent with
the declared intentions.

When we reduce R to {wy(d/f)}, typing becomes con-
sistent. Conversely, revising secrecy assumptions in I" also
works—for example, we may allow m’s scope to be ex-
tended to {1, 2} by declaring its type as Gy2[], reflecting the
changes in a new environment, say

D=f:K{Gia[]},d: K/K,p: Gi2[Gia]]]

Now, with the original assumption of Z = {1,2}, Cy and
C5 may be checked as honest, and I' - R.
We briefly address the other examples next.

1. (Does not typecheck.) As above, C; and C'5 cannot
be honest. C; cannot be honest either, since I' V{l}
C1—the rule (Proc Gr;; file) does not apply, since I -
file(d/f) : #K/K{G1[]}. With C dishonest, I I/ R.

2. (Typechecks.) LetZ = {1,2,4} and

I'=f:K{G[},d: /K, f : K{Un},p:Un,q:Un

3. (Does not typecheck.) We begin with the partially
specified assumptions

F=f:K{?}Hd:K/K,n:2p:?

Suppose that I'(f) = K{Un}. Then C; cannot be hon-
est, since neither Un nor any G[Un| as I'(n) allows a

Ri(d/f) € (R

wr(d/f) € (R

Vilow (d/f)) € (R

¢. R+ k MAY read n(file(d/ f))
Ri(d/*) € R

C.RF k MAY write M (file(d/ f))
Wi(d/*) € C.R

¢. R F k MAY granty, (file(d/f))
Vi(ow (d/*)) € ¢R

¢.R + k MAY read n(file(d/ f))

CREEkMAY cmd(F) (R=(R
(p=Cpl=emd(F)] oy = (ol emd(F)]

C.RF k MAY write M (file(d/ f))

¢.R b k MAY granty, (F)

¢.R F k MAY granty, (file(d/f))
¢.R b k MAY grant}, (d)

¢' R = (R[— granty, (F)]
(p=¢Cp (y=¢n

EXECUTE(k, cmd, F,¢) = ¢’
(R=¢CR (p=(p

Cy=Cr\n=:M

EXECUTE(k, granty,, F,¢) = ¢’
¢ R Y kMAY M(N)

RETURN(n, M, ¢) = ¢’

EXECUTE(k, M, N,¢) = ¢

Figure 2. Semantics of file-system functions

consistent type assumption for x. If, on the other hand,
we assume C to be honest, then I'(f) = K{G[G1[]]}
and I'(n) = G'[G[G1]]]] for some G, G’. Then Cs can-
not be honest, since by (Proc Op), I'(p) = G[G1]]]
whose reach being contained in C {1} cannot inter-
sect {2}. Since at least one of C'; and C} is dishonest,
T/ R.

4. (Does not typecheck.) We begin with the partially
specified assumptions

F=q:?d:K/K,n:?p:?

If I'(¢9) = Un then Cy cannot be honest, so I' I/ R.
Suppose that I'(q) = G[T] for some G, where T is the
type declaration of f in C;. Much as in (3), at least
one of C'y and C is dishonest, so ' I/ R.

5. (Typechecks.) Let Z = {1, 2}, let the type declaration
of the new f in C be K{G1[G1[]]}, and let

IF'=q:Un,f : K{Un},d: K/K,n:G'[G[G]]]]

forany G’, G C {1,2}.
4 Operational semantics for the calculus

The operational semantics for the calculus is built on
a standard commitment relation for closed processes (see,
e.g., [1]). File-system states are treated as special processes;
a commitment relation on such states is described next.

A file-system state ¢ has components (. R, (.p, and (.
as described in Section 3.4. Access-control judgments are
of the form (.R F - MAY -; they are defined in Figure 2.
There, crﬂlﬂnges over write M and read M.

Let file(d/f) = d/f, and d= d/«. Let u range over
file-operation permissions, of the form o (d/ f) or o (d/*).
With (.R{u}, the permissions are added to (.R. With
C.p{F — M}, (.p is augmented with the new mapping

F — M. With {.4{n :: M}, M is queued to the buffer
of n in (.7, and with {.y\n :: M, M is dequeued from the
buffer of n in (.. Let

(Rl grant)(F)] = CR{ox(F)}
Col—readn(F)] = Cp
C.pl—write M(F)] = (.p{F+— M}
(ol read n(F)] = ¢l Co(F))
Cl— write M(F)] = (.

The functions EXECUTE and RETURN modify file-system
states, as shown in Figure 2. Then we have the following
commitment rules for file-system states.

VM, N : ('{M/x,N/y} = EXECUTE(k, M, N, ()
¢ (2,y)- ¢
¢’ = RETURN(n, M, ¢)
¢ (M) ¢

Both rules represent a step from ¢ to ¢’. In the former, we
have the communication of input values for (z,y) on Gg. In
the latter, we have an output M on n.

Additional rules complete the definition of the commit-
ment relation, in particular defining silent steps P — P’;
those rules are standard.

S Properties of well-typed systems

This section presents our main results for the type sys-
tem, namely subject reduction and secrecy. It also explores
some related topics: integrity guarantees, treatment of client
collusions, and a characterization of file-access groups.

5.1 Type preservation

The principal property of a well-typed system is that
each part of the system remains well-typed during sys-

tem execution. More concretely, if several processes and
a file-system state are typed under various respective typ-
ing groups using the same type environment, then they re-
main well-typed under the respective groups after an arbi-
trary number of reductions of their parallel composition.

Proposition 5.1 (Subject reduction). LetI' &, Py for each
0€0,TFC(andllpeoPy |- (vii: T) (o P | ().
ThenT,n:TFg, PpandT,n T F (.

Subject reduction has a number of consequences; the
most important is a secrecy theorem for well-typed systems,
which we discuss next.

5.2 Secrecy by typing and access control

We view an attacker as arbitrary code that interacts with
the system via dishonest clients. An attacker is modeled
by its knowledge, which is a set of names, and is an upper
bound on the set of free names in its code (see [2, 7] for
similar analyses). Let S range over such sets of names.

Definition 5.2 (S-adversary). A closed process E is an S-
adversary if E is intention-free (i.e., all declared types in it
have reach K) and fn(E) C S.

Next, we provide a definition of secrecy, using the usual
notion of escape (similar to that in, e.g., [2, 7]). We
slightly generalize the adversary, by letting it contain a well-
behaved part (some process (), and an arbitrary part (some
S-adversary). A term is revealed if it may eventually be
published on a channel known to the adversary. A term is a
(->G)-secret if its type suggests that it should not be leaked
outside the group G.

Definition 5.3 (Secrecy). Let P and Q) be closed processes,
S be a set of names, (be a file-system state, and M be a
closed term. Let m = fn(M) — fn(P, Q, S, ().

1. Under the assumptions m : T, P reveals M to (@,9)
via Cif P| Q| E| (=" % (vimn : T) (M). R for
some S-adversary E, ¢ € fn(Q)U S, M > M, and
process R.

2.IfT = M : Twith |T|| € G, then M is a (I > G)-

secret.

We now define well-typed systems and state the main
secrecy theorem. Let C, denote the process II;cCy.

Definition 5.4 (Well-typed system). A system (Cz,() is
well-typed under hypotheses U if ' -1y C; for each i € I,
andT' F (.

In other words, a system is well-typed if, using some
common type assumptions, it is possible to type each honest

client under its singleton group, and the file-system state
under K. The remaining clients can be trivially typed if they
do not know any trusted names initially and are intention-
free. Subject reduction yields the following theorem.

Theorem 5.5 (Secrecy by typing and access control). Sup-
pose that (Cz, () is well-typed under T'. Further suppose
that ||T'(s)|| = K for each s € S, where KK D Z. Then for
all groups G C T and fresh assumptions T, Cg does not
reveal any (I',I" > G)-secret to (Cz_g, S) via (.

Thus in a well-typed system, any secret meant to be
shared only within a subset of honest clients is never re-
vealed to the other (honest and dishonest) clients.

As a special case, let Z be the singleton set {1}, so that
G = T is the only non-empty trusted group. Suppose that
I' 1y P, T F ¢ and for all s € dom(I'), [|T'(s)|| = K,
where £ D {1}. Letn : {1}[] be a new name declared
inside P. Then P does not reveal n to (0, dom(I")) via (.

5.3 Integrity consequences

While above we focus on secrecy properties, the type
system also yields integrity properties. Such properties can
be specified by declaring “expectations”, and verified stati-
cally with our type system. More concretely, an expectation
specifies that certain terms should have certain types, but
has no observable effect. The types in question have both
structure (to distinguish, for example, channels from files)
as well as reach (in particular, to reason about sources of
messages). For an honest client with index ¢ € Z, let

expect(M : T). P & (vn: T,) (M) | n(3). P)

where n ¢ f(P), z ¢ fv(P), and T, = {i}[T]. Such
expectations can be verified statically, by typechecking, al-
though the terms M may, of course, contain variables in-
stantiated at runtime.

5.4 Reasoning under client collusions

When talking about well-typed systems in Section 5.2,
we require honest clients to be typed under their respec-
tive singleton groups. In this section we relax the condi-
tions on well-typedness of systems by letting honest clients
“collude”, that is, be typed under a combined group that
contains each of their respective indices. Well-typedness of
processes is robust under arbitrary collusions with dishon-
est clients: for all non-empty £ C I, I" i, P if and only
if I' Frug P, where J C K — Z. (Basically, this prop-
erty holds because the typing requirements are vacuous for
clients with indices outside Z.) Therefore, when reason-
ing under collusions that involve both honest and dishonest

clients, it is sufficient to put only the honest-client indices
in the typing groups.

Collusions may arise when a group of honest clients who
share a secret want to protect the secret from the rest of
the clients. These remaining clients are then assumed to
act adversarially by colluding. Specifically, when reasoning
about (- > G)-secrets, we allow clients indexed by G, and
those indexed by Z — G, to form a pair of collusions and
typecheck accordingly. In particular, this means that clients
in G may share their request channels, and those in Z — G
can do the same. In fact, it is not uncommon to have clients
share access capabilities in file-system environments. As
the following theorem shows, our type system can support
reasoning about such situations.

Theorem 5.6 (Secrecy by collective typing and access con-
trol). Suppose that ' g Cg, I' Fz_g Cz_g, and T F (.
Further suppose that |I'(s)|| = K for each s € S, where
K D Z. Then for all fresh assumptions T, Cg does not
reveal any (T, T > G)-secret to (Cz_g, S) via ¢.

5.5 Characterizing file-access groups in
well-typed systems

Given some code, we say that the set of clients who can
eventually do a particular operation o on a file F' is the o-
access group for F'. In this section, we conservatively char-
acterize file-access groups for well-typed code, by analyz-
ing type constraints and permission constraints in combina-
tion. For some file type #H'/H{T'} and state (, let

HAVER(d/f) = {ok(d/f),0r(d/*)}
. {Vlon(d/f)) st K € H N'H} U
GETL(A/F) = 1V (on(df)) sk)
oy py_ (R EH AHA|T] st
ACCEss®(d/f) = g.Rm(HAVEg(d/f; UGETR(d/[)) # 2}

Intuitively, the function ACCESS calculates upper bounds
on the sets of clients that, starting from a given state, can
eventually execute particular operations on files of a given
type. This set is determined by permissions as well as typ-
ing restrictions. (For example, honest clients must be in the
scope of the file name and its contents to request an opera-
tion on a file.) The calculation uses two auxiliary functions
HAVE and GET: HAVE collects existing permissions for ac-
cess to a file, and GET collects permissions that may allow
administrators to grant access to a file eventually. We use
typing restrictions to refine the latter set as well, since ad-
ministrators need to be (at least partially) in the scope of the
file they grant access to.

Definition 5.7. Suppose that U 7 Cz, '+ (, and E is a
closed intention-free process such that |T'(s)|| = K for each

s € fn(E). Further suppose that CI|E|<;>*(VF/)(P‘C/),

and P 2% (uT") (emd, F). Q, so that T,T",T" - F : Tp.

Then we say that well-typed code at can eventually have
k sending cmdon F : Tr at .

The following theorem states that the calculation of
ACCESS is sound (or conservative), that is, ACCESS®(d/ f)
actually computes an upper bound on the o-access group for

file(d/f).

Theorem 5.8 (Access-group analysis). Let read - = R and

—

write - = W. Let ACCESS be as defined for file type
#H' /H{T} and file-system state (, and suppose that well-
typed code at (can eventually have k sending cmd on

F : #H /H{T} at . If ('R b k MAY cmd(F), then
k € ACCESS“™(F).

6 Finer access control with new directories

The granularity of default permissions in an access-
control policy is always restricted by the structure of direc-
tories at that point. We may hope to enrich access-control
administration by letting clients create and declare new di-
rectories. However, an access-control policy cannot specify
non-trivial permissions for new directories in a flat directory
structure. We therefore adapt our calculus to allow hierar-
chical (nested) directories.

We define a file path by a directory path and a file name,
where a directory path is a non-empty string of directory
names. We let clients declare new directory names by ex-
tending the grammar of declared types. We extend the sort
of terms with directory paths, and the sort of types with
directory-path types.

M = terms
. others as above
dir(M) directory path
file(M/N) file path
T = declared types
e others as above
H'/H directory name
T ::= types
e others as above
#H' /H directory path type
#H' /H{TY} file path type

A directory path dir(ds .. .d,,) has type #H1 ... Hp/Hnt1
if for each k € 1...n, the name dj, has type Hy/Hi+1-
Reaches for the new type sorts are defined by:

I#H /HI =" #H /T =’ nH

Access-control policies have rules of the form ok((f/ s

o (d/*), \/k/(ok(giv/f)), or /} (ox(d/*)). The meanings
of the first three sorts are analogous to those in Section 4.

Terms (Term dir)

Tk dir(@) : #H' /H

(Term dir)
Thzu:H/H

Phzv:H/H

(Term dir Un)
'tz w1 : Un 'tz un : Un

I . dir(u) : #H' /H

(Term file) N
T dir(@) : #H'/H

T . dir(@v) : #H'H' JH

Tk o:H{T}

Tkedir(ur...up): Un

(Term file Un)
I' b, dir(@) : Un T'Fzv:Un

T b file(d/v) : #H' JH{T}

I . file(u/v) : Un

Access-control policy T (. R iff fn(¢.R) C dom(T') and for all j, j' € K — Z, o € {W, R}, and names f and name strings d,

1. if either o, (d/*) € ¢.R or V(05 (d/x)) € ¢.R. then it is never the case that I' b dir(d) : #K//C; and

2. if T file(d/ f) : #K/K{T} for some T, and either 0;(d/ f) € ¢.R or y/;,(0;(d/f)) € C.R, then ||T| = K.

Figure 3. New typing rules for terms and policies

The last sort allows &’ to grant k access permissions for all
files and subdirectories that are recursively constructed un-
der d; in particular, \/ k/(Rk(EZV/ *)) would allow £’ to grant
the permissions Ry,(d/*), Ry (d/[f), Ry (dd/*), Re(dd/f),
and so on.

The remaining semantic rules of Section 4 apply by re-
placing d with d or dir(c?) as appropriate. Figure 3 shows
some new typing rules for terms and access-control poli-
cies. The remaining typing rules of Sections 3.3 and 3.4
apply by replacing H' with H' or [H' as appropriate. The
function ACCESS of Section 5.5 can be similarly redefined.

Our theorems carry over as they are for this richer file-
system environment. Although the proofs are technically
no harder than those for the simplified environment studied
in Sections 2-5, the interplay between access control and
typing gets even more interesting.

For example, let R = {\/,(R2(d/*)),v/5(Ra(d/*))},
and suppose that C'y wants to create a file somewhere under
d and prevent Cy from reading that file. Then it can create
a new subdirectory d’ under d, type d’ so that C3 is not in
its scope, and safely create a new file f under d’. Since C3
cannot know the name d’, it cannot grant (default or plain)
access to file(dd’/ f) to Cy.

7 Related work

Our type system extends previous ones so as to deal with
access-control checks. It is particularly close to an inter-
mediate type system developed in the study of group cre-
ation [7]. It goes beyond that type system by introducing
secrecy types for file-system constructs, in such a way that
dynamic access-control checks, together with static scop-
ing, play a role in guaranteeing secrecy of file contents.

Kirli’s mobility regions [14] for distributed functional
programs are similar to groups as presented here. Bugliesi
et al. develop another calculus that uses group creation to
specify discretionary access-control policies [6]; they in-

clude a sophisticated enforcement of “delivery rules” that
control the flow of values. Ideas similar to group creation
also appear in the work of Braghin et al. on a calculus for
role-based access control [4]. It is however not immediate
to see how to apply these approaches to our setting. In [6],
for example, it is possible for clients to specify file-access
groups declaratively; in our setting, file-access groups are
influenced by external access control—we declare, instead,
our intentions about file access, and verify that external ac-
cess control respects such intentions.

As in most access-control systems, and as in the study
of group creation, in this paper secrecy is not defined as
the absence of certain flows of information (that is, as some
sort of non-interference property). Rather, secrecy is pre-
sented as the impossibility of certain communication events
(for instance, sending a message that contains a particular
sensitive value). One may however imagine many possible
variants, dealing with other concepts of secrecy, and also
with authenticity properties beyond the ones verifiable in
our system (e.g., [12]). We leave the investigation of such
variants for further work.

The recent literature also includes a few calculi with con-
structs for authorization. In particular, Fournet et al. de-
velop a spi calculus with authorization assertions [10]; a
type system for that calculus serves for checking general-
ized correspondence assertions (rather than secrecy proper-
ties, as in this paper).

Several other works emphasize distribution. Thus, in the
language KLAIM [9], a type system checks that processes
have been granted the necessary right to perform operations
at specified localities [16]. Hennessy and Riely describe a
typing system for a distributed pi-calculus that ensures that
agents cannot access the resources of a system without first
being granted the capability to do so [13]. Bugliesi et al.
explore access-control types for the calculus of boxed am-
bients [5] with a typing relation similar in form to ours, but
without dynamic access control—access control is specified

in terms of static security levels.

Yet another research direction addresses access control
in languages such as Java. Thus, Banerjee and Naumann
examine the use of access control for secure information
flow in that setting [3]. Pottier et al. develop type systems
that guarantee the success of access checks [17]. In contrast,
our type system does not guarantee the success of access
checks; indeed, type soundness depends on the failure of
some of those checks.

8 Conclusion

In this paper we investigate the interplay of secrecy types
with access-control checks in the setting of a fairly standard
file system. As indicated in the introduction, our goal is to
enable the analysis of programs that use the file system; the
details of the file-system implementation can then be refined
while preserving secrecy properties.

In addition to further research on the file-system im-
plementation, there are a number of other opportunities
for further work. These include the treatment of integrity
properties, which sometimes follow from our secrecy prop-
erties but which may well deserve a first-class treatment.
These also include relating file-system concepts and tech-
niques to those explored in other settings. For instance, one
might wonder about encodings back and forth between our
calculus and various process calculi with group creation.
We have started to consider those encodings; in particular,
while it is not too hard to encode the original calculus with
group creation into our calculus, it is not immediate to see
how to go in the other direction. We anticipate that a prim-
itive treatment of files, directories, and access-control poli-
cies is more likely to be fruitful as a basis for specifying and
verifying file-system security properties.

Acknowledgments We thank Ricardo Corin for his help-
ful comments. This work was partly supported by the
National Science Foundation under Grants CCR-0204162,
CCR-0208800, and CCF-0524078, and by Livermore Na-
tional Laboratory, Los Alamos National Laboratory, and
Sandia National Laboratory under Contract B554869.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal
of the ACM, 46(5):749-786, 1999.

[2] M. Abadi and B. Blanchet. Secrecy types for asym-
metric communication. Theoretical Computer Science,
298(3):387-415, 2003.

[3] A. Banerjee and D. Naumann. Using access control for se-
cure information flow in a Java-like language. In IEEE Com-
puter Security Foundations Workshop (CSFW), pages 155—
169, 2003.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(7]

C. Braghin, D. Gorla, and V. Sassone. A distributed calculus
for role-based access control. In IEEE Computer Security
Foundations Workshop (CSFW), pages 48-60, 2004.

M. Bugliesi, G. Castagna, and S. Crafa. Access control for
mobile agents: The calculus of boxed ambients. ACM Trans-
actions on Programming Languages and Systems, 26(1):57—
124, 2004.

M. Bugliesi, D. Colazzo, and S. Crafa. Type based dis-
cretionary access control. In International Conference on
Concurrency Theory (CONCUR), pages 225-239. Springer
LNCS, 2004.

L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group
creation. [Information and Computation, 196(2):127-155,
2005.

A. Chaudhuri and M. Abadi. Formal security analysis of
basic network-attached storage. In ACM Workshop on For-
mal Methods in Security Engineering (FMSE), pages 43-52,
2005.

R. de Nicola, G. L. Ferrari, and R. Pugliese. KLAIM:
A kernel language for agents interaction and mobility.
IEEE Transactions on Software Engineering, 24(5):315—
330, 1998.

C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline
for authorization policies. In European Symposium on Pro-
gramming (ESOP), pages 141-156. Springer LNCS, 2005.
H. Gobioff. Security for a High Performance Commodity
Storage Subsystem. PhD thesis, Carnegie Mellon University,
1999.

A. D. Gordon and A. Jeffrey. Typing correspondence asser-
tions for communication protocols. Theoretical Computer
Science, 300(1-3):379-409, 2003.

M. Hennessy and J. Riely. Resource access control in sys-
tems of mobile agents. In High-Level Concurrent Languages
(HLCL), pages 3—17. Elsevier Science Publishers, 1998.

Z. D. Kirli. Confined mobile functions. In IEEE Computer
Security Foundations Workshop (CSFW), pages 283-294,
2001.

E. L. Miller, D. D. E. Long, W. E. Freeman, and B. Reed.
Strong security for network-attached storage. In Confer-
ence on File and Storage Technologies (FAST), pages 1-13.
USENIX Association, 2002.

R. D. Nicola, G. Ferrari, R. Pugliese, and B. Venneri.
Types for access control. Theoretical Computer Science,
240(1):215-254, 2000.

F. Pottier, C. Skalka, and S. Smith. A systematic approach
to static access control. ACM Transactions on Programming
Languages and Systems, 27(2):344-382, 2005.

