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Abstract

Foundations of Access Control for Secure Storage

by
Avik Chaudhuri

Over the years, formal techniques have played a significant role in the study of secure
communication. Unfortunately, secure storage has received far less attention. In partic-
ular, the uses and consequences of dynamic access control for security in file systems,
operating systems, and other distributed systems are seldom well-understood. In this
dissertation, we develop and apply formal techniques to understand the foundations
of access control for security in such systems. Our case studies include the security de-
signs of some state-of-the-art storage systems and operating systems. Our techniques

are derived from ideas in programming languages and logic.
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Chapter 1

Introduction

Formal techniques have played a significant role in the study of secure communica-
tion in recent years. Specifically, there has been much research in developing process
calculi, type systems, logics, and other foundations for the rigorous design and analy-
sis of secure communication protocols [Abadi and Fournet, 2001; Abadi and Blanchet,
2003; Gordon and Jeffrey, 2003b; Fournet et al., 2005; Burrows et al., 1989; Blanchet,
2001a]. In comparison, the study of secure storage has received far less formal atten-
tion. Yet, over the years storage has assumed a pervasive role in modern computing.
Now storage is a fundamental part of most computer systems that we rely on—and un-

derstanding secure storage is as important as understanding secure communication.

One might wonder whether the foundations of secure communication already pro-
vide those of secure storage—after all, storage is a form of communication. Indeed,
one can think of a file f with content M as a channel f that is ready to send message
M; then f may be read and written by receiving and sending messages on f. Certainly
it would be nice if techniques developed for the study of secure communication could
also be applied to study secure storage. In particular, previous work on asymmetric
channels (i.e., channels with separate read and write capabilities) should be relevant
[Abadi and Blanchet, 2003]. Moreover the use of cryptography for secure communi-
cation on untrusted channels is close to its use for secure storage on untrusted servers
[Kallahalla et al., 2003]. In general, one might expect at least verification concepts and

tools developed for the analysis of communication systems to be useful for the analysis
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of storage systems as well. Still, one must be careful about carrying the analogies too
far. For example, some notions of forward secrecy in communication via channels may
not apply in communication via storage. Undoubtedly there are other examples.
Further, some distinctive features of storage pose problems for security that seem
to go beyond those explored in the context of communication protocols. Perhaps the
most striking of these features is access control. Indeed, computer systems typically
feature access control on store operations, for various reasons linked with security. On
the other hand, several aspects of access control do not arise in typical communication
protocols. For example, channel communication seldom relies on dynamic access con-
trol (such as revocation of permissions). Not surprisingly, such aspects of access con-
trol have been largely ignored in formal studies of secure communication. Yet, access
control is indispensable for security in a typical storage design. Perhaps the primary
reason for this dependence is the potential role of access control as a flexible run-time
mechanism for enforcing dynamic specifications. We see an intriguing and challenging
research opportunity in understanding the foundations of access control for security in

such systems. Briefly, we propose and defend the following thesis:

A formal understanding of the foundations of access control for secure stor-
age can significantly help in articulating, evaluating, and improving the

security of computer systems.

In the remainder of this chapter, we outline how we defend the thesis above. In
short, our strategy is to develop and apply formal techniques to specify and verify
security properties of a variety of computer systems. Such systems typically rely on
access control for security; thus, through this exercise, we lay the foundations of ac-
cess control for security in such systems. The systems include, in particular, operating
systems, file systems, and other distributed systems, whose precise security proper-
ties are seldom articulated or enforced rigorously. The techniques build on a rich and
mature literature on calculi, semantics, type systems, logics, and other foundations for
program verification. Parts of this work appear in [Chaudhuri and Abadi, 2005, 2006b;
Chaudhuri, 2006; Chaudhuri and Abadi, 2006a; Chaudhuri et al., 2008a; Blanchet and
Chaudhuri, 2008; Chaudhuri et al., 2008c; Chaudhuri, 2008b].

2



1.1 Access control and secure storage

While secure communication is usually necessary for security in computer systems,
it is seldom sufficient. Computer systems often rely on access control for security. For
instance, access control plays a role in enforcing run-time security specifications in such
systems (even if this role is not explicitly recognized as such). Unfortunately, while
secure communication is fairly well understood, several aspects of access control—
such as dynamic access control—are not. Clarifying those aspects for security in such
systems is an important and challenging research problem.

The key idea behind access control is that accessing a secure object should require
some privilege, that can be checked at run time. However, access control may not
guarantee security per se. For example, it may be possible to circumvent access control.

Less drastically:

(a) The implementation of access control may be incorrect. For instance, distributed
implementations of access control often rely on cryptographic techniques, and

the correctness of such implementations can be fairly tricky.

(b) Access control may not restrict information flow. For instance, a privileged user
can inadvertently write confidential information to a publicly readable object, or

trust information that is read from a publicly writable object.

Undoubtedly there are other, less important reasons. With some care, however, it

should be possible to leverage access control to provide robust security guarantees.

(a) The implementation of access control can be considered correct if it preserves the
security properties of some (obviously or provably) correct specification of access
control. Information-flow properties like secrecy and integrity that assume the

security properties of the specification can be carried over to the implementation.

(b) Information-flow properties can be guaranteed by combining access control with
some static analysis. Access control can restrict any unprivileged code that may
run in the environment; static analysis can restrict the remaining, privileged code.
Their interplay can be exploited to prevent undesirable information flows under

an arbitrary environment.



1.2 A research program

The observations above suggest a research program with two complementary di-
rections: in direction (a), focus on the correctness of access controls in a variety of
computer systems; in direction (b), show how to exploit such access controls in proofs
of information-flow properties.

These directions of work are not necessarily orthogonal. Indeed, for some systems,
it may be useful to work on these directions in tandem; for others, it may even be
impossible to think of these directions in isolation. Still, these directions are driven by
somewhat different concerns.

The motivation for direction (a) stems from the complexity of access-control imple-
mentations in contemporary file systems and operating systems. Such complexity is
often justifiable in practice; there are various underlying assumptions and guarantees
in these systems, and unusual improvisations may be required to meet them. Verify-
ing the correctness of these implementations is typically not straightforward; in fact,
formal verification helps understand the nuances of these implementations, uncover
potential flaws, and articulate their precise properties.

But correct access control may not be enough for security. The motivation for direc-
tion (b) stems from the lack of understanding of the role of access control for security
in computer systems. Indeed, without proper care, access control may turn out to
be completely ineffective as a security mechanism. Showing how to achieve concrete
information-flow properties through access control helps formalize the intended secu-
rity guarantees of the access-control implementations in such systems.

Roughly, it is this research program that binds our work here. Before plotting an
organized view of that work, let us present some highlights, that should give a taste of

the systems and techniques involved.

1.3 Some highlights

In this section, we present an assortment of case studies, methodologies, and results

that appear in this dissertation. We postpone their organization to Section 1.5.
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1.3.1 Security enforcement on operating systems

Commercial operating systems are seldom designed to prevent information-flow
attacks. Not surprisingly, such attacks are the source of many serious security prob-
lems in these systems. Microsoft’s Windows Vista operating system implements an
integrity model that can potentially prevent some of those attacks. In some ways, this
model resembles classical models of multi-level integrity [Biba, 1977]: every process
and object is tagged with an integrity label, the labels are ordered by levels of trust,
and Vista enforces access control across trust boundaries. In other ways, it is radically
different. While Vista’s access control prevents low-integrity processes from writing to
high-integrity objects, it does not prevent high-integrity processes from reading low-
integrity objects. Further, Vista’s integrity labels are dynamic—Ilabels of processes and
objects can change at run time. This model allows processes at different trust levels to
communicate, and allows dynamic access control. At the same time, it admits various
information-flow attacks. Fortunately, any such attack requires the participation of a
trusted process; therefore, it is possible to eliminate such attacks by static analysis.

In Chapter 6, we provide a formalization of Vista’s integrity model along these lines.
(This work appears in [Chaudhuri et al., 2008a].) As a first step, we design a simple
higher-order process calculus that emulates Vista’s security environment. In this lan-
guage, processes can fork new processes, create new objects, change the labels of pro-
cesses and objects, and read, write, and execute objects in exactly the same ways as
Vista allows. Then, we specify an information-flow property called data-flow integrity
(DFI), and present a static type system to enforce DFI in this language.! Informally, DFI
prevents the flow of data from untrusted code to objects whose contents are trusted; the
formal definition requires a semantic technique to track precise sources of values. Our
type system relies on Vista’s run-time access checks for soundness. The key idea in the
type system is to maintain a lower-bound label S for each object. While the dynamic
label of an object can change at run time, the type system ensures that it never goes be-

low 8, and the object never contains a value that flows from a label lower than S. The

![Castro et al., 2006] specifies and enforces a related data-flow integrity property, by statically extract-
ing data-flow graphs from programs, and instrumenting the programs so that their run-time data flows
do not violate those graphs.



label S is declared by the programmer. Typechecking requires no other annotations,
and can be mechanized by an efficient algorithm. Further, we discover that while most
of Vista’s run-time access checks are required to enforce DFI, Vista’s execution controls

are (in some sense) redundant and can be optimized away.

1.3.2 Automatic analysis of security models

Of course, it is preferable to analyze security models during their design than af-
ter their implementation in computer systems. To that end, in Chapter 3 we present
EON, a logic-programming language and tool that can be used to automatically ana-
lyze dynamic access control models. (This work appears in [Chaudhuri et al., 2008c].)
Our language extends standard Datalog with some carefully designed constructs that
allow the introduction and transformation of new relations. For example, these con-
structs can model the creation of processes and objects, and the modification of their
security labels at run time. Security properties of such systems can be analyzed by
asking queries in this language. We show that query evaluation in this language can
be reduced to decidable query satisfiability in a fragment of Datalog, and further, un-
der some restrictions, to efficient query evaluation in standard Datalog. We implement
these reductions in our tool, and apply it to study the dynamic access control mod-
els of the Windows Vista and Asbestos [Efstathopoulos et al., 2005] operating systems.
In particular, we automatically rediscover the attacks against integrity admitted by
Vista’s security model (which we eliminate by our type system above). We also auto-
matically prove some secrecy properties for the security model of Asbestos, and verify

the security of a webserver implemented on Asbestos [Efstathopoulos et al., 2005].

1.3.3 Automated security analysis of storage protocols

Over the years, protocols for secure communication have been studied in depth. In
some cases, attacks have been found on old, seemingly robust protocols, and these
protocols have been corrected [Denning and Sacco, 1981; Lowe, 1996, Wagner and
Schneier, 1996]; in other cases, the security guarantees of those protocols have been

found to be misunderstood, and they have been clarified and sometimes even formal-
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ized and proved [Abadi and Gordon, 1999; Lowe, 1996; Paulson, 1998]. More generally,
this line of work has underlined the difficulty of designing secure communication pro-

tocols, and the importance of verifying their precise security properties.

Unfortunately, protocols for secure storage have received far less attention. In Chap-
ter 2, we show that protocols for secure storage are worth analyzing, and study an
interesting example. Specifically, we analyze a state-of-the-art file-sharing protocol
that exploits cryptographic techniques for secure storage on an untrusted server. (This
work appears in [Blanchet and Chaudhuri, 2008].) The protocol is the basis for the file
system Plutus [Kallahalla et al., 2003]. This setting is interesting for several reasons.
First, compromise of storage servers is a reasonably common threat today, and it is
prudent not to trust such servers for security. Next, the protocol we study has a very
typical design for secure file sharing on untrusted storage, where data is stored en-
crypted and signed, and keys for encrypting, signing, verifying, and decrypting such
data are managed by users. Several file systems follow this basic design. Finally, be-
yond the basic design, the protocol features some promising new schemes that facili-
tate dynamic access control with cryptographic techniques, but in turn complicate its

security properties. These schemes are worthy of study in their own right.

Formal techniques play a significant role in our analysis. We model the protocol
and verify its security properties in the automatic protocol verifier ProVerif [Blanchet,
2001a, 2002]. ProVerif is based on solid formal foundations that include theory for the
applied pi calculus and proof theory for first-order logic. The formal language forces
us to specify the protocol precisely, and prove or disprove precise security properties
of the protocol. This level of rigor pays off in several ways. We find a new attack
against integrity on the protocol, and show that it can have serious practical conse-
quences. That this attack has eluded discovery for more than four years is testimony
to the difficulty of finding such attacks “by hand”. We propose a patch and prove that
it corrects the protocol. Both the attack and the correction are relative to a formal spec-
ification of integrity that is not immediately apparent from the informal specification
in [Kallahalla et al., 2003]. We also prove a weaker secrecy guarantee than the one
claimed in [Kallahalla et al., 2003] (and show that their claim cannot be true). Further,

we notice and clarify some ambiguities in [Kallahalla et al., 2003]; we also find some
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new, simpler attacks where more complex ones were known. These discoveries vastly
improve our understanding of the protocol’s subtleties. More generally, they reconfirm
that informal justifications (such as showing resistance to specific attacks) are not suffi-
cient for protocols. As far as we know, this study is the first automated formal analysis
of a secure storage protocol; we expect our approach to be fruitful for other protocols

in this area.

1.3.4 Secure distributed sharing of services

The security architecture of Plutus generalizes quite naturally to an architecture for
dynamic sharing of services in a distributed setting. In this architecture, access to ser-
vices are protected by keys, which are generated and shared by administrators; these
keys can be revoked by administrators to dynamically control access to those services.
In Chapter 5, we show how to achieve information-flow properties in this setting. (A
version of this work appears in [Chaudhuri, 2006]; we introduce some related concepts
in Chapter 4, which are developed in more detail in [Chaudhuri and Abadi, 2006b].)
As a first step, we develop a variant of Gordon and Hankin’s concurrent object cal-
culus [Gordon and Hankin, 1998] with support for flexible access control on methods.
We then investigate safe administration and access of shared services in the resulting
language. Specifically, we show a type system that guarantees safe manipulation of
objects with respect to dynamic specifications, where such specifications are enforced
via access changes on the underlying methods at run time. By labeling types with se-
crecy levels, we show that well-typed systems preserve their secrets amidst dynamic

access control and untrusted environments.

1.3.5 Correctness of distributed access-control implementations

Distributed implementations of access control abound in distributed storage proto-
cols. Such implementations are often accompanied by informal justifications of their
correctness. However, in Chapter 7, we discover several subtleties in a standard imple-
mentation of access control with capabilities [Gobioff et al., 1997], that can undermine

correctness under a simple specification of access control. (Some versions of this work
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appear in [Chaudhuri and Abadi, 2005, 2006a; Chaudhuri, 2008b].)

We consider both “safety” and “security” for correctness; loosely, safety requires
that an implementation does not introduce unspecified behaviors, and security re-
quires that an implementation preserves the specified behavioral equivalences. We
show that a secure implementation of a static access policy already requires some care
in order to prevent unspecified leaks of information about the access policy. A dy-
namic access policy causes further problems. For instance, if accesses can be dynam-
ically granted then the implementation does not remain completely secure—it leaks
information about the access policy. If accesses can be dynamically revoked then the
implementation does not even remain safe. We show that a safe implementation is
possible if a clock is introduced in the implementation. A secure implementation is
possible if the specification is accordingly generalized.

Our analysis details how formal criteria can guide the systematic design of a dis-
tributed implementation from a specification. We show how violations of those criteria
can lead to attacks. We distill the key ideas behind those attacks and propose correc-
tions in terms of useful design principles. We show how these principles can guide the
derivation of secure distributed implementations of other stateful computations. This
approach is reminiscent of secure program partitioning [Zdancewic et al., 2002], and

deserves further investigation.

1.4 Ideas and techniques

In the studies above, we rely heavily on ideas and techniques that are founded in

programming languages and logic. Let us review some of these influences up front.

1.4.1 Programming languages

The success of any security analysis ultimately depends on the soundness of the ab-
stractions on which the analysis is based. Viewing the underlying system as a program-
ming language can make these abstractions explicit. In particular, such a language
pins down the power of the adversary. It also pins down the semantics of the environ-

ment in which that analysis is intended to apply. For example, we formalize Windows
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Vista’s security environment as a higher-order process calculus with references and
labels (Chapter 6); the access controls enforced by Windows Vista are burnt into se-
mantics of this language. Likewise, we formalize the Plutus protocol in an applied pi
calculus (Chapter 2); the cryptographic and number theoretic algorithms that are used
by the protocol are burnt into an equational theory that the language is equipped with.
Here, the security of a program in the environment under study is defined in terms of
the observable behaviours of that program under an arbitrary context in that environ-
ment. Such definitions provide strong, “worst-case” guarantees, since the context can
be chosen by the adversary (modulo the language). Standard semantic concepts and
proof techniques, such as substitution, reduction, bisimilarity, testing equivalence, and

static equivalence, often play a crucial role in such definitions.

Sometimes, it is possible to guarantee the security of programs by static analysis.
This approach is particularly attractive for security, since insecure programs can be
eliminated at compile time, so that any program that is actually run on the system is
guaranteed to be secure. Such an analysis can usually be formalized as a type system.
In particular, the type of a program can specify the security invariants of that program.
Typing rules combine these invariants with the semantics of the environment to derive
other invariants. Finally, type preservation implies that the invariants hold at run time,
showing that the analysis is sound. For example, we develop a type system that can
enforce data-flow integrity on Windows Vista (Chapter 6). As another example, we
develop a type system that can enforce secrecy in a file-system environment (Chapter
4). Here, dependent types are often required to specify security invariants that depend
on program values, such as security labels (much as in first-order logic). Moreover,

polymorphism is often required to reason about dynamic specifications (Chapter 5).

Going further, a security analysis in an abstract language can be proved sound
under a more concrete semantics by showing a compilation that preserves the static
semantics of the language. Such proofs allow the analysis to be applied soundly to
the more concrete environment. Alternatively, such proofs justify the abstractions on
which the analysis may be based. For example, we study the correctness of distributed
implementations of access control by reducing them to simpler access control speci-

fications (Chapter 7); analyses that assume such specifications then carry over to the
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implementations “for free”. As another example, we prove the correctness of a secrecy
type system for a pi calculus extended with file-system constructs (Chapter 4) by trans-
lation to a sophisticated typed object calculus (Chapter 5); properties of the target type
system then apply to the source language “for free”. Here, the proofs of correctness
are often guided by concepts such as type-preserving compilation, refinement, and

full abstraction.

1.4.2 Logic

Some degree of automation is desirable in reasoning about the security of computer
systems. For instance, it may be possible to automatically find high-level attacks in
some systems, while leaving the discovery of other, low-level attacks to more refined
analyses. Usually, the high-level attacks expose either serious design bugs or serious
specification errors, so finding them early on can be extremely useful.

A logic can provide a fine basis for such automation. In particular, security models
can be encoded as logic programs, and their properties can be studied by executing
queries on those programs. For example, the tool ProVerif can automatically analyze
cryptographic protocols following this approach; we apply ProVerif to study the se-
curity design of the Plutus file system, and discover various design bugs (Chapter 2).
Going further, we develop a tool EON that can automatically analyze dynamic access
control systems following this approach (Chapter 3); we apply EON to study the se-
curity designs of the Windows Vista and Asbestos operating systems, and discover
various specification errors.

Many other, potentially useful ideas and techniques from logic are not explored in
this dissertation. For instance, a security type system may be implemented in a log-
ical framework, by interpreting types as formulae under the Curry-Howard isomor-
phism. Typechecking, and even type inference, may be reduced to logical satisfiability
and mechanized by standard techniques. Conversely, a security type system may be
guided by a security logic, exploiting the Curry-Howard isomorphism in the other di-
rection. For instance, it may be possible to translate proofs in a logic of knowledge
and belief to secure (well-typed) code in a language with cryptography. We leave the

exploration of these ideas and techniques as future work.
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1.5 Organization

We organize this dissertation roughly by the directions of work identified in our

research program in Section 1.2. The presentation is divided into three parts.

e In Part I (Chapters 2-3), we focus on correctness of access control, following di-
rection (a) of our program. More precisely, we consider automated techniques
to specify and verify the correctness of various access-control implementations
that appear in recent file and operating systems. Some of these implementations
rely on cryptography, as outlined in Section 1.3.3; others rely on security labels,
as outlined in Sections 1.3.1 and 1.3.2. The ideas and techniques in this part are

related to logic (Section 1.4.2), and are summarized in Sections 1.3.3 and 1.3.2.

e In Part II (Chapters 4-6), we focus on security via access control, following direc-
tion (b) of our program. More precisely, we consider language-based techniques
to enforce information-flow security on various computer systems that imple-
ment access control. Our analyses are fairly sophisticated; they not only rely on
the underlying access controls for soundness, but also exploit them for precision.
On the other hand, the targeted security properties are largely standard. The
ideas and techniques in this part are related to programming languages (Section

1.4.1), and are summarized in Sections 1.3.1 and 1.3.4.

e Finally, in Part III (Chapter 7), we focus on preserving security by correctness,
thereby illustrating how directions (a) and (b) can be tied. More precisely, we
consider some powerful techniques to relate the security properties of access con-
trol implementations to their specifications; the implementations are correct only
if they preserve the security properties of their specifications. Some of these im-
plementations rely on cryptography and distribution, as outlined in Section 1.3.5.
Their correctness makes it possible to reason about their security properties by
analyzing those of their specifications, by the methods developed in Part II. The
ideas and techniques in this part are strongly influenced by programming lan-

guages (Section 1.4.1), and are summarized in Section 1.3.5.
We outline related work and discuss our contributions in Chapter 8.
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1.5.1 Dependencies

Despite their organization in parts, the chapters in this dissertation are mostly self-
contained, so that they can be read in any order. Still, there are some indirect relation-
ships between these chapters that may be helpful to see up front. We list some of the

more obvious ones below; others appear in Section 1.5.2.

Chapter 4 < Chapter 5 The type system of Chapter 5 is based partly on that of Chap-
ter 4. Both type systems exploit access controls to guarantee secrecy. Further,
some type constructs, such as secrecy groups, and the associated subtyping rules
are shared by these type systems. Finally, the soundness proof for the type sys-
tem of Chapter 4 is obtained by translation to that of Chapter 5.

Chapter 4 <+ Chapter 7 The type system of Chapter 4 can be used to analyze specifi-
cations of the kind considered in Chapter 7. Moreover, since any security guaran-
tees for such specifications carry over to correct implementations (such as those
studied in Chapter 7), we can effectively use the above type system to analyze

those implementations as well.

Chapter 3 < Chapter 6 The type system of Chapter 6 is based partly on some insights
gained in Chapter 3, from a logic-based analysis of the security design of Win-
dows Vista with EON. In particular, that analysis discovers some high-level at-
tacks, and develops a coarse discipline that can provably eliminate them. The
type system of Chapter 6 further refines this discipline, to not only eliminate

those attacks, but also do so more precisely.

Chapter 2 <~ Chapter 5 The language of Chapter 5 can be viewed as describing a gen-
eralization of the setting of Chapter 2, following the outline in Section 1.3.4. Ac-
cordingly, it should be possible to apply the type system of Chapter 5 to analyze

programs in this setting.

1.5.2 Common themes

Finally, some common themes run throughout this dissertation. Let us close this

chapter by briefly discussing them; they should become apparent as we progress.
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Dynamic effects A common observation in our studies is that access control can both
complicate and improve security in non-trivial ways. Such sophistication seems
to stem from the intrinsic dynamic effects of access control. Indeed, on the sur-
face, access control is about dynamic checks; but more deeply, it is about dynamic
constraints that influence those checks. For instance, access control can involve
not only checking permissions at run time, but also revoking or granting those
permissions at run time. Such flexibility has both pros and cons, and our analyses

must be sensitive enough to exploit or avoid them.

Hybrid analyses Access controls can be viewed either as mechanisms or as policies.
Some static analyses guarantee the success of access checks at run time, thereby
allowing them to be optimized away; such analyses view access controls as poli-
cies, and aim to show conformance with those policies. Other analyses instead
rely on the failure of access checks at run time; such analyses view access controls

as mechanisms, and aim to show soundness of those mechanisms.

In this dissertation, we usually (but not always) adopt the latter view; we con-
sider access controls as mechanisms to achieve information-flow properties such
as secrecy and integrity. Our type systems for such properties rely on access con-
trols for soundness, and exploit them for precision. This approach is similar in
spirit to hybrid typechecking [Flanagan, 2006]—dynamic checks are used where
possible or as required to complement static checks. Moreover, this approach is
particularly relevant for the systems we study, since access controls are intended

mainly as security mechanisms in these systems.

Decidability issues In any sufficiently expressive model of computation, most secu-
rity questions of interest become undecidable. Thus, any general technique to
answer such questions automatically are forced to choose between soundness
and completeness. For example, ProVerif is sound, but incomplete—there are se-
curity questions for which it may not return decisive answers, or even terminate.
Still, such tools can be quite successful, by relying on carefully chosen abstrac-
tions; for instance, they can be used to prove the absence of attacks, or warn

about possible attacks (that may or may not correspond to real attacks). On the
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other hand, sometimes it is possible to restrict the expressive power of the com-
putational model so that security questions in that model become decidable. For
instance, we design EON to be both sound and complete. Such tools either find

real attacks or altogether prove their absence.

Somewhat similar choices arise in the design of type systems for security. The
type systems are usually conservative; they always reject bad programs, and may
sometimes reject good programs. Despite these abstractions, typechecking may
still be undecidable. For instance, typechecking may involve “guessing” some
types that cannot be infered automatically. Usually, it is possible to recover de-
cidability of typechecking by requiring further annotations, or otherwise restrict-
ing the type system. We favor such type systems, because they allow automatic

code certification (at least in principle).

Security properties Various security properties may be of interest in a particular sys-
tem. These properties may range from simple secrecy and integrity properties,
that consider only explicit (data) flows, to stronger “hyperproperties” [Clarkson
and Schneider, 2008] such as noninterference [Goguen and Meseguer, 1982], that

consider also implicit (control) flows.

Sometimes, it may be more reasonable to enforce weaker properties at the level of
file and operating systems, while allowing stronger properties to be enforced at
the level of specific applications, as necessary. For instance, the weaker proper-
ties may be less sensitive to modeling artifacts, and thus easier to preserve by
translation. We follow this approach in several of our type systems. On the
other hand, sometimes we find it useful to consider stronger properties, since
counterexamples to such properties can expose unexpected information leaks in

implementations.

We defer a more detailed discussion on these themes and their manifestations in our

work to Chapter 8.
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Part 1

Correctness of Access Control
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Overview

In this part, we focus on automated techniques for analyzing access control im-
plementations in computer systems. Our main interests are specifying and verifying
security properties of such implementations. Logic programming techniques seem to
be particularly suitable for our purposes. We investigate and apply these techniques
to study the security designs of some recent file and operating systems.

We begin by studying security properties of a state-of-the-art protocol for secure file
sharing on untrusted storage, in the automatic protocol verifier ProVerif (Chapter 2).
ProVerif translates the protocol into a Prolog-style program, and uses a resolution-
based algorithm to prove or refute these properties. As far as we know, this is the first
automated analysis of a secure storage protocol. The protocol itself, designed as the
basis for the file system Plutus, features some interesting schemes for dynamic access
control. These schemes complicate its security properties. Our analysis clarifies sev-
eral ambiguities in the design and reveals some unknown attacks on the protocol. We
propose corrections, and prove precise security guarantees for the corrected protocol.

While ProVerif is a powerful tool, it is necessarily incomplete—it is not guaran-
teed to produce definite results, or even terminate, on all inputs. For example, cer-
tain access control models that appear in operating systems seem difficult to analyze
with ProVerif. To decidably analyze such models, next we develop a specialized logic-
programming language and tool called EON (Chapter 3). Our language extends Dat-
alog with some carefully designed constructs that allow the introduction and trans-
formation of new relations. For example, these constructs can model the creation of
processes and objects, and the modification of their security labels at run time. Secu-
rity properties of such systems can be analyzed by asking queries in this language. We
show that query evaluation in EON can be reduced to decidable query satisfiability in
a fragment of Datalog, and further, under some restrictions, to efficient query evalua-
tion in Datalog. We implement these reductions in our tool, and demonstrate its scope
through several examples. In particular, we study the dynamic access control models
of the Vista and Asbestos operating systems. We also automatically verify the design

of a secure webserver running on Asbestos.
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Chapter 2

Cryptographic access control

Much research in recent years has focused on the security analysis of communi-
cation protocols. In some cases, attacks have been found on old, seemingly robust
protocols, and these protocols have been corrected [Denning and Sacco, 1981; Lowe,
1996; Wagner and Schneier, 1996]; in other cases, the security guarantees of those pro-
tocols have been found to be misunderstood, and they have been clarified and some-
times even formalized and proved [Abadi and Gordon, 1999; Lowe, 1996; Paulson,
1998]. More generally, this line of work has underlined the difficulty of designing se-
cure communication protocols, and the importance of verifying their precise security
properties.

While protocols for secure communication have been studied in depth, protocols
for secure storage have received far less attention. In this chapter, we show that such
protocols are worth analyzing, and study an interesting example. Specifically, we an-
alyze a state-of-the-art file-sharing protocol that exploits cryptographic techniques for
secure storage on an untrusted server. The protocol is the basis for the file system

Plutus [Kallahalla et al., 2003]. This setting is interesting for several reasons:

e First, compromise of storage servers is a reasonably common threat today, and it

is prudent not to trust such servers for security [Mazieres and Shasha, 2002].

e Next, the protocol we study has a very typical design for secure file sharing on
untrusted storage, where data is stored encrypted and signed, and keys for en-

crypting, signing, verifying, and decrypting such data are managed by users.
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Access control is enforced via suitably restricting the distribution of those keys.
Several file systems follow this basic design, including SNAD [Miller et al., 2002],
SiRiUS [Goh et al., 2003], and other cryptographic file systems dating back to the
1990s [Blaze, 1993].

e Finally, beyond the basic design, the protocol features some interesting schemes
such as lazy revocation and key rotation, to improve the protocol’s performance in
the presence of dynamic access control (see Section 2.1). These features are wor-
thy of study. For instance, our analysis reveals that lazy revocation allows more
precise integrity guarantees than a more naive scheme [Goh et al., 2003]. On a
different note, the computational security of key rotation schemes has generated
a lot of interest recently [Backes et al., 2005, 2006; Fu et al., 2006]. Our analysis
reveals some new integrity vulnerabilities in the protocol that can be exploited

even if the key rotation scheme is secure.

Formal techniques play a significant role in our analysis. We model the protocol
and verify its security properties in the automatic protocol verifier ProVerif [Blanchet,
2001a, 2002, 2008]. ProVerif is based on solid formal foundations that include theory
for the applied pi calculus and proof theory for first-order logic. The formal language
forces us to specify the protocol precisely, and prove or disprove precise security prop-

erties of the protocol. This level of rigor pays off in several ways:

e We find a new integrity attack on the protocol, and show that it can have serious
practical consequences. That this attack has eluded discovery for more than four

years is testimony to the difficulty of finding such attacks “by hand”.

e We propose a patch and prove that it corrects the protocol. Both the attack and the
correction are relative to a formal specification of integrity that is not immediately
apparent from the informal specification in [Kallahalla et al., 2003]. We also prove
a weaker secrecy guarantee than the one claimed in [Kallahalla et al., 2003] (and

show that their claim cannot be true).

e The formal exercise allows us to notice and clarify some ambiguities in [Kalla-

halla et al., 2003]; it also allows us to find some new, simpler attacks where more
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complex ones were known. These discoveries vastly improve our understanding

of the protocol.

e Finally, the use of an automatic verifier yields a much higher level of confidence

in our proofs than manual techniques, which have been known to be error-prone.

The rest of the chapter is organized as follows. In Section 2.1, we outline the pro-
tocol behind Plutus. In Section 2.2, we give an overview of ProVerif, and present our
model of Plutus in ProVerif. Finally, in Section 2.3, we specify and analyze secrecy and
integrity properties of Plutus in ProVerif, and present our results and observations. We
assume some familiarity with basic cryptographic functions, such as those for encrypt-
ing, hashing, and signing, in this chapter; see [Goldwasser and Bellare, 2001] for an

introduction to these functions.

2.1 Plutus

The file system Plutus [Kallahalla et al., 2003] is based on a storage design that does
not rely on storage servers to provide strong secrecy and integrity guarantees. Instead,
contents of files are cryptographically secured, and keys for writing and reading such
contents are managed by the owners of those files. Special schemes are introduced
to economize key distribution and cryptography in the presence of dynamic access
control; those schemes complicate the protocol and its security properties.

In Plutus, principals are qualified as owners, writers, and readers. Every file belongs
to a groupl, and all files in a group have the same writers and readers. The owner of a
group generates and distributes keys for writing and reading contents for that group;
those keys are shared by all files in that group.

Specifically, a write key is used to encrypt and sign contents, while a read key is used
to verify and decrypt such contents. These keys can be revoked by the owner to dy-
namically control access to those files; a new write key and a new read key are then

generated and distributed appropriately. However, the new write key is used only for

IThere is a difference between the informal interpretation of a group in [Kallahalla et al., 2003], and
the formal interpretation of a group in this chapter. In fact, the interpretation in [Kallahalla et al., 2003] is
inconsistent; see Section 2.3.4 for a more detailed discussion of this issue.
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subsequent writes: unlike SiRiUS [Goh et al., 2003], the files are not immediately se-
cured with the new write key, so that the previous read key can be used to verify and
decrypt the contents of those files until they are re-written. This scheme, called lazy

revocation, avoids redundant cryptography, and is justified as follows:

e Encrypting the existing contents with the new write key would not guarantee
secrecy of those contents from the previous readers, since those contents may

have been cached by the previous readers.

e More subtly, since the existing contents come from the previous writers, signing
those contents with the new write key would wrongly indicate that they come
from the new writers. (With lazy revocation, if an untrusted writer is revoked,
readers can distinguish contents that are written after the revocation from previ-
ous contents that may have been written by that writer; consequently, they can

trust the former contents even if they do not trust the latter contents.)

Going further, a scheme called key rotation allows the new readers to derive the
previous read key from the new read key, avoiding redundant key distribution. (Thus,
the new readers do not need to maintain the previous read key for reading the existing
contents.) In contrast, the new read key cannot be derived from the previous read key,
so contents that are subsequently written with the new write key can only be read by
the new readers.

Concretely, a write key is of the form (sk,Ik), where sk is part of an asymmetric
key pair (sk,vk), and Ik is a symmetric encryption key; the complementary read key
is (vk,lk). Here sk, vk, and Ik are a sign key, a verify key, and a lockbox key. Contents
are encrypted with Ik? and signed with sk; those contents are verified with vk and
decrypted with Ik.

Plutus uses the RSA cryptosystem [Rivest et al., 1978], so we have sk = (d,n) and
vk = (e,n), where the modulus 7 is the product of two large primes p and g, and the

exponents d and e are inverses modulo (p —1)(g — 1), thatis,ed = 1mod (p —1)(q —1).

2More precisely, contents are divided into blocks, and each block is encrypted with a fresh key; these
keys are in turn stored in a “lockbox” that is encrypted with Ik. In this chapter, we consider for simplicity
that the contents are directly encrypted with lk; we have checked that our results continue to hold with
the details of the lockbox.
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The pair (p,q) is called the RSA seed. Note that the functions x — x? mod n and
y +— y°mod n are inverses. Given a hash function hash, a message M is signed with sk
by computing S = hash(M)“ mod n, and S is verified with vk by checking that S® mod n =
hash(M).

In general, e may be chosen randomly, relatively prime to (p —1)(g — 1), and d may
be computed from e, p, and q. However in Plutus, e is uniquely determined by n and Ik
as follows: given a pseudo-random sequence (r;) generated with seed Ik, e is the first
prime number in the sequence (r; + 1/n). We denote this algorithm by genExp(1, Ik).

To sum up, a sign/verify key pair (sk, vk) is generated from a random RSA seed
(p,q) and a lockbox key Ik, by computing n = pg, e = genExp(n, Ik), vk = (e,n), and
sk = (d,n), where d is the inverse of e modulo (p —1)(q —1).

The owner of a group distributes (sk, k) to writers and Ik to readers; users can fur-
ther derive vk from n and Ik using genExp. Note that n is already available to writers
from sk. Further, the owner distributes a signed n to writers, which they attach when-
ever they write contents to the file system—so any user can obtain n from the file sys-
tem and verify its authenticity. Thus writers can act for readers in Plutus, although
in [Kallahalla et al., 2003] it is wrongly claimed that writers cannot derive vk (implying
that read access is disjoint from writer access). It is already known that writers can act
for readers in SiRiUS in a similar way [Goh et al., 2003; Naor et al., 2005].

Let (D, N) and (E, N) be the private key and the public key of the owner of a group.
The initial and subsequent versions of keys for writers and readers of that group are

generated as follows:

Version 0 The initial lockbox key Ik is random, and the initial sign/verify key pair

(sko, vko) is generated from a random RSA seed (with modulus 1) and lky.

Version v to version v +1 When keys for version v are revoked, a new lockbox key
lky+1 is generated by “winding” the previous lockbox key lk, with the owner’s
private key, as Ik, 1 = Ik} mod N. The previous lockbox key can be retrieved
by “unwinding” the new lockbox key with the owner’s public key, as lk, =
Ikt mod N. In particular, a reader with a lockbox key Ik, for any ' > v can

generate the verify key vk, by obtaining the modulus n, from the file system, re-
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cursively unwinding Ik, to Ik,, and deriving vk, from n, and Ik, using genExp.
The new sign/verify key pair (sky+1,0ky41) is generated from a random RSA

seed (with modulus n,.1) and lk, 1.

While storage servers are not trusted to provide strong secrecy and integrity guar-
antees, there is still a degree of trust placed on servers to prevent unauthorized mod-
ification of the store by a scheme called server-verified writes. Specifically, the owner of
a group generates a fresh write token for each version, and distributes that token to the
writers of that version and to the storage server. The server allows a writer to modify
the store only if the correct write token is presented to the server; in particular, revoked

writers cannot revert the store to a previous state, or garbage the current state.

2.2 Formal model of Plutus

In order to study Plutus formally, we rely on the automatic protocol verification tool

ProVerif. We briefly present this tool next, and then describe our model of Plutus.

2.2.1 Background on ProVerif

The tool ProVerif [Abadi and Blanchet, 2005; Blanchet, 2001a, 2002, 2008] is designed
to verify security protocols. The protocol is specified in an extension of the pi calcu-
lus with cryptography, a dialect of the applied pi calculus [Abadi and Fournet, 2001].
The desired security properties can be specified, in particular, as correspondence as-
sertions [Woo and Lam, 1993], which are properties of the form “if some event has
been executed, then other events have been executed”. (We illustrate this input lan-
guage below.) Internally, the protocol is translated into a set of Horn clauses,® and the
security properties are translated into derivability queries on these clauses: the prop-
erties are proved when certain facts are not derivable from the clauses. ProVerif uses a
resolution-based algorithm to show this non-derivability.

ProVerif relies on the formal, so-called Dolev-Yao model of protocols [Dolev and

Yao, 1983], in which messages are modeled as terms in an algebra. This rather abstract

3Informally, a Horn clause is a logical rule, possibly quantified over some variables, that allows the
inference of a certain fact from some other facts.
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model of cryptography makes it easier to automate proofs than the more concrete,
computational model, in which messages are modeled as bitstrings. Consequently,
ProVerif can handle a wide variety of cryptographic primitives specified by rewrite

rules or equations over terms. Moreover:

e When ProVerif proves a property, the proof is valid for an unbounded number of

sessions of the protocol and an unbounded message size.

e When the proof fails, ProVerif provides a derivation of a fact, and tries to recon-
struct, from this derivation, a trace of the protocol that shows that the property is
false [Allamigeon and Blanchet, 2005]. When trace reconstruction fails, ProVerif
gives no definite answer. Such a situation is unavoidable due to the undecidabil-
ity of the problem. Fortunately, in our study, whenever this situation happens,
manual inspection of the derivation provided by ProVerif allows us to recon-
struct an attack against the said property: the failure of the ProVerif proof always

corresponds to an attack.

See [Blanchet, 2008] for detailed information on ProVerif and its foundations.

2.2.2 Plutus in ProVerif

We now present a model of Plutus in ProVerif; its security properties are specified
and studied in Section 2.3.
2.2.2.1 Cryptographic primitives, lists, and integers

We abstract cryptographic primitives with function symbols, and specify their prop-
erties with rewrite rules and equations over terms. The term enc(M, K) denotes the

result of encrypting message M with symmetric key K; and the rewrite rule
dec(enc(x,y),y) — x

models the fact that any term of the form enc(M, K) can be decrypted with K to obtain
M. (Here x and y are variables that can match any M and K.) The term hash(M) de-
notes the hash of message M. The term exp(M, (R, N)) denotes the result of computing
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MR mod N. We abstract random RSA seeds as fresh names. The term N(s) denotes the
modulus of seed s. The term e(s, K) denotes the unique exponent determined by the
modulus N(s) and base K by the algorithm described in Section 2.1; this fact is modeled

by the rewrite rule:
genExp(N(x),y) — e(x,y)

The term d(s, K) is the inverse exponent, as explained in Section 2.1. This fact is mod-

eled by the equations:

exp(exp(z, (d(x,y),N(x))), (e(x,y),N(x))) = z
exp(exp(z,(e(x,y),N(x))),(d(x,y),N(x))) = Zz

Finally, the rewrite rule
crack(e(x,y),d(x,y),N(x)) — x

models the fact that a modulus N(s) can be efficiently “factored” to obtain the RSA
seed s if both exponents e(s, K) and d(s, K) are known [Boneh, 1999].

We model sets of allowed writers and readers with lists: nil is the empty list, and
cons(M, L) is the extension of the list L with M; we have member(N, L) if and only if N
is a member of the list L. Likewise, we model version numbers with integers: zero is
0, and the integer succ(M) is the successor of the integer M; we have geq(N, M) if and
only if the integer N is greater than or equal to the integer M. The following clauses

define the predicates member and geq in ProVerif.

member(x, cons(x,v));

member(x,y) = member(x, cons(z,v)).

geq(x, x);

geq(x,y) = geq(succ(x),vy).

For brevity, we write 0, 1, . . . for zero, succ(zero), ...; M > N for geq(M,N); and M € L
for member(M, L).
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2.2.2.2 The protocol

We model principals as applied pi-calculus processes with events [Blanchet, 2008].

Informally:

e out(u, M); P sends the message M on a channel named u and continues as the

process P; a special case is the process out (1, M), where there is no continuation.

e in(u, X); P receives a message M on a channel named u, matches M with the
pattern X, and continues as the process P with variables in X bound to matching
terms in M. Here X may be a variable x, which matches any message and stores it
in x; a pattern =N, which matches only the message N; or even a more complex
pattern like (=N, x), which matches any pair whose first component is N and

stores its second component in x.
e new m; P creates a fresh name m and continues as the process P.

e event ¢(My,..., M,); P executes the event e(My, ..., M,) and continues as the
process P. A special case is the process event e(My, ..., M), where there is no
continuation. The execution of e(Mj, ..., M, ) merely records that a certain pro-
gram point has been reached for certain values of My, ..., M,. Such events are

used for specifying security properties, as explained in Section 2.3.1.

e if M = M’ then P else Q executes P if M evaluates to the same term as M’;
otherwise it executes Q. A special case is the process if M = M’ then P, where

there is no else continuation.

e let X = M in P evaluates M, matches it with the pattern X and, when the match-
ing succeeds, continues as P with the variables in X bound to matching terms in

the value of M.

P | Q runs the processes P and Q in parallel.
e [P runs an unbounded number of copies of the process P in parallel.

Below, we define processes that model the roles of owners, writers, and readers; the

protocol is specified as the parallel composition of these processes. (The storage server
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is assumed to be untrusted at this point, and therefore not modeled. We study server-
verified writes and their properties later.) The network is modeled by a public channel
net; as usual, we assume that the adversary controls the network. Likewise, the file
system is modeled by a public channel fs. On the other hand, private (secure) channels
are not available to the adversary. For instance, rprivchannel(r) and wprivchannel(w) are
private channels on which an owner sends keys to reader r and writer w, respectively.

We limit the number of revocations that are possible in any group to maxyey. (Thus
the number of versions is bounded. At this level of detail, ProVerif does not terminate
with an unbounded number of versions. We managed to obtain termination with an
unbounded number of versions for a more abstract treatment of cryptography, thanks
to an extension of ProVerif that takes advantage of the transitivity of geq in order to
simplify the Horn clauses. However, we do not present that abstract model here be-
cause it misses some of the attacks that are found with the more detailed model below.)

First, we show the code for owners. An owner creates its private/public key pair
(lines 2-5), and then creates groups on request (lines 7-9). For each group, the owner
maintains some state on a private channel currentstate. (The current state is carried as
a message on this channel, and the owner reads and writes the state by receiving and
sending messages on this channel.) The state includes the current version number, the
lists of allowed readers and writers, the lockbox key, and the sign key for that group.
The owner creates the initial version of keys for the group (lines 12-14), generates at
most maxye, subsequent versions on request (lines 17-21), and distributes those keys
to the allowed readers and writers on request (lines 25-30 and 34—40). The generation
and distribution of keys follow the outline in Section 2.1. Moreover, the owner signs
the modulus of each version with its private key (line 38), sends the signed modulus
to writers of that version (line 40), and sends its public key to readers so that they
may verify that signature (line 30). Events model runtime assertions in the code: for
instance, isreader(r, g, v) and iswriter(w, g, v) assert that r is a reader and w is a writer

for group g at version v.

1 let processOwr =

2  new seedl;new seed2; (* create owner’s RSA key pair *)
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let ownerpubkey = (e(seed1,seed2),N(seed1)) in

let ownerprivkey = (d(seedl,seed2),N(seed1)) in

out(net, ownerpubkey); (* publish owner’s RSA public key *)
(

!'in(net, (= newgroup, initreaders, initwriters)); (* receive a new group creation request;

initreaders and initwriters are the initial lists of allowed readers and writers, respectively *)

new g; (* create the new group g *)
out(net,g); (* publish the group name g *)
new currentstate; (* create a private channel for the current state for group g *)
(
( new initlk; (* create initial Ik *)
new seed3; let initsk = (d(seed3, initlk), N(seed3)) in (* generate initial sk *)

out(currentstate, (zero, initreaders, initwriters, initlk, initsk))
(* store state for version 0 on channel currentstate *)
)
\ (* Next, we move from version 0 to version 1 *)
(in(net, (= revoke, = g, newreaders, newwriters));  (* receive a revoke request for group g;
newreaders and newuwriters are the new lists of allowed readers and writers *)
in(currentstate, (= zero, oldreaders, oldwriters, oldlk, oldsk)); ~ (* read state for version 0 *)
let newlk = exp(oldlk, ownerprivkey) in (* wind old Ik to new Ik *)
new seed3; let newsk = (d(seed3, newlk), N(seed3)) in (* generate new sk *)
out(currentstate, (succ(zero), newreaders, newwriters, newlk, newsk) )
(* store state for version 1 on channel currentstate *)

)

| o] (* Similarly, we move from version 1 to version 2, and so on *)

(

in(net, (= rkeyreq,r,= g)); (* receive read key request for reader r and group g *)
in(currentstate, (v, readers, writers, Ik, sk)); (* get the current state *)
out(currentstate, (v, readers, writers, Ik, sk));
if member(r, readers) then (* check that the reader r is allowed *)
( event isreader(r,g,0); (* assert that r is a reader for group g and version v *)

out(rprivchannel(r), (g, v, Ik, ownerpubkey)) ) (* send lk and owner’s public key to r *)
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34 lin(net, (= wkeyreq, w, = g)); (* receive write key request for writer w and group g *)

35 in(currentstate, (v, readers, writers, Ik, sk)); (* get the current state *)
36 out(currentstate, (v, readers, writers, Ik, sk));

37 if member(w, writers) then (* check that the writer w is allowed *)
38 (let (_,n) = sk in let sn = exp(hash(n), ownerprivkey) in (* sign the modulus *)
39 event iswriter(w, g, v); (* assert that w is a writer for group g and version v *)
40 out(wprivchannel(w), (g, v, Ik, sk,sn))) (* send Ik, sk, and signed modulus to w *)
a1 )

2 )

43 ).

Next, we show the code for writers. A writer for group g at version v obtains the
lockbox key, the sign key, and the owner-signed modulus for v from the owner of g
(lines 46—47). To write data, an honest writer encrypts that data with the lockbox key
(line 50), signs the encryption with the sign key (line 51), and sends the signed encryp-
tion to the file system with a header that includes the owner-signed modulus (lines 52—
54). The event puts(w, M, g, v) asserts that an honest writer w for group g sends data
M to the file system using keys for version v. In contrast, a dishonest writer leaks the
lockbox key, the sign key, and the owner-signed modulus (line 59); the adversary can
use this information to act for that writer. The event corrupt(w, g, v) asserts that a writer

w for group g is corrupt at version v.

44 let processWtr =

45 lin(net, (w,g)); (* initiate a writer w for group g *)
46 out(net, (wkeyreq,w,g)); (* send write key request *)
47  in(wprivchannel(w), (= g, v, Ik, sk, sn)); (* obtain Ik, sk, and signed modulus *)
48

49  (newm; (* create data to write *)
50 let encx = enc(m, Ik) in (* encrypt *)
51 let sencx = exp(hash(encx), sk) in (* sign *)
52 event puts(w, m,g,v); (*assert that data m has been written by w for group g at version v *)

53 let (dx,n) = sk in
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54 out(fs, (g,v,n,sn, encx, sencx)) (* send content to file system *)
55 )
56 |
57  (in(net, = (corrupt,w)); (* receive corrupt request for w *)
58 event corrupt(w, g, v); (* assert that w has been corrupted for group g at version v *)
59 out(net, (Ik, sk, sn)) (* leak Ik, sk, and signed modulus *)
60 )
61 ).

Finally, we show the code for readers. A reader for group g at version v obtains
the lockbox key for v from the owner of g (lines 64-65). To read data, an honest reader
obtains content from the file system (line 67), and parses that content to obtain a signed
encryption and a header that contains g, a version number vx, and a signed modulus.
It verifies the signature of the modulus with the owner’s public key (line 68); it then
generates the verify key for vx from the modulus and the lockbox key (lines 69-71),
verifies the signature of the encryption with the verify key (line 72), and decrypts the
encryption with the lockbox key (line 73). The generation of the verify key for vx from
the modulus for vx and the lockbox key for v follows the outline in Section 2.1: the
lockbox key Ik for vx is obtained from the lockbox key for v by unwinding it v — vx
times (line 70), after which genExp generates the required exponent (line 71). Below we
detail only the case where v = 1 and vx = 0 (lines 69-75), in which case we unwind the
lockbox key once (line 70); the ProVerif script includes a similar block of code for each
vx < v < MaXxrey, located at line 76 and omitted here. The event gets(r, x, g, vx) asserts
that an honest reader 7 for group g receives data x from the file system using keys for
version vx. In contrast, a dishonest reader leaks the lockbox key (line 81); the adversary
can use this information to act for that reader. The event corrupt(r, g, v) asserts that a

reader r in group g is corrupt at version v.

62 let processRdr =
63 lin(net, (r,9)); (* initiate a reader v for group g *)
64  out(net, (rkeyreq,7,g)); (* send read key request *)
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65  in(rprivchannel(r), (= g, v, Ik, ownerpubkey)); (* obtain Ik and owner’s public key *)
66 (

67 (in(fs, (= g, vx,n,sn,encx, sencx)); (* obtain header and content from file system *)
68 if hash(n) = exp(sn, ownerpubkey) then (* verify signature in header *)
69 (if (v, vx) = (succ(zero), zero) then

70 (let Ik = exp(lk, ownerpubkey) in (* unwind Ik *)
71 let vk = (genExp(n, lk),n) in (* derive vk *)
72 if hash(encx) = exp(sencx, vk) then (* verify signature of encryption™)
73 let x = dec(encx, Ik) in (* decrypt to obtain data *)
74 event gets(r, x, g, vx) (* assert that reader r read data x for group g and version vx *)
75 )

76

77 )

78 |

79  (in(net, = (corrupt,r)); (* receive corrupt request for r )
80 event corrupt(r, g,0); (* assert that r has been corrupted for group g at version v *)
81 out(net, lk) (* leak Ik *)
82 )

8 ).

2.3 Security results on Plutus

We now specify secrecy and integrity properties of Plutus in ProVerif, and verify
those properties (showing proofs or attacks) using ProVerif. We propose corrections
where attacks are possible, and clarify several security-relevant details of the design

along the way.

2.3.1 Background on correspondences

Properties of the protocol are specified as correspondences [Woo and Lam, 1993].
The verifier ProVerif can prove such correspondences [Blanchet, 2008]. A simple ex-

ample is the correspondence

e(My,...,My) ~¢€(M,,...,M)

n/
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which means that in any trace of the protocol in the presence of an adversary, the event
e(My, ..., M,) must not be executed unless the event e’ (M3, ..., M;, ) is executed. More
generally, correspondences may include equality tests of the form M = M’, atoms of
the form pred(M;, ..., M) that rely on user-defined predicates pred (such as geq and
member), and atoms of the form attacker(M), which mean that the attacker knows the

term M.

Definition 2.3.1 (Correspondences). Let 7 range over traces, o over substitutions, and ¢
over formulas of the form attacker(M), e(Mj, ..., M,), pred(My, ..., M,), M = M/, $1 A
gbz, or (Pl V 4)2.

o 7T satisfies attacker(M) if the message M has been sent on a public channel in T .

T satisfies e(My, . .., My,) if the event e(Mj, . .., M) has been executed in T .

T satisfies M = M’ if M = M’ modulo the equations that define the function symbols.

T satisfies pred(My, . .., My,) if the atom pred(My, . .., M,,) is true.

T satisfies ¢1 N\ ¢ if T satisfies both ¢y and ¢».

T satisfies ¢1 \V ¢ if T satisfies ¢y or T satisfies ¢,.

Let an Init-adversary be an adversary whose initial knowledge is Init. A process P satisfies
the correspondence ¢ ~~ ¢' against Init-adversaries if and only if, for any trace T of P in
the presence of an Init-adversary, for any substitution o, if T satisfies o¢, then there exists a

substitution o’ such that o’'¢ = o¢ and T satisfies o' ¢’ as well.

In a correspondence ¢ ~~ ¢', the variables of ¢ are universally quantified (because
o is universally quantified), and the variables of ¢’ that do not occur in ¢ are existen-
tially quantified (because ¢’ is existentially quantified). ProVerif can prove correspon-
dences ¢ ~~» ¢’ of a more restricted form, in which ¢ is of the form attacker(M) or
e(Mj, ..., M,). This corresponds to the formal definition of correspondences proved
by ProVerif given in [Blanchet, 2008, Definition 3], except for two extensions: we allow
atoms of the form attacker(M), M = M/, and pred(M;, ..., M,) to occur in ¢’ and we

do not require that ¢’ be in disjunctive normal form.
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In order to prove correspondences, ProVerif translates the process and the actions of
the adversary into a set of Horn clauses R. In these clauses, messages are represented
by pure terms* p, which are terms in which names a have been replaced with func-
tions a[. ..]. Free names are replaced with constants a[ |, while bound names created by
restrictions are replaced with functions of the messages previously received and of ses-
sion identifiers that take a different value at each execution of the restriction—so that
different names are represented by different pure terms. The clauses use the following

kinds of facts:
e attacker(p), which means that the adversary may have the message p;
e message(p, p’), which means that the message p’ may be sent on channel p;

e event(e(py, ..., pn)), which means that the event e(py, ..., pn) may have been ex-

ecuted;

e m-event(e(p1, ..., pn)), which means that the event e(py, ..., p,) must have been

executed;
o the facts geq(p, p’) and member(p, p’), which are defined in Section 2.2.2.1.

The clauses that define geq and member are shown in Section 2.2.2.1. The other
clauses in R are generated automatically by ProVerif from the process and from the
definitions of the function symbols; see [Blanchet, 2008, Section 5.2] for details. ProVerif
establishes security properties by proving that certain facts are derivable from these
clauses only if certain hypotheses are satisfied. The derivability properties are deter-
mined by a resolution-based algorithm, described in [Blanchet, 2008, Section 6]. Specif-
ically, ProVerif computes a function solvep 1, (F) that takes as argument a process P,
the initial knowledge of the adversary Init, and a fact F, and returns a set of Horn
clauses that determines which instances of F are derivable. More precisely, let Fie be
any set of m-event facts, which are supposed to hold. An instance Fy of F is derivable
from R U Fre if and only if there exist a clause H = C in solvep ,4(F) and a sub-

stitution oy such that Fy = 0pC and the facts in ogH are derivable from R U Fye. In

4Note that such terms are called “patterns” in [Blanchet, 2008]. Here, we prefer to call them “pure
terms” to avoid confusion with the patterns X in Section 2.2.2.2.
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particular, if solvep p,it(F) = @, then no instance of F is derivable from R U Fp, for
any Fme. Other values of solvep j,it(F) give information on which instances of F are
derivable and under which conditions. In particular, the m-event facts in the hypothe-
ses of clauses in solvep 1+ (F) must be in Fpy,e in order to derive an instance of F (since
R contains no clause that concludes m-event facts), so the corresponding events must
have been executed.

We can then prove the following theorem, which provides a technique for establish-

ing correspondences.

Theorem 2.3.2 (Correspondences). Let P be a closed process. Let ¢ ~~ ¢’ be a correspon-
dence, where ¢ is attacker(M) or e(Mj, ..., M,). Let F = attacker(p) if ¢ = attacker(M)
and F = event(e(p1,...,pn)) if ¢ = e(My,..., My), where p, p1, ..., pu are the pure terms
obtained from the terms M, My, ..., M, respectively, by replacing names a with pure terms
a[]. Let ' be the formula obtained from ¢’ by replacing names a with pure terms a[ .

Suppose that, for all H = C € solvep j,it(F), there exists a substitution o such that
C=cFand Ht oy, where

e Hte(pi1,...,pn) ifand only if m-event(e(p1,...,pn)) € H
e Htp=pifand onlyif p = p' modulo the equations that define the function symbols.

e Ht pred(ps,...,pn) (where pred is a user-defined predicate or attacker) if and only if
pred(ps, ..., pn) is derivable from the facts in H, the clauses that define user predicates,
the clauses that express the initial knowledge of the adversary, and the clauses that express

that the adversary can apply functions.
o HE Yy ANy ifand only if H - iy and H = ¢,
o H Vi ifandonlyif H& iy or H = .
Then P satisfies the correspondence ¢ ~ ¢’ against Init-adversaries.

This theorem is an extension of [Blanchet, 2008, Theorem 4] to the case in which ¢’
may contain atoms attacker(M), M = M/, and pred(My, ..., M), and ¢’ may not be in

disjunctive normal form. Intuitively, if 7" satisfies o3¢, then o, F is derivable, where o,
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is the substitution on pure terms that corresponds to the substitution on terms . So
there exist a clause H = C in solvep j,;;(F) and a substitution oy such that opF = 0oC
and the facts opH are derivable. Since H I~ 0y, we also have opoyp’. Moreover, C = ¢F,
so 0pF = opoF. So, letting a;, = 090, we have 0,F = a,’,F and a;,tp’, SO oM = o
and 7 satisfies 0},¢’, where ¢}, is the substitution on terms that corresponds to the
substitution ¢, on pure terms. Hence the correspondence ¢ ~ ¢’ is satisfied.

In this chapter, we use the more general language of correspondences of Defini-
tion 2.3.1, and show how to exploit the more limited queries that ProVerif can prove in

order to prove the correspondences that we need.

2.3.2 Security properties of Plutus

We study secrecy and integrity properties of Plutus by specifying correspondences
in ProVerif. Our security proofs with ProVerif assume maxe, = 5, thatis, they apply to
a model where at most five revocations are possible for any group. The attacks assume
maXrey = 1, and remain a fortiori valid for any maxg, > 1. Running times of ProVerif
appear later in the section. Recall that ProVerif does not terminate at this level of detail
if the number of versions is unbounded. Nevertheless, we expect the results below to

hold in that case as well.

2.3.2.1 Secrecy

We begin with secrecy. Specifically, we are interested in the secrecy of some fresh
data m written by an honest writer for group g using keys for version v. We cannot
expect m to be secret if a dishonest reader for g at v colludes with the adversary at v—
but is it necessary that such a reader collude with the adversary in order to leak m? In
order to determine that, we tentatively specify secrecy as follows: a secret m written by
an honest writer for ¢ at v is leaked only if a reader for g is corrupt at v, i.e., the process

modeling Plutus satisfies the correspondence

puts(w,m, g, v) A attacker(m) ~-

corrupt(r,g,v) A isreader(r,g,v)
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Unfortunately, here writers can act for readers (see Section 2.1), so a corrupt writer at
v leaks (at least) as much information as a corrupt reader at v. Note that on the contrary,
it is intended in [Kallahalla et al., 2003] that read access be disjoint from write access.
Moreover, since the read key for v can be obtained from the read key for any v >0
by unwinding, even a corrupt reader (or writer) at such v’ leaks as much information
as a corrupt reader at v. Of course, if the set of readers does not increase, a reader at
v’ is already a reader at v, so this situation is not surprising. (Indeed, this is the case
that motivates key rotation in [Kallahalla et al., 2003].) On the other hand, increasing
the set of readers may result in unintended declassification of secrets. In light of these

observations, we must weaken our specification of secrecy.

Definition 2.3.3 (Secrecy). Secrecy is preserved if, for all g and v, any secret m written by an
honest writer for g using keys for v is leaked only if a reader or writer for g is corrupt at some

v' > v, i.e., the model satisfies the correspondence
puts(w,m, g, v) A attacker(m) ~-
v’ > v A corrupt(a,g,v)

A (isreader(a, g,v') V iswriter(a, g,v"))
This weaker property is proved as follows.
Theorem 2.3.4. Secrecy is preserved by Plutus.

Proof. Let m[g = G,v = V| denote the name m created in line 49 when the variables
g and v in lines 45 and 47 are bound to the terms G and V, respectively. (This nota-
tion can be used directly in ProVerif, exploiting ProVerif’s internal representation of
bound names by pure terms. It is detailed and justified in [Blanchet, 2008].) ProVerif

automatically proves the following correspondence:

attacker(m[g = xg,0 = xy]) ~
v' > x, A corrupt(a, xg,v')
A (isreader(a, xg,0") V iswriter(a, xg,0"))
By the semantics of the language, for any terms W, M, G, and V, if puts(W, M, G, V)

is executed, then M = m[g = G,v = V|. Thus, for all substitutions o, if a trace 7
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satisfies oputs(w, X, X4, X») and cattacker(x;,), then ox,, = om(g = x4,0 = xy]; 50 T
satisfies cattacker(m[g = xg,v = Xx]); so by correspondence 2.1, T satisfies o’ (v' >
Xy A corrupt(a, xg,v") A (isreader(a, xg, ") V iswriter(a, x¢,v"))) for some substitution ¢’

such that ¢’ Xy = 0xg and 0’'x, = 0xy. Hence, correspondence 2.1 is satisfied. |

2.3.2.2 Integrity

Next, we specify an integrity property. Specifically, we are interested in the integrity
of some data x read by an honest reader r for group g using keys for version v. We
expect x to come from the adversary if a dishonest writer for g at v colludes with the
adversary at v; otherwise, we expect x to be written by an honest writer w for g using

keys for version v. Moreover, such w must be a writer for g at v.

Definition 2.3.5 (Integrity). Integrity is preserved if for all g and v, any data x read by an
honest reader for g using keys for v is written by an honest writer for g using keys for v unless

a writer for g is corrupt at v, i.e., the model satisfies the correspondence

gets(r,x,4,0) ~
iswriter(w, g, )

A (puts(w, x,g,v) V corrupt(w, g,v))

Unfortunately, when we try to show that integrity is preserved by Plutus, ProVerif
cannot prove the required correspondence for this model. Manual inspection of the
derivation output by ProVerif reveals an attack, where the adversary is able to send

data to an honest reader for group g at version 0 without corrupting a writer for g at 0.
Theorem 2.3.6. Integrity is not preserved by Plutus.

Proof. ProVerif cannot prove the correspondence in Definition 2.3.5; it outputs a deriva-
tion of gets(r,m, g,0) from facts that do not include puts(w, m, g,0) or corrupt(w, g,0)
for any w, and we manually check that this derivation corresponds to an attack. Briefly,
a reader for g is corrupted at version 0 and a writer for g is corrupted at version 1; the
adversary then constructs a bogus write key for version 0 and writes content that can

be read by r using the read key for version 0. In more detail:
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1. A reader for g is corrupted at version 0 to get the lockbox key kg for version 0.

2. Next, a writer for g is corrupted at version 1 to get the lockbox key /k;, the sign
key (d(s1,lk1),N(s1)), and the owner-signed modulus sn; = exp(hash(N(s1)),
ownerprivkey) for version 1; here s; is the RSA seed for version 1 and ownerprivkey

is the private key of the owner.
3. The exponent e(sy, lk1) is computed as genExp(N(s1), k7).
4. Next, the RSA seed s; is computed as crack(e(sy, Ik1),d(s1,1k1), N(s1)).
5. Now a bogus sign key sk’ is constructed as (d(s1, ko), N(s1)).

6. Choosing some fresh data m, the following content is then sent to the file system,

where M = enc(m, lkp):

(g,0,sn1,N(s1), M, exp(hash(M), sk’))

7. An honest reader r for ¢ reads m using keys for version 0, without detecting that

the modulus in the sign key is in fact not the correct one!

Note that corrupting a reader for g at version 0 to obtain /kj is not a necessary step
in the above attack; the adversary can instead compute lky from lk; by unwinding.
Orthogonally, the adversary can collude with a writer for a different group at version
0, instead of corrupting a writer for group g at version 1. In each case, a bogus sign
key for the target group and version may be constructed from an unrelated modulus

because the correct group and version of that modulus is not verified in this model. <«

The above attack can have serious consequences, since it implies that a writer for an
arbitrary group can act as a legitimate writer for a target group simply by colluding with a
reader for that group. Here, we consider a model without server-verified writes, that is,
we assume that the server is compromised and colludes with the adversary. As argued
in [Mazieres and Shasha, 2002; Goh et al., 2003], server compromise is a realistic pos-
sibility, so the above attack can be quite damaging. Worse, integrity is not preserved

even in a model extended with server-verified writes. However with server-verified
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writes, the consequences are less serious—in order to write data for a group, the ad-
versary needs to obtain the current write token for that group, for which it needs to
corrupt a current writer for that group. Still, the attack has the same undesirable ef-
fect as allowing rotation of write keys. Specifically, it allows a corrupt writer at a later
version to modify data in such a way that readers date the modified data back to an
earlier version; in other words, the modified data appears to be older than it actually
is to readers. This situation can be dangerous. Suppose that a reader trusts all writers
at version 0, but not some writer at version 1 (say because the corruption of that writer
at version 1 has been detected and communicated to the reader). The reader may still
trust data written at version 0. However, the above attack shows that such data cannot
be trusted: that data may in fact come from a corrupt writer at version 1.

We propose a simple PATCH to correct the protocol: owners must sign each modulus
with its correct group and version. More concretely, the term bound to sn at line 38 of
the code for owners must be exp(hash(n, g, v), ownerprivkey), and conversely, line 68 of
the code for readers must check that hash(n, g, v) =exp(sn, ownerpubkey). The corrected
model preserves integrity as shown by Theorem 2.3.7 below. (Moreover, Theorem 2.3.4

continues to hold for the corrected model, with an unchanged proof.)
Theorem 2.3.7. Integrity is preserved by Plutus with PATCH.

Proof. ProVerif now automatically proves the correspondence in Definition 2.3.5. <«

2.3.2.3 Strong integrity

While Definition 2.3.5 restricts the source of data read by honest readers, it still
allows the adversary to replay stale data from a cache; in particular, content written by
a writer at version v may be cached and replayed by the adversary at a later version
v’, when that writer is revoked. Unfortunately, in the model above we cannot associate
contents that are read from the file system with the versions at which they are written
to the file system. Such associations are possible only if the file system is (at least
partially) trusted, as with server-verified writes.

Below we specify a stronger integrity property that we expect to hold in a model

with server-verified writes; the property not only restricts the source of data read by
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honest readers, but also requires that such data be fresh. The code for the extended
model is included at the end of this chapter. Briefly, we define a process to model the
storage server, and extend the code for owners so that for any group g, a new write
token is created for each version v, communicated to the server, and distributed to
writers for g at v. Corrupt writers leak their write tokens. A writer must send contents
to the server with a token; the contents are written to the file system only if that token
is verified by the server to be the write token for the current version. Honest readers
securely obtain server-verified contents from the server. (Of course, those contents are
also publicly available from the server.) To verify the stronger integrity property, we
replace the event gets(r, x, g, vx) in the code for readers (line 74) with a more precise
event gets(r, x, g, vx,v’). The latter event subsumes the former, and further asserts that
the relevant contents are written to the file system after server-verification at v’. We
expect that v/ = vx, where vx is the version of keys used to read those contents, unless
a writer for g is corrupt at ©’; in the latter case, the adversary is able to replay at v’ data

that is originally written using keys for vx, so we may have v’ > vx.

Definition 2.3.8 (Strong integrity). Strong integrity is preserved if for all g and v, any data
x read by an honest reader for g using keys for v is written by an honest writer for g using keys
for v, unless a writer for g is corrupt at v; and further, such data is written either at v or at
some version v > v at which a writer is corrupt, i.e., the model satisfies the correspondence
gets(r,x,4,0,0') ~
iswriter(w, g,v)
A (puts(w, x,g,v) V corrupt(w,g,v))
A =0V (>0 A iswriter(w', g,9") A corrupt(w’,g,v")))
The corrected, extended model preserves strong integrity, as expected. Once again,

the proof is automatic.
Theorem 2.3.9. Strong integrity is preserved by Plutus with server-verified writes & PATCH.

Proof. ProVerif now automatically proves the correspondence in Definition 2.3.8. <

Further, we show (using a correspondence omitted here) the correctness of server-

verified writes: for any group g, only writers for ¢ at the current version v can write

40



Without PATCH With PATCH
maXpey 1 1 2 3 4 5
Without server-verified writes 0:01 0:01 0:02 0:05 0:14 0:40
With server-verified writes 0:05 0:03 0:17 1:19 7:14 42:05

Figure 2.1: Running times of ProVerif

data for g at v. (Such writes must be authorized by the current write token for g, which
is distributed only to the current writers for g.) Consequently, server-verified writes

prevent at least two kinds of attacks:
e Unauthorized writers cannot destroy data by writing junk over such data.

e Revoked writers cannot roll back new data by writing data with old keys over

such data.

2.3.24 Running times of ProVerif

Figure 2.1 presents the running times of ProVerif 1.14pl4 for the scripts above, in
“minutes:seconds” format, on a 2.6 GHz AMD machine with 8 GB memory. We test
models with or without PATCH, and with or without server-verified writes. We already
find attacks assuming maxyy = 1 for models without PATCH. On the other hand,
models with PATCH are tested assuming max,ey < 5, so our security proofs apply
only to those models (although we expect them to hold with larger values of maxey as
well). Memory usage increases significantly with server-verified writes; for example,
the script with max,ey = 5, PATCH, and server-verified writes takes around 2.2 GB of

memory. For maxyey = 6, ProVerif runs out of memory on this 8 GB machine.

2.3.3 Analysis of some design details

Next, using ProVerif, we clarify some design details of Plutus.

2.3.3.1 Why should a new modulus be created for each version?
The following explanation is offered by [Kallahalla et al., 2003]:

41



... the reason for changing the modulus after every revocation is to thwart a collu-

sion attack. . . a revoked writer can collude with a reader to become a valid writer. . .

We formalize this attack as a violation of integrity by Plutus: if the modulus for
version 1 is the same as that for version 0, the adversary is able to send data to an honest
reader for group g at version 1 without corrupting a writer for ¢ at 1. We manually

reconstruct the attack.

1. A writer for g is corrupted at version 0, and a reader for g is corrupted at version
1. Thus the adversary obtains the lockbox key lko and sign key (dy, ) for version
0, and the lockbox key Ik; for version 1. We may assume that the writer corrupted
at 0 is revoked at 1. Let there be another writer for g at version 1 that publishes
some content, so that the adversary also knows the owner-signed header sn; for

version 1.

2. The adversary computes the exponent ey = genExp(n,lkg), the RSA seed s =
crack(eg, do, 1), and the sign key sk; = (d(s,lk1),N(s)) for version 1. (Since the
modulus 7 is unchanged, the RSA seed s is the same for versions 0 and 1.) Finally,
choosing some fresh data m the adversary sends the following content to the file

system, where M = enc(m, lk;):

(g,1,sn1,n, M, exp(hash(M), skq))

3. An honest reader for g reads m using keys for version 1.
However, we have two comments on this attack:

o With server-verified writes, the sentence of [Kallahalla et al., 2003] quoted above
is not quite true: in order to become a valid writer, one additionally needs to
obtain a write token at some version v > 1, which can be done only by corrupting

a writer at some version v > 1.

e Butby corrupting a writer at version v > 1, the adversary can mount a much sim-

pler attack: the adversary can compute the RSA seed s and all keys for version
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1 from the keys for such v, without corrupting a writer at version 0 or a reader
at version 1! We reconstruct a simple attack along these lines by modifying the
ProVerif script so that the modulus is not changed between versions and inspect-
ing the derivation output by ProVerif. Here the adversary is able to send data to

an honest reader for group g at version 0 without corrupting a writer for g at 0.

1. A writer for g is corrupted at version 1. Thus the adversary obtains the
lockbox key Ik, and the sign key (dy,n) for version 1. Let there be another
writer for g at version 0 that publishes some content, so that the adversary

also knows the owner-signed header s for version 0.

2. The adversary computes the lockbox key lky by unwinding lkq; further, it
computes the exponent e; = genExp(n, lky), the RSA seed s = crack(ey,d1,
n), and the sign key sko = (d(s, ko), N(s)) for version 0. Finally, choosing
some fresh data m the adversary sends the following content to the file sys-

tem, where M = enc(m, lkg):
(g,0,sn9,n, M, exp(hash(M), sko))
3. An honest reader for g reads m using keys for version 0.

ProVerif does not exhibit the former attack mentioned in [Kallahalla et al., 2003]

because it stops with this simpler attack.

2.3.3.2 With server-verified writes, why should a new write token be created for

each version?

Suppose that a writer w, allowed at version 0, is revoked without changing the write
token. Then the server accepts writes from w even after its revocation (at version 1),
since the token obtained by w at version 0 remains valid. In particular, w may destroy
files by overwriting them with unreadable junk after its revocation. This attack violates
the correctness of server-verified writes. Furthermore, w may write valid contents after
its revocation (at version 1) using keys that it obtained at version 0, and readers can
read such data using keys for version 0, trusting that they were written at version 0.

This attack violates strong integrity.
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Accordingly, neither the correctness of server-verified writes nor strong integrity
can be proved by ProVerif for a model where write tokens are not changed. We man-
ually reconstruct the corresponding attacks from the derivations output by ProVerif.
The more basic integrity property continues to hold in this case, however.

2.3.4 Additional remarks

Below we list some more observations on the original paper [Kallahalla et al., 2003]:

e The following sentence appears in [Kallahalla et al., 2003, Section 3.1]:
All files with identical sharing attributes are grouped in the same filegroup. ..

Under this interpretation, each group is tied to a particular set of sharing at-
tributes (writers and readers). So, if two files happen to have the same sharing at-
tributes after some changes of sharing attributes, then these two files should join
the same filegroup even if they initially belonged to different filegroups. Such a

join actually does not happen in Plutus.

e The following sentence appears in [Kallahalla et al., 2003, Section 3.4]:
A revoked reader. . . [can] never. . . read data updated since. .. [its] revocation.

We clarify that if a reader that is revoked at version v colludes with a corrupt
reader or writer at any v’ > v, or is itself a reader or writer at such ?/, it is able to

read data updated in the interval v +1,...,7".

e The following sentence appears in [Kallahalla et al., 2003, Section 3.5.2]:

If the writers have no read access, then they never get the. .. [lockbox key], and

so it is hard for them to determine the file-verify key from the file-sign key.

The claim here is wrong. Writers always get the lockbox key (to encrypt data), so

they can always construct the verify key (just as well as readers can).

o The following sentence appears in [Kallahalla et al., 2003, Section 3.2]:
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In order to ensure the integrity of the contents of the files, a cryptographic
hash of the file contents is signed. . .

We clarify that contents should be signed after being encrypted for stronger se-
curity in the computational model of cryptography. Indeed, signing encrypted
contents allows one to use a weaker encryption scheme: the encryption scheme
needs to be only IND-CPA (indistinguishable under chosen plaintext attacks),
with the signature providing integrity of the ciphertext. Signing contents in the
clear instead requires a stronger security assumption for the encryption scheme,
that allows the adversary to call the decryption oracle. This point is similar to the
fact that when the encryption is IND-CPA and the MAC is UF-CMA (unforge-
able under chosen message attacks), encrypt-then-MAC (in which the MAC is
applied to the ciphertext) guarantees the secrecy of the plaintext, while encrypt-
and-MAC (in which the MAC is applied to the plaintext) does not [Bellare and
Namprempre, 2000]. Here, the signature plays the role of the MAC.

As noted in [Fu et al., 2006, Section 3], the correctness of the key rotation scheme
in [Kallahalla et al., 2003] is not provable in the computational model of cryptog-
raphy under reasonable assumptions (one-wayness of RSA and IND-CPA sym-
metric encryption), because a key obtained by unwinding is not indistinguish-
able from a random key when one has access to other winded versions of this
key. This problem is out of scope of our verification since we work in the Dolev-
Yao model of cryptography. Recently several other rotation schemes have been
proposed, and their cryptographic security properties have been formally stud-
ied [Backes et al., 2005; Fu et al., 2006; Backes et al., 2006]. One can note that the
attacks discussed in this section do not depend on the specific scheme for gen-
erating, winding, and unwinding lockbox keys. Our results continue to hold if
we change the rotation scheme to a hash-chaining scheme [Fu et al., 2006, Sec-
tion 5.1], for instance. They also continue to hold if lockbox keys are hashed
before they are used for encryption, as proposed in [Fu et al., 2006, Section 5.3]
and [Backes et al., 2006, Section 4.2] to correct the key rotation scheme in [Kalla-

halla et al., 2003].
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The scripts used in this chapter are available at:

http://wuw.soe.ucsc.edu/~avik/projects/plutus/
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Chapter 3

Access control with labels

Most modern operating systems implement access control models that try to strike
a reasonable balance between security and practice. Unfortunately, finding such a bal-
ance can be quite delicate: security concerns often lead to inflexible restrictions, which
do not always seem practical. To mitigate this conflict, these systems typically admit

various ways of controlling access at runtime.

This chapter is about verifying such access control systems automatically. We focus
on systems in which processes and objects are labeled with security levels, and pro-
cesses are prevented from accessing objects based on their labels. Such access control
systems represent the state of the art in both the commercial world and the academic
world, exemplified by Windows Vista and Asbestos [Efstathopoulos et al., 2005]. They
are typically weaker than the pioneering models of this approach [Bell and LaPadula,
1975; Biba, 1977], which have strong secrecy and integrity properties, but turn out to be
too restrictive in practice. In particular, some facility to control labels at runtime often

seems to be necessary in these systems.

We illustrate this point with an example. Consider a model in which objects down-
loaded from the Internet are labeled Low, and High processes are prevented from ex-
ecuting Low objects. In this model, suppose that a High process needs to run an ex-
ecutable f downloaded from the Internet (say, to install a new application), and the
integrity of f can be established (say, by verifying a digital certificate). Then, the High
process should be able to run f by upgrading it to High. On the other hand, if the
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integrity of f cannot be established, the High process should still be able to run f by
downgrading itself to Low (following the principle of least privilege [Lampson, 1974]).

Windows Vista implements an access control model along these lines. In particu-
lar, Windows Vista’s access control model aims to prevent privilege escalation, data
tampering, and code tampering by viruses by enforcing a system-wide integrity pol-
icy based on labels. However, anticipating scenarios such as the one above, the model
allows labels to be lowered or raised at runtime. Not surprisingly, this requires explicit
authorization by the user. But while an informed user may be able to decide whether
such authorization is safe, there is a real danger that an uninformed user may inadver-
tently authorize unsafe information flows. For instance, a High process can run a Low
executable f, as above, by downgrading itself to Low. As such, running f cannot do
much damage—in particular, f cannot write High objects, since Low processes are pre-
vented from writing High objects in the model. However, another High process may
upgrade f to High and run it, without verifying its integrity. Unfortunately, f may be
a virus that can then write High objects.

The Asbestos operating system implements a related access control model. In this
model, process labels are dynamically tainted on communication with other processes,
and such taints are propagated to isolate processes based on the secrets they carry.
The model aims to prevent leaking of those secrets. However, such dynamic taint-
propagation mechanisms notoriously suffer from the “label-creep” problem—very
soon, processes become so tainted that they are unable to communicate any further.
To address this problem, the model allows a form of declassification that admits some
information-flow vulnerabilities.

Although Windows Vista and Asbestos differ in their details and their goals, both
systems implement dynamic access control models, based on labels, that try to balance
concerns of security and practice. The information-flow properties of these systems
have not been fully studied. In this chapter, we develop a technique to model and ana-
lyze such systems, and to automatically find information-flow attacks in those systems,
or conversely prove their security.

At the heart of our technique is a new logic-programming language called EON,

that extends Datalog with dynamic operators for creating and modifying simple ob-
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jects. We show how we can code information-flow violations as queries in this lan-
guage, and use query evaluation to find possible attacks. EON has some carefully de-
signed restrictions—new names can be introduced only through unary relations, only
unary relations can be transformed, and some monotonicity conditions must be satis-
fied. These restrictions are obeyed naturally by our specifications of Windows Vista
and Asbestos. We show that with these restrictions, query evaluation for EON is de-
cidable. Our crucial insight is that with these restrictions, it is possible to reduce query
evaluation in EON to query satisfiability in a fragment of Datalog. Then, we adapt an
existing algorithm [Halevy et al., 2001] to decide this satisfiability problem (with mi-
nor corrections). Further, if the EON program does not have negations over derived
relations, we show a simpler reduction to query evaluation in Datalog, which allows

us to solve the program and generate attacks or proofs very efficiently.

We implement these reductions in our tool, and evaluate the security designs
of Windows Vista and Asbestos with EON. Our experiments highlight EON’s pro-
grammability. For instance, we study the impact of various design choices, by making
small, local changes in specific models and observing their influence on the attacks or
proofs generated. We also model specific usage disciplines, and prove that some at-
tacks are not possible if those disciplines are enforced (either statically or at runtime).
Further, our experiments always have definite results, thanks to the decidability of
query evaluation in EON. In sum, EON seems to be an effective tool to specify, under-
stand, and verify access control models. We expect that this approach can be used to

study other dynamic systems just as well.

The rest of the chapter is organized as follows. Sections 3.1 and 3.2 are devoted to
theory. Sections 3.3 and 3.4 are devoted to applications. In Section 3.1, we describe
the syntax and semantics of the EON language. In Section 3.2, we show how query
evaluation in EON can be reduced to query satisfiability in a fragment of Datalog. (A
satisfiability algorithm for this fragment is reviewed in the appendix.) We then show
how query evaluation in a fragment of EON can be reduced to efficient query evalua-
tion in Datalog. Finally, in Sections 3.3 and 3.4, we show applications of our technique

through several experiments with the EON tool.
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3.1 EON

In this section, we introduce the EON language, and describe its syntax and seman-
tics. We begin by providing a brief review of Datalog. We then extend Datalog with
some carefully designed dynamic operators (Section 3.1.1), and present the semantics
of these operators (Section 3.1.2). Finally, we define the syntax and semantics of queries
in the language (Section 3.1.3).

Datalog is a convenient logic-programming language to express relational access
control models [Sarna-Starosta and Stoller, 2004; Naldurg et al., 2006; Dougherty et al.,
2006; Becker et al., 2007]. In Datalog, a positive literal S is of the form R(ty,...,tn),
where R is a relation, m > 0, and each ¢; is a variable or a constant. A negative literal is

of the form !S (where ! means “not”). A clause is of the form
S — El,...,ﬁn.

where each £; is a positive or negative literal.! We refer to the left hand side of :— as
the head, and the right hand side of :— as the body. A Datalog program is a collection of
clauses.

A clause without a body is a fact. A clause is safe if every variable in the clause
appears in some positive literal in the body. A program is safe if all clauses in the
program are safe.

A relation depends on another if there is a clause in the program that has the former
relation in the head and the latter in the body; the dependency is negative if the literal
that contains the latter relation is negative. A base relation does not depend on any
other relation. A base fact is a fact on a base relation. A program is stratified if there is
no negative dependency in any dependency cycle between relations in the program.

In a safe stratified program, a clause “S :— L4,...,L,.” with variables X is in-
terpreted as the first-order logic formula VX. L1 A... A L, = S. A program is
interpreted as the conjunction of the interpretations of its clauses.

A database is a set of base facts. Given a program FF and a database DB, let Z(IF, IDIB)

ISome versions of Datalog do not allow negations, partly because unrestricted negations can lead to
semantic inconsistencies. However, it is well-known that such inconsistencies can be eliminated with
appropriate syntactic restrictions.
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be the set of facts that are implied by the interpretation of IF UIDB. This set can be
computed efficiently [Ullman, 1989].

3.1.1 Syntax

In EON, we extend Datalog with two dynamic operators: new and next. Before we
formally describe their syntax and semantics, we present a simple example to illustrate
the language. (More examples appear in Sections 3.3 and 3.4.) This example describes
a dynamic system where new administrators and users can be added to the system
over time, any user x can be promoted to an administrator by any administrator y, and
any administrator can control the system. More precisely, the sets Admin, User, and
Control contain constants that identify administrators, users, and principals that can
control the system. The new operator models the creation of fresh constants, and the

next operator models the transformation of relations over those constants:

new Admin.

new User.

next Admin(x) :— User(x), Admin(y).
Control(x) :— Admin(x).

The following query asks if a user that is not an administrator can control the system.
? User(x), !Admin(x), Control(x).

This query evaluates to false according to the operational semantics, described in Sec-
tions 3.1.2 and 3.1.3. Intuitively, the program does not reach a state where User(x) and
Control(x) are both true but Admin(x) is not. In contrast, the following query asks if a

user that is not an administrator can eventually control the system:
? User(x), !Admin(x) ¢ Control(x).

Here 5 denotes sequencing of queries. This query evaluates to true; intuitively, the

program can reach a state where User(x) is true but Admin(x) is not, then reach a state

where Control(x) is true. (In the latter state, we expect that Admin(x) is also true.)
Formally, an EON program is a set of EON clauses, as defined by the grammar be-

low. Let £ be a set of unary base relations, called dynamic relations, and B range over
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subsets of £. Intuitively, dynamic relations are the only relations that can be introduced
or transformed by the dynamic operators. (For example, we do not allow binary rela-
tions to be introduced or transformed, so that query evaluation remains decidable. See

Appendix B.2 for a formal justification.)

Cu= EON clause
S —Ly,...,L,. clause
new B :— R. create object
next B(x),!B'(x) :— R(x). modify object

In Sections 3.3 and 3.4, we present several examples that illustrate how access con-
trol systems are modeled in this language. Roughly, principals such as processes, ob-
jects, and so on are modeled as constants; and security-relevant metadata associated
with those principals, such as labels, roles, and so on, are modeled as unary base re-
lations (or sets) over those constants. The new operator creates fresh principals and
initializes the security-relevant metadata associated with those principals; and the next
operator modifies such security-relevant metadata, under constraints.

For our convenience, we require that the body of a new or next clause contains ex-
actly one positive literal. In examples, we sometimes omit that literal, or write several
literals instead; the required literal can be equivalently defined by a Datalog clause.

The Datalog fragment of an EON program IP is written as P. We say that IP is safe
if IP is safe, and IP is stratified if P is stratified. In the sequel, we consider only safe

stratified programs.

3.1.2 Semantics

We now give an operational semantics for EON programs. Specifically, we describe
the reduction of an EON program IP by a binary relation L, over databases; an EON
program defines a (possibly nondeterministic) transition system over databases.

Any transition involves the application of some dynamic clause in the program, that
is enabled in the current database.

We first describe the semantics of the new operator. The clause “new B :— R.” is

enabled if R evaluates to true in the current database. Execution of the clause creates a
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fresh constant ¢ and adds B(c) to the database, for every B in B.

new B :— R. € P
R € Z(P,IDB) cisa fresh constant ~ IDB" = {B(c) | B € B}

DB - DB UDB*

Next, we describe the semantics of the next operator. The clause “next B(x),!B’(x)

:— R(x).” is enabled if there is some constant ¢ such that R(c) evaluates to true in the
current database. Execution of the clause modifies the interpretation of some relations
in € for c. Specifically, it adds B(c) to the database for every B in B and removes B(c)
from the database for every B in B’. Note that if there are several constants ¢ such
that R(c) evaluates to true in the current database, then execution of the clause non-

deterministically chooses one such c for the update.

next B(x),!B'(x) :— R(x). € P
R(c) e Z(P,DB) DB* ={B(c)|BeB} DB~ ={B(c)|BeB}
DB - DB UDB"\IDB~

. .. P . ) P
The reflexive transitive closure of — is written as —*.

3.1.3 Queries

Queries in EON can include basic (Datalog-style) queries; they can further use the

operator § to sequence such queries.

Q= EON query
basic query

S
S35 Q9 sequencing

As usual, for our convenience we require that a basic query contains exactly one
positive literal; elsewhere, we often write several literals instead.
The semantics of queries relies on the operational semantics above. Let o range over

substitutions of variables by constants. The judgment IDB, DB’, o p Q means that:
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“Starting from a database IDIB, the program P eventually reaches a database

DB/, satisfying the query Q with substitution ¢”.

We first describe the semantics of basic queries. If the initial database DB evolves
to a database DB’ such that S evaluates to true in DB, then the program satisfies the

basic query S with substitution ¢.

DB 2* DB Sc € Z(P,DB)

DB,DB, o Fp S

Next, we describe the semantics of sequencing. If the initial database DB evolves
to a database DB’ such that the basic query S is satisfied with substitution ¢, and DB’
evolves to a database IDB” such that the query Q is satisfied with substitution ¢, then

the program satisfies the query & § Q with substitution c.

DB, DB, 0 Fp S DB/,DB",0 tp Q

DB,DB",c Fp S 5 O

3.2 Query evaluation

We now explain how EON queries can be evaluated. Formally, the query evaluation

problem for EON is:

Given an EON program IP and an EON query Q, are there some database

IDB and substitution ¢ such that @, DB, o Fp O?

We show that this problem is decidable under some suitable assumptions of mono-
tonicity (see below). The essence of our algorithm is to reduce the EON query evalua-
tion problem to a decidable satisfiability problem over Datalog.

Given a Datalog program FF and a database DB, recall that Z(IF,IDB) denotes the
result of evaluating IF over IDB. Given a positive literal S, we use the notation DB
S to indicate that there is some substitution ¢ such that Z(IF,IDB) contains So. Now,
S is satisfiable in F if there exists a database DB such that DB g S. The following
satisfiability problem over Datalog is decidable.
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Theorem 3.2.1 (A decidable fragment of Datalog [Halevy et al., 2001]). Satisfiability is

decidable for safe stratified Datalog programs with unary base relations.

Recall that a database is a set of base facts. Given an EON program IP, we say that a
database is reachable in IP if it can be reached from the initial database & by a sequence
of transitions defined by IP. Now, the only base facts in any reachable database are
over relations in £. In the sequel, we focus on such databases. In particular, we view a
database DB as a pair (U, I), where U is a set of constantsand I : £ — 2u,

Given a database DB = (U, I) and a subset of constants X C U, we define the
restriction of IDB to X, denoted IDB|y, to be (X, Ix), where Ix(B) = I(B) N X. We say
that DBy < IDB; if there exists an X such that DB; = IDB;|x.

Now, a positive literal S is monotonic in IP if for all DBy and IDB,, if IDB; 3 S and
DB; < IDB,, then DB; F5 S.

3.2.1 Basic queries, unguarded transitions

Suppose that we are given a basic query S to evaluate on an EON program P. We
assume that S is monotonic in IP. Further, suppose that all dynamic clauses in IP are
unguarded. A new clause is unguarded if its body is a fact (e.g., “True.”) in the program.
A next clause is unguarded if the relation in its body is a faithful relation. The concept
of a faithful relation is defined inductively as follows: a (unary) relation R is faithful if
either R € &, or every clause in the program with R in its head is of the form “R(x) :
— L4,...,L,.”, where each L; is either R;(x) or IR;(x) for some faithful R;.

Note that an unguarded new clause is always enabled. Whether an unguarded next
clause is enabled for a constant c depends only on the value of the relations in & for c.

Now, we evaluate S on IP by translating IP to a Datalog program |IP |, and deciding
if there exists a database IDB such that DB +p; & and DB is reachable in PP. The
latter problem is reduced to a basic satisfiability problem of the form DB +p| [S],
by encoding the reachability condition into |IP | and defining | S| to be S augmented
with the reachability condition.

Given a constant ¢ that belongs to a database DB = (U, I), we define its atomic state

tobe theset {B € £ | ¢ € I(B)}. We say that an atomic state X C £ is reachable if there
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exists a reachable database IDIB that contains a constant whose atomic state is X.

Lemma 3.2.2. For an EON program P in which all dynamic clauses are unguarded, a database

DB is reachable if and only if all constants in the database have a reachable atomic state.

3.2.1.1 From EON to Datalog

We now show how reachable atomic states can be encoded in Datalog. Specifically,
given a EON program IP, we define a set of Datalog clauses 7 (IP) for a unary relation
Reachable, such that every constant in Reachable has a reachable atomic state, and
every constant that has a reachable atomic state is in Reachable. Some of these clauses
are not safe. Later, we present a clause transformation that uniformly transforms all
clauses to ensure safety.

We begin by defining some auxiliary relations. Let £ = {Bj,..., B¢}. For each B;
(i € {1,...,k}), we include the following Datalog clauses, that check whether a pair of

constants have the same value at B;:

SameB;(x,y) :— Bi(x), Bi(y).
SameB;(x,y) :— !Bi(x), !Bi(y).

Now, consider an unguarded new clause of the form:

new B;,...,B

im*
Let {Bj,...,B;,} = E\{Bi,...,B;, }. We replace this clause with the following reacha-
bility clause in Datalog;:

Reachable(x) :— B;(x),...,B;, (x),
'B; (x),...,!Bj,(x).
This clause may be read as follows: a satisfying database for the transformed Datalog
program may contain a constant x whose atomic state is {B;,, .. .,B;, }. Intuitively, new

constants in EON are represented by existentially quantified variables in Datalog.

Now, consider an unguarded next clause of the form:

next Bil(x),...,Bim(x),
'Bj (x),...,'Bj,(x) = R(x).
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Let {By,,..., By, } = E\{Bi,...,Bi,,Bj,, ..., Bj,}. Ris faithful; so we replace this clause

Jire

with the following reachability clause in Datalog;:

Reachable(x) :—
Reachable(y), R(y),
B (x),...,B, (x),
'Bj (x),...,!'Bj,(x),
SameBy, (x,¥), ... ,SameBy (x,y).

This clause may be read as follows: a satisfying database for the transformed Dat-
alog program may contain a constant x whose atomic state is BU {B;,...,B;,} \
{Bj,,...,Bj,}, if that database also contains a constant y that satisfies R(y) and has
some atomic state B. Intuitively, the Datalog variables x and y represent the same EON
constant, in possibly different “states”, one of which can be reached from the other.
Finally, the following clause checks whether there is any constant in a satisfying

database for the transformed Datalog program whose atomic state is unreachable:
BadState :— !Reachable(x).

The set of clauses 7 (IP) contains all of the clauses above. Now, let U € £ be a fresh
relation, which models the range of substitutions. For any clause C € 7 (IP), we obtain
a transformed clause |C | by augmenting the body of C with an additional condition
U(x) for every variable x in C. The clause |C]| is guaranteed to be safe.

Now, let |[P| = {|C| | C € PUT(P)}. Let |S| be the query S,!BadState aug-
mented with an additional condition U(x) for every variable x in S. We then have the

following result.

Theorem 3.2.3. Given an EON program P in which all dynamic clauses are unguarded, a
monotonic basic query S is true in P if and only if the query | S| is satisfiable in the Datalog
program |IP|.

3.2.1.2 A heuristic

The use of (double) negation to define the transformed query | S| can lead to poten-

tial inefficiencies in the satisfiability algorithm (described in [Chaudhuri et al., 2008b]).
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We can eliminate the use of this negation by transforming every Datalog clause C in
the given program IP as follows: we augment the body of the clause with the condition
Reachable(x) for every variable x in the body. (It is possible to further optimize this
transformation, by adding the condition only for variables that are not already in the

head of the clause, as long as we add a similar condition for all variables in S.)

3.2.2 Basic queries, guarded transitions

Guarded dynamic clauses do not significantly complicate the transformation. The
reachability clause generated for a guarded dynamic clause now includes the guard
(i.e., the literal in the body of the dynamic clause) in the body of the reachability clause.
The correctness proofs require the guards to be monotonic. Specifically, a generaliza-
tion of Lemma 3.2.2 holds true even for programs with guarded dynamic clauses, as
long as the guards are monotonic.

Recall that in the case of unguarded dynamic clauses, the Reachable relation de-
pends only on the relations in &£, the auxiliary relations SameB;, and itself. However,
the encoding of guards in reachability clauses makes the Reachable relation dependent
on other relations mentioned in those guards. If we now do the heuristic of Section
6.4.8, which adds reachability conditions to the clauses of the given program, we may
introduce cyclic dependences between Reachable and other relations. Thus, we must
verify that the transformed program is stratified before checking satisfiability on the
transformed program. Interestingly, it turns out that the transformed program is stratified
if and only if the guards are monotonic! This result yields a simple method to test for the

monotonicity of guards.

3.2.3 Queries with sequencing

Finally, we show how we can handle queries with sequencing. We assume that
every basic query in such queries is monotonic. Consider the query & 5 Q. We first
assume that S and O share exactly one variable x. Let Done € & be a fresh relation,
and Q be of the form &; 5 ... § Sy, for some n > 1. We augment the original EON

program with the following dynamic clause:
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next Done(x) :— S.

We then evaluate the query Done(x),S; ¢ ... ¢ S, on the augmented EON program.
More generally, we add a next clause with a fresh Done relation for each variable
shared by § and Q, and augment Q accordingly to account for those variables. For

instance, if S and Q share exactly two variables x and y, we add the clauses:

next Done(x) :— S.
next Done’(y) :— Done(x),S.
and evaluate the query Done(x),Done’(y),S1 5 ... § Su.

On the other hand, if S and Q do not share any variable, we add a new clause with

a fresh Done relation, and augment Q with Done(z), where z is a fresh variable.

3.2.4 Efficient query evaluation under further assumptions

Under further assumptions, we now show that query evaluation in EON can be re-
duced to simple query evaluation in Datalog. This result is independent of what we
present above. The main advantage of this transformation is efficiency—while check-
ing satisfiability of Datalog programs may take exponential time in the worst case,
evaluating Datalog programs takes only polynomial time.

The requirements for this transformation are as follows. There should be no
(in)equality constraints over variables. In particular, variables cannot be repeated in
the head of a clause. Next, there should be no negations on non-base (derived) rela-
tions, although there may be negations on base relations. These conditions turn out
to be quite reasonable in practice. In particular, our models of of Windows Vista and
Asbestos in Sections 3.3 and 3.4 satisfy these conditions, and most of our queries on
these models satisfy these conditions as well.

We assume that sequencing is compiled away as in our original reduction, and con-
sider only basic queries. Further, we assume that no constants appear in the EON
program itself. (The transformation can be extended in a straightforward way to allow
constants.) The intuition behind the transformation is as follows. Let £ = {By, ..., B¢ }.

We can represent the atomic state of a constant ¢ as the vector (01, e, Uk) where v, is
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1if Bj(c) is true and 0 otherwise. We say that two constants ¢ and ¢’ are similar if they
have the same atomic state. Now in our case, a Datalog program cannot distinguish
between similar constants, i.e., it is not possible to define a query R(x) that is satisfied
by ¢ and not ¢’. (More generally, if ; is similar to ¢} for 1 < i < r, then R(cy,...,¢,) is
trueiff R(c}, ..., c}) is true in the program.) Thus we can define a query |R ]| (x1, ..., xx)
which is true iff R(x) is true for any x with atomic state (x1,...,x) that is generated
by the EON program.

For every non-base relation R of arity r, we define a new relation |R] of arity rk.
Given any Datalog clause C, we replace it with a transformed clause [C] as follows.
For every variable x in the clause, we introduce k new variables x1, ..., x¢. Then, every
literal of the form R(yy,...,Yy,), where R is a non-base relation, is transformed into a
corresponding literal R | (y11, ..., Y1k - - -, Yr1, - - -, Yrk) by replacing every occurrence of
a variable y; by the corresponding vector of variables yi, . .., yj. Further, every literal
of the form B;(x) is transformed into the literal True(x;) and every literal of the form
!Bi(x) is transformed into False(x;). (The auxiliary predicates True and False are
defined by the facts True(1) and False(0).) Finally, for every variable x in the head of
the clause, we add the condition Reachable(x, ..., x;) to the body of the transformed
clause. (As an optimization, we may consider adding this reachability condition only if

no non-base relation is applied to x in the body of the clause.) For example, the clause

R(xy) =~ R'(x),1Bi(x), Baly).

yields the transformed clause:

LRJ (x1/x2/y1/y2> —
|R"|(x1,x2),False(x;), True(y,), Reachable(y,12) .

Now, every clause of the form “new B :— R.” is transformed to
Reachable(zy,...,z¢) — |R].

where z; is 1 if B; € B and 0 otherwise.

Further, every clause of the form “next B(x),!B’(x) :— R(x).” is transformed to
Reachable(zy,...,2x) —
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LRJ (xl, .. .,Xk),
Reachable(xy,...,Xk),

Update(xl,zl), e ,Update(xk, Zk) .

where Update(x;, z;) is True(z;) if x; is in B, False(z;) if x; is in B/, and z; = x; other-
wise. (The literal z; = x; is implemented by replacing z; with x; in the clause.)

We then have the following result.

Theorem 3.2.4. Given an EON program IP with the above restrictions, a query Q is true in IP

iff the query | Q| is true in the Datalog program |P |.

Proof details for all the results above appear separately in [Chaudhuri et al., 2008b];

some of those details are reproduced in the appendix.

3.2.5 Tool support and experiments

The transformations described above are at most quadratic in time complexity, and
are implemented in the EON tool [Chaudhuri et al., 2008b]. Further, the back end
includes implementations of satisfiability and evaluation algorithms over Datalog, and
the front end supports some syntax extensions over EON, such as embedded scripts for
model generation [Chaudhuri et al., 2008b].

We carry out a series of experiments with the EON tool, that illustrate how it can
be used to model and analyze dynamic access control systems. These experiments are
presented below. We begin with Windows Vista’s access control model (Section 3.3).
We automatically find some integrity attacks in this model. Then, we automatically
prove that these attacks can be eliminated by enforcing a certain usage discipline on the
model—via static analysis or runtime monitoring. (Roughly, it follows that a user can
be informed about potentially unsafe authorization decisions in the model.) Next, we
consider Asbestos’s access control model (Section 3.4). We automatically verify some
conditional secrecy properties of that model. Finally, we model an implementation of
the webserver OKWS on Asbestos (as described in [Efstathopoulos et al., 2005]), and

automatically prove a data isolation guarantee for the webserver.
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3.3 Windows Vista in EON

The goal of Windows Vista’s access control model is to maintain boundaries around
trusted objects, in order to protect them from less trusted processes. Trust levels are
denoted by integrity labels (ILs), such as High, Med, and Low. Every object has an IL.
Further, every process is itself an object, and has an IL. A process can spawn new
processes, create new objects, and change their ILs, based on its own IL. In particular,

a process with IL Py, can:?

e raise an object’s IL to O, only if O;, C Pp and the object is not a process;
e lower an object’s IL from Oy, only if Or C Py;

e read an object;

e write an object with IL O, only if Of, T Pr;

e execute an object with IL Oy, by lowering its own IL to P, M Oy.

Below, we present an excerpt of a model of such a system in EON. (The full model
appears in [Chaudhuri et al., 2008b].) The unary base relations in the model have the
following informal meanings: P contains processes; 0Obj contains objects (including
processes); and Low, Med, High, etc. contain processes and objects with those ILs.

With new and next clauses, we specify how an unbounded number of processes and
objects, of various kinds, can be created.
new 0Obj,Low.

new 0bj,Med.
new 0bj,High.

next P(x) :- 0Obj(x).

Further, with next clauses, we specify how ILs of processes and objects can be

changed. For instance, a Med process can raise the IL of an object from Low to Med if

2The capabilities of a process may be further constrained by Windows Vista’s discretionary access
control model. However, we ignore this model because it is rather weak; see [Chaudhuri et al., 2008b] for
a detailed discussion.
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that object is not a process; it can also lower the IL of an object from Med to Low. A

High process can lower its own IL to Med (e.g., to execute a Med object).

next Med(y),!Low(y) :- Low(y),!P(y),Med(x),P(x).
next Low(y),!Med(y) :- Med(y),Med(x),P(x).

next Med(x),!High(x) :- High(x),P(x).

The full model contains several other rules that are implemented by the system.
Specifying these rules manually can be tedious and error-prone; instead, EON allows
us to embed scripts in our model (as syntax extensions) that generate these rules au-
tomatically [Chaudhuri et al., 2008b]. For instance, we embed Perl scripts to generate
these rules uniformly for all labels, subject to the ordering constraints mentioned ear-
lier in this section.

Finally, with Datalog clauses, we specify how processes can Read, Write, and
Execute objects. A process x can Read an object y without any constraints. In con-
trast, x can Write y only if the IL of x is Geq (greater than or equal to) the IL of y.
Conversely, x can Execute y only if the IL of y is Geq the IL of x.

Read(x,y) :- P(x),0bj(y).
Write(x,y) :- P(x),Geq(x,y).
Execute(x,y) :- P(x),Geq(y,x).

Geq(x,y) :- Med(x),Med(y).
Geq(x,y) :- Med(x),Low(y).
Geq(x,y) :- Low(x),Low(y).

3.3.1 Attacks on integrity

We now ask some queries on the model above. For instance, can a Med object be read
by a Med process after it is written by a Low process? Can an object that is written by a

Low process be eventually executed by a High process after downgrading only to Med?
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7 Med(y); Low(x),Write(x,y); Med(z),Read(z,y).
? Low(x),Write(x,y); High(z); Med(z) ,Execute(z,y).

The former encodes a simple data-flow integrity violation; the latter encodes a sim-
ple privilege-escalation violation. (In the full model, we study more general integrity
violations.) When we run these queries, we obtain several attacks. (Some of these at-
tacks have been documented elsewhere; see, e.g., [Chaudhuri et al., 2008a; Conover,
2007] for details.) For each attack, our tool shows a derivation tree; from that tree,
we find a sequence of new, next, and other clauses that lead the system to an insecure
state and derive the query. For instance, the former query is derived as follows: first, a
Med object y is created; next, y is downgraded to Low by a Med process; next, y is written
by a Low process x; finally, y is read by a Med process z. The latter query is derived as
follows: first, a Low object y is created; next, y is written by a Low process x; next, v is
upgraded to Med by a Med process; next, a High process z is downgraded to Med; finally,
y is executed by z.

Thus, EON can be quite effective as a debugging tool—if there is a bug, EON is guar-
anteed to find it. But recall that if there are no bugs, EON is also guaranteed to terminate
without finding any! That is, EON can be just as effective as a theorem-proving tool. In
particular, we now prove that the attacks above are eliminated if suitable constraints
are imposed on the model. In practice, these constraints may be implemented either

by static analysis or by runtime monitoring on programs running in the system.

3.3.2 A usage discipline to recover integrity

Basically, we attach to each object a label SHigh, SMed, or SLow, which indicates a
static lower bound on the integrity of the contents of that object; further, we attach to
each process a label DHigh, DMed, or DLow, which indicates a dynamic lower bound on
the integrity of the values known to that process. The semantics of these labels are

maintained as invariants by the model. The labels are initialized as follows.

new 0bj,Low,SLow.
new 0bj,Med,SMed.
new Obj,High,SHigh.
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next P(x),DHigh(x) :- 0bj(x).

Now, whenever an object’s IL is lowered, the IL should not fall below the static label

of the object.

next Low(y),!Med(y) :- Med(y),SLow(y),Med(x),P(x).

A process’s dynamic label may be lowered to reflect that it may know the contents

of an object with a lower static label.

next DLow(x),!DHigh(x) :- DHigh(x),SLow(y).

Now, a process x can Read an object y only if the dynamic label of x is less than or
equal to the static label of y, that is, DSLeq(x, y). Conversely, x can Write y only if the
dynamic label of x is greater than or equal to the static label of y, that is, DSGeq(x, y).
In contrast, x can Execute y only if its own IL is lowered to or below the static label of

y. This condition, SGeq(y, x), subsumes the earlier condition Geq(y, x).
Read(x,y) :- P(x),0bj(y),DSLeq(x,y).
DSLeq(x,y) :- DLow(x),SLow(y).

DSLeq(x,y) :- DLow(x),SMed(y).
DSLeq(x,y) :- DMed(x),SMed(y).

Write(x,y) :- P(x),0bj(y),Geq(x,y),DSGeq(x,y).
DSGeq(x,y) :- DLow(x),SLow(y).

DSGeq(x,y) :- DMed(x),SMed(y).

DSGeq(x,y) :— DMed(x),SLow(y).

Execute(x,y) :- P(x),0bj(y),SGeq(y,x).

SGeq(y,x) :- SLow(y),Low(x).
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SGeq(y,x) :- SMed(y),Low(x).
SGeq(y,x) :- SMed(y),Med(x).

Finally, recall the dynamic queries that we ask above. We reformulate the former
query for this model—instead of constraining the IL of z, we now constrain its dynamic

label, which is the de facto dictator of its future Writes in this constrained model.

? Med(y) ; Low(x),Write(x,y) ; DMed(z),Read(z,y).

This query evaluates to false, showing that the encoded data-flow integrity vio-
lation is eliminated. The latter query also evaluates to false, showing that the en-
coded privilege-escalation violation is eliminated. The full constrained model appears
in [Chaudhuri et al., 2008b]. There, we show that more general integrity violations are
also eliminated under these constraints.

Thus, with EON, we not only find vulnerabilities in Windows Vista’s access control
model, but also prove that they can be eliminated by imposing suitable constraints
on the model. We conclude that these constraints encode a formal “discipline” that
is required to safely exploit the flexibilities provided by the model. This analysis can
be further refined, using language-based techniques, to improve precision. In Chap-
ter 6, we develop a type system based on this analysis, to enforce a data-flow integrity
property that implies the absence of the violations above. We manually prove the cor-

rectness of that type system.

3.4 Asbestos in EON

The goal of Asbestos’s access control model is to dynamically isolate trusted pro-
cesses that require protection from less trusted processes. This isolation is achieved by
taint propagation. Specifically, in Asbestos each process P has two labels: a send label Ps,
which is a lower bound on the secrecy of messages that are sent by P, and a receive
label Pr, which is an upper bound on the secrecy of messages that can be received by
P. Further, each communication port C has a port label C, which is an upper bound on

the secrecy of messages that can be carried by c. Sending a message from process P to
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process Q on port C requires that:
Ps C QrMCL
Further, on communication, Q is tainted by P:

Qs < Qs U Ps

In fact, this situation is slightly more complicated in the implementation, with
declassification. Specifically, a label is a record of security levels, drawn from {x,0-3},
with minimum « (“declassification privilege”) and 0-3 ordered as usual. Labels form

a lattice (C, L, M), as follows. (Here L, L’ range over labels, and ¢ over label fields.)

LC L' iff foreach?: L4 <L/
foreach ¢: (LUL ). = max(L.{,L'.0)
foreach £: (LML).{ = min(L.¢,L'.0)

Now, an operation _* is defined as follows.

N x if L6 =%
L*0 =
3 otherwise

On communication, Q is tainted by P only in fields that are not *.

Qs « Qs U (Ps M Q3)

3.4.1 Conditional secrecy

To understand some security consequences of this model, let us focus on a single
field ¢, and the security levels {%,1-3}; further, suppose that the involved ports are
unrestricted (i.e., all port labels Cy, satisfy C;./ = 3). Below, we present an excerpt of a
model of such a system in EON. Let STAR denote %, and i,j range over 1-3. The unary
base relations in the model have the following informal meanings: P contains pro-
cesses; LRi and LSj contain processes x such that xg.f = i and xs./ = j, respectively;
LSTAR contains processes x such that xs./ = x and xg.¢ = 3; and Mj contains processes
x that carry messages generated by processes y such that yr./ = j, respectively. We
boot our system with the following clauses; these clauses create an unbounded number

of processes of various kinds, and let them generate messages accordingly.
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new P,LSTAR.

new P,LR1,LS1.
new P,LR2,LS1.
new P,LR3,LS1.

next M2(x),LS2(x),!'LS1(x) :- LS1(x),LR2(x).
next M3(x),LS3(x),!'LS1(x) :- LS1(x),LR3(x).

Next, we specify clauses for communication on unrestricted ports. The require-
ments and effects of such communication appear in the bodies and heads of these
clauses, respectively. Note, in particular, how the relations Mj are augmented on such
communication, reflecting the dynamic transfer of messages. (The full model contains

several other, similar rules, generated automatically by scripts.)

next M2(x) :- P(x),LSTAR(y),M2(y).
next M3(x) :- P(x),LSTAR(y),M3(y).
next M2(x) :- LSTAR(x),P(y),M2(y).
next M3(x) :- LSTAR(x),P(y),M3(y).

next M2(x),LS2(x),!LS1(x) :- M2(y),LS2(y),LS1(x),LR2(x).
next M3(x),LS2(x),!LS1(x) :- M3(y),LS2(y),LS1(x),LR2(x).

Finally, we ask some queries. According to [Efstathopoulos et al., 2005], in Asbestos
the default security level in any field of a receive label is 2. Thus, having 3 in some
field of the receive label gives higher read privileges than default; processes with such
labels should be able to share messages that default processes cannot know. On the
other hand, having 1 in some field of the receive label gives lower read privileges than
default; processes with such labels should not be able to know messages shared by
default processes. Let ReadWithout3 denote the existence of a process x for which
M3(x) is true despite LRi(x) for some i < 3. On the other hand, let ReadWith1 denote
the existence of a process x for which Mj(x) is true for some j > 1 despite LR1(x). These

queries encode secrecy violations.
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ReadWithout3 :- M3(x),LR2(x).
ReadWithout3 :- M3(x),LR1(x).

ReadWithl :- M2(x),LR1(x).
ReadWithl :- M3(x),LR1(x).

? ReadWithout3.
7 ReadWithl.

We find attacks for both queries with EON. Indeed, the attacks may be anticipated—
messages can be declassified, that is, forwarded by processes z for which LSTAR(z) is
true, without any constraints or effects. To be fair, we must account for the participation
of such processes, which we call declassifying processes, in our queries.

Now, let BlameReadWithout3 denote the existence of a process z for which M3(z)
and LSTAR(z) are true. On the other hand, let BlameReadWithl denote the existence
of a process z for which Mj(z) and LSTAR(z) are true for some j > 1. We now ask
the following, revised queries that account for declassification. (These queries encode

violations of robust declassification [Zdancewic and Myers, 2001].)

BlameReadWithout3 :- M3(y),LSTAR(y).
BadReadWithout3 :- ReadWithout3, !BlameReadWithout3.

BlameReadWithl :- M2(y),LSTAR(y).
BlameReadWithl :- M3(y),LSTAR(y).
BadReadWithl :- ReadWithl, !BlameReadWithil.

? BadReadWithout3.
? BadReadWithl.

Now EON does not find attacks for either query. Note that the revised queries use
negation on non-base relations, so we expect them to take a longer time to run. How-
ever, we can approximate these queries without using negation, simply by removing

the following clauses and asking the same queries as before.

next M2(x) :- LSTAR(x),M2(y).
next M3(x) :- LSTAR(x),M3(y).
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Once again, EON does not find attacks for either query; however, the queries now
run much faster. Thus, we have the following conditional secrecy theorem, proved

automatically by EON.

Theorem 3.4.1 (Conditional secrecy). Assume that X is either {P | Pr.{ = 3} or
{P| Prt # 1}. If Q ¢ X, then Q can never carry a message generated by a process in

X, unless some declassifying process carries that message as well.

3.4.2 Data isolation in a webserver running on Asbestos

We now present a significantly more ambitious example to demonstrate the scope
of our techniques. Specifically, we apply EON to verify the design of a webserver run-
ning on Asbestos. This webserver is described in detail in [Efstathopoulos et al., 2005];
below, we briefly review its architecture. We then present an excerpt of a model of
this webserver in EON, and study its key security guarantee. The full model appears
in [Chaudhuri et al., 2008b].

The relevant principals include a net daemon, a database proxy, and the users of the
webserver. When a user connects, the net daemon spawns a dedicated worker process
for that user. The worker process can communicate back and forth with that user over
the net; further, it can access a database that is common to all users. The webserver
relies on sophisticated protocols for connection handling and database interaction; the
aim of these protocols is to isolate processes that run on behalf of different users, so
that no user can see a different user’s data.

In our model, we focus on two users u and v; processes that run on behalf of these
users are tagged as such on creation. We focus on label fields that are relevant for
secrecy—these include uc and ut (used for communication and taint propagation by u),
and vc and vt (used for communication and taint propagation by v). We model labels
with unary base relations that specify the security levels in each field: e.g., for processes
x, LSuc1(x) denotes xg.uc = 1; LRut2(x) denotes xg.ut = 2; and LSvcSTAR(x) denotes
xg.vc = STAR; similarly, e.g., for communication ports y, Lvt2(y) denotes y;.vt = 2.

The other unary base relations in the model have the following informal meanings.

Useru and Userv contain processes run by u and v, respectively; NETdu and Netdv con-
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tain processes run by the net daemon to communicate with u and v, respectively; and
Wu and Wv contain worker processes that are spawned by the net daemon for u and
v, respectively. All of these processes participate in a connection handling protocol.
Further, Ready contains any such process that is ready for communication, after that
protocol is executed. Other processes are run by the database proxy. In particular,
DBproxyRu and DBproxyRv contain processes that receive database records for u and
v, respectively; and DBproxySu and DBproxySv contain processes that send database
records for u and v, respectively.

The processes above communicate on well-defined ports. Portu and Portv con-
tain ports on which data is sent over the net by processes running on behalf of u
and v, respectively. PortDBu and PortDBv contain ports on which data is received
by the database proxy from processes running on behalf of u and v, respectively.
PortUnrestricted contains unrestricted ports that are used for other communication.

Finally, to verify secrecy, we let Mu and Mv contain processes that carry u’s data and
v’s data, respectively. We require that no process that runs on behalf of v is eventually
in Mu (and vice versa).

We now outline our model. We describe only clauses that involve u; the clauses that
involve v are symmetrical. Most processes in the system are created with default send
and receive labels. (Any security level in a default send label is 1, and any security

level in a default receive label is 2.) For instance, user processes are created as follows.

new Useru,Ready,Mu,
LSucl1,LSut1,LSvcl,LSvtl,
LRuc2,LRut2,LRvc2,LRvt2.

Next, we model the connection handling protocol in [Efstathopoulos et al., 2005].

When a user u initiates a connection, the net daemon creates a new process, as follows.

new NETdu,
LSucl1,LSut1,LSvcl,LSvtl,
LRuc2,LRut2,LRvc2,LRvt2.

This process creates a new port on which data can be sent over the net to u. The
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security level in the relevant communication field uc of the port’s label is 0; thus, pro-

cesses with default send labels cannot send messages on this port.

new Portu,
LucO,Lut2,Lvc2,Lvt2.

The net daemon now lowers the security level in the field uc of its send label to

STAR, so that it can delegate the ability to send messages on the above port.

next LSucSTAR(x),!'LSucl(x) :-
NETdu(x) ,LSucl(x) ,Portu(y).

Next, the net daemon lowers the security level in the relevant taint propagation field

ut of its send label to STAR, and becomes ready for communication.

next LSutSTAR(x),!LSutl(x),Ready(x) :-
NETdu(x) ,LSut1(x) ,LSucSTAR(x) .

Eventually, the net daemon can raise the security level in the field ut of its receive
label to 3, to receive tainted data for u. It can similarly raise the security level in the

field ut of the above port’s label, to allow it to carry tainted data for u.

next LRut3(x),!'LRut2(x) :-
NETdu(x) ,LRut2(x) ,LSutSTAR(x) .

next Lut3(x),!Lut2(x) :-
Portu(x),Lut2(x) ,NETdu(y) ,LucSTAR(y) .

Further, the net daemon can spawn a new worker process for u.
new Wu,

LSucl,LSut1,LSvcl,LSvtl,
LRuc2,LRut2,LRvc2,LRvt2.
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The security levels in the fields uc and ut of the worker process are lowered and
raised to STAR and 3, respectively, before the worker process becomes ready for com-
munication. The worker process can now send data for u on the above port, and any
such data is tainted.
next LSucSTAR(x),LSut3(x),!LSucl(x),!LSutl(x),Ready(x) :-

Wu(x),LSucl(x),LSutl1(x),
NETd(y) ,LSucSTAR(y) ,LSutSTAR(y) .

Eventually, the worker can raise the security level in the field ut of its receive label

to 3, to receive tainted data for u.

next LRut3(x),!LRut2(x) :-
Wu(x) ,LRut2(x) ,LSutSTAR(x) .

Elsewhere, the database proxy creates the following processes and ports for receiv-
ing and sending records for u. Intuitively, only processes that can send on u’s network
port can send such records to the database. Moreover, such records are tainted when

they are sent back.

new DBproxyRu,Ready,
LSuc1,LSutSTAR,LSvcl,LSvtSTAR,
LRuc2,LRut3,LRvc2,LRvt3.

new PortDBu,LucO,Lut3,Lvc2,Lvt2.

new DBproxySu,Ready,
LSucl1,LSut3,LSvcl,LSvtl,
LRuc2,LRut2,LRvc2,LRvt2.

Further, unrestricted ports can be created, as necessary.

new PortUnrestricted,Luc3,Lut3,Lvc3,Lvt3.

We model all valid communication links between the above processes, following the

implementation described in [Efstathopoulos et al., 2005]. Specifically, let Send(x, z)
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denote that process x may send a message to process z. This condition is constrained
by the auxiliary conditions Link(x,y,z) and Comm(x,y,z) for some port y, as follows.
Link(x,y, z) requires that x and z are ready for communication, and y is actually avail-
able for communication between x and z (see below). Comm(x, y, z) is an encoding of the
requirement xs T zg My, for communication, as described in the beginning of Section
3.4; the rules are generated automatically by scripts. Note that some of the communica-
tion links that we model below are redundant at run time, because of taint propagation.
(Taint propagation prevents communication that might be dangerous for secrecy.) The
auxiliary relations AnyProc and AnyPort are the unions of process relations and port

relations in the system, respectively.

Link(x,y,z) :- Useru(x),PortUnrestricted(y),NETdu(z).
Link(x,y,z) :- NETdu(x),PortUnrestricted(y),Wu(z).
Link(x,y,z) :- AnyProc(x),Portu(y),NETdu(z).

Link(x,y,z) :- NETdu(x),PortUnrestricted(y),Useru(z).
Link(x,y,z) :- Wu(x),AnyPort(y),AnyProc(z).

Link(x,y,z) :- AnyProc(x),PortDBu(y) ,DBproxyRu(z).
Link(x,y,z) :- DBproxyRu(x),PortUnrestricted(y),DBproxySu(z).
Link(x,y,z) :- DBproxySu(x),AnyPort(y),AnyProc(z).

Send(x,y,z) :- Ready(x),Ready(z),Link(x,y,z),Comm(x,y,z).

Finally, we model the effects of communication. Specifically, the clauses below en-
code the effects of sending a message from process x to process z, as described in the
beginning of Section 3.4: the label zg is transformed to zg LI (x5 M z%). For any field
¢, the security level zs./ does not need to be raised if min(z%./, x5.¢) < zg./, that is, if
zgl = % or xg.l < zg.£. This condition is denoted by LeqSTAR/(x, z). Further, the rela-
tion Mu is augmented on such communication. (The rules are generated automatically
by scripts.)
next Mu(z) :-

Send(x,z) ,Mu(x),
LeqSTARut (x,2z) ,LeqSTARvt (x,2) .

LeqSTARuc(x,z) ,LeqSTARvc(x,z) .
next Mu(z),
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LSvt3(z),!LSvti(z) :-

Send(x,z) ,Mu(x),

LeqSTARut (x,z) ,LSvt1(z),LSvt3(x).

LeqSTARuc(x,z) ,LeqSTARvc(x,z) .
next Mu(z),

LSut3(z),!LSutl1(z) :-

Send(x,z) ,Mu(x),

LSut1(z) ,LSut3(x),LeqSTARvt(x,z).

LeqSTARuc(x,z) ,LeqSTARvc(x,2z) .
next Mu(z),

LSvt3(z), !'LSvt1(z),LSut3(z),!'LSuti(z) :-
Send(x,z) ,Mu(x),
LSuti(z),LSut3(x),LSvti1(z),LSvt3(x).
LeqSTARuc(x,z) ,LeqSTARvc(x,z) .

We now ask the query SecrecyViolation, which denotes the existence of a process

x that runs on behalf of v, i.e., Userv(x) or Wv(x), but carries u’s data, i.e., Mu(x).

SecrecyViolation :- Userv(x),Mu(x).
SecrecyViolation :- Wv(x),Mu(x).

? SecrecyViolation.

EON does not find any exploits for this query. In other words, we have the following

theorem, automatically proved by EON.

Theorem 3.4.2 (Data isolation). A user u’s data is never leaked to any process running on

behalf of a different user v.

We conclude by mentioning some statistics that indicate the scale of this experiment.
The whole specification of the webserver is around 250 lines of EON. The translated
Datalog program contains 152 recursive clauses over a 46-ary Reachable relation (that
is, over 46-bit atomic states). Our query takes around 90 minutes to evaluate on a
Pentium IV 2.8GHz machine with 2 GB memory—in contrast, the queries for the other
examples take a few seconds.

Scripts for all the examples in this section are available in [Chaudhuri et al., 2008b].
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Part 11

Security via Access Control
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Overview

In this part, we focus on techniques for enforcing security in systems that implement
access control. The techniques integrate access control and static analysis in special
type systems with notions of secrecy or integrity.

We begin by exploring the interplay of static analysis and access control in the set-
ting of a file system. For this purpose, we study a pi calculus with file-system con-
structs. The calculus supports both access checks and a form of static scoping that lim-
its the knowledge of terms—including file names and contents—to groups of clients.
We design a system with secrecy types for the calculus; using this system, we can prove
secrecy properties by typing programs that are subject to file-system access checks.

A limitation of this type system is that it cannot exploit access control to enforce
dynamic specifications; for example, it cannot reason about the secrecy of contents that
are written after revoking public access to a file. To address this limitation, next we
develop a variant of Gordon and Hankin’s concurrent object calculus with support for
dynamic access control on methods. We investigate safe administration and access of
shared services in the resulting language. Specifically, we show a type system that
guarantees safe manipulation of objects with respect to dynamic specifications, where
such specifications are enforced via access control on the underlying methods at run
time. By labeling types with secrecy groups, we show that well-typed systems pre-
serve their secrets amidst dynamic access control and untrusted environments. More-
over, we show that this type system generalizes the type system above through a type-
directed compilation.

Finally, we consider the model of multi-level integrity implemented by Windows
Vista. We observe that in this model, trusted code must participate in any information-
flow attack. Thus, it is possible to eliminate such attacks by statically restricting trusted
code. We formalize this model by designing a type system that can efficiently enforce
data-flow integrity on Vista. Typechecking guarantees that objects whose contents are
statically trusted never contain untrusted values, regardless of what untrusted code
runs in the environment. We show that while some of Vista’s run-time access checks

are necessary for soundness, others are redundant and can be optimized away.
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Chapter 4

Access control and types for secrecy

Secrecy properties can be guaranteed through a combination of static and dynamic
checks. The static checks may include the application of special type systems with
notions of secrecy (e.g., [Abadi, 1999; Abadi and Blanchet, 2003; Cardelli et al., 2005]).
The dynamic checks can be of various kinds; in practice, the most important are access

checks. In this chapter, we explore the interplay of such static and dynamic checks.

The setting of our study is a fairly standard file system. More specifically, we study
a pi calculus with file-system constructs. The calculus supports both access checks and
a form of static scoping that limits the knowledge of terms—including file names and
contents—to groups of clients. We design a system with secrecy types for the calculus.
In this system, any type can be associated with a group of clients, which we call the
reach of the type. By typing, we can then statically check certain secrecy properties,
for instance, that a term is not leaked beyond the reach of its declared type. While the

typing is static, it applies to programs that may be subject to dynamic access checks.

For example, suppose that a client creates a secret that it does not intend to share
with other clients; it then writes that secret to a publicly known file. Suppose that an-
other client attempts to read this file. We can analyze such a system in our calculus—
this particular system typechecks only if the latter client does not have read access to
that file. Various examples indicate that our type system is fairly permissive. Con-
versely, a soundness theorem states that any process that compromises secrecy inten-

tions fails to typecheck. Further, typing has other interesting consequences; we derive,
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for instance, certain integrity properties.

Somewhat similar type systems exist for other calculi, including several pi calculi.
The main novelty of our work is the investigation of file-system constructs, including
access checks. This investigation requires some new concepts and technical elements.
It also enables us to treat examples that appear to be outside the scope of previous

systems. The resulting secrecy properties, on the other hand, are fortunately standard.

In our calculus we can express and analyze programs that can request basic file
operations and control permissions for such operations. We hide the details of file-
system implementations. Our intent is that many of those details should be addressed
via translations (from high-level constructs to lower-level mechanisms) with security-
preservation results (for instance, full abstraction results). We have taken some steps
in this direction [Chaudhuri and Abadi, 2005]. The present chapter complements those
steps, by providing a type discipline and proof principles that apply to a source lan-
guage for those translations. Thus, the techniques developed in this chapter can serve
for establishing high-level secrecy guarantees, and those guarantees should carry over

to lower-level systems obtained by translation.

The rest of this chapter is organized as follows. The next section gives an overview
of the file-system environment we study. Section 4.2 presents a pi calculus with file-
system constructs and the system of secrecy types that we design for this calculus.
Finally, Section 4.3 defines a notion of secrecy, states our main results, and studies
some consequences of the typing method. The soundness of the type system is estab-
lished via a type-directed translation to a more sophisticated type system, developed

in Chapter 5; the compilation itself is detailed in the appendix.

4.1 A file-system environment

We consider a distributed environment with some clients that interact among them-
selves and with a common file system. The file system stores data and maintains an
access policy that is enforced on the clients. Below, we describe this environment and

specify secrecy, semi-formally. Later sections contain the relevant formal details.
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4.1.1 The file system and its clients

We assume a lattice (3,11, 1, T, L) with T # L, and identify each client with some
level L in this lattice. Such a client may request an operation sz (see below) on the
distinguished channel fr.>z. (In an implementation, fr.>z may be realized with an
authenticated encryption key shared by clients at level L.)

In the file system, each file is owned by some level, and associated with some per-
missions. A new file is created by the operation new. We focus on two operations on
stores, read and write, and an operation chmod to modify read and write permissions.
Formally, the file system maintains an access policy F, which is a partial function from
files to access controls: F(f) = L,(L;, Ly,) means that the file f is owned by the level L,,
and the pair of levels (L,, Ly,) are the read and write permissions for f. Access controls
have the following meanings: any level that is at least as high as L, can change the
permissions for f; any level that is at least as high as L, can read f; and any level that
is at least as high as L, can write f. The file system also maintains a store p, which is a

partial function from files to contents, whose domain is included in the domain of F.

4.1.2 Groups

Intuitively, we can think of levels as groups of clients (so that J means “subset”, I
means “union”, and U means “intersection”.) Some of those groups are induced by
an access policy, e.g., the group of clients who have read access to a certain file. It is
not true, however, that only those clients who have read access to a file may come to
know its contents: a client who has access may read the contents, then share it with
another client who is not allowed to read the file. While such sharing is often desir-
able, it is reasonable to try to limit its scope—we would want to know, for instance, if
clients who have been granted access to sensitive files are leaking their contents, either
intentionally or by mistake, to dishonest ones.

We use groups as a declarative means of specifying boundaries within which se-
crets may be shared. To make the definition of these groups more concrete, we draw
a distinction between honest clients and potentially dishonest ones. Honest clients are

those who play by the rules—they are disciplined in the way they interact with other
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clients and the file system, and this conformance may be checked statically by inspect-
ing their code (viz. by typechecking). We identify honest clients with groups 3 L. The
remaining clients, identified with the group _L, are assumed to be dishonest; in general
they may make up an unknown, arbitrary attacker.

A secrecy intention is declared by stating that a certain name belongs to some group.
In our type system, this declaration is made by assuming a type for a name. In turn, a
type can be associated with a group, called its reach. Informally, the reach of a type is
the group within which the inhabitants of that type may be shared. Typing guarantees
that secrecy intentions are never violated, i.e., a name is never leaked outside the reach

of its declared type.

4.2 A typed pi calculus with file-system constructs

We use a synchronous pi calculus for writing and verifying client code. In this
section, we give the syntax of terms and processes, preview some examples, present

our type system for this calculus, and finally revisit the examples.

4.2.1 Terms and processes

Let s range over operations in {new, read, write, chmod}, and L range over levels (or
groups). Further, let x range over names, which denote variables, files, and channels;
the channels include a request channel B;.s¢ for each L and .

The source language is a standard typed pi calculus, with the following grammar

for terms and processes.

M, N ::= terms
X name
L level
(M,N) pair
P,Q:= processes
M(N); P output
M(x); P input
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(vx:T)P restriction

split M as (x,y); P projection

0 nil

P|Q composition
'p replication

Terms include names, levels, and pairs. Processes have the usual semantics:

e M(N);P sends N on M and continues as P—or blocks if M is not a channel at

run time.

e M(x); P receives a term on M, binds the term to x, and continues as P—or blocks

if M is not a channel at run time.

e split M as (x,x’); P splits M as (N, N’), binds N to x and N’ to x, and continues

as P—or blocks if M is not a pair at run time.

e (vx : T)P creates a fresh name x, and continues as P; the type T is the declared

type of x, and has no run-time significance.
e (0 does nothing.
e P | Q behaves as the parallel composition of P and Q.
e !Pbehaves as the parallel composition of an unbounded number of copies of P.

Moreover, the calculus allows interactions with an underlying file system, in parallel.
A state { of the file system is a pair of the form (F, p), where F is an access policy and

p is a store.

Creating a file On receiving a request x on channel fr.new, the file system creates a
new file, with a fresh name (say f) and sends f back on the channel x. The file’s
owner is L, read and write permissions are T and T, and content is empty; that

is, F(f) = L(T,T) and p(f) is undefined.

Reading a file On receiving a request (f, x) on channel B .read, the file system checks

that L is at least as high as the read permissions for the file f, gets the content of
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f, and sends it on the channel x. That is, if F(f) = _(L,,-) and p(f) = M, then
the file system checks that L J L, and sends M back on c.

Writing a file On receiving a request (f, M) on channel B .write, the file system checks
that L is at least as high as the write permissions for the file f, and sets M as the
content of f. That s, if F(f) = _(_, Ly), then the file system checks that L J Ly,
and sets p(f) to M.

Changing permissions for a file On receiving a request (f,(L,,Ly)) on channel
Br.chmod, the file system checks that L is at least as high as the level that owns
the file f, and sets the read and write permissions of M to L, and L. That is, if

F(f) = Lo(, -), then the file system checks that L J L, and sets F(f) to L,(L;, Ly).

4.2.2 Some examples (preview)

In the examples below, we assume that an arbitrary (unspecified) adversary runs
in parallel with the specified code; the channel net and the request channels 8, .5 are
known to the adversary, but the request channels B1.s¢ are not known to the adversary.
We are concerned about the secrecy of a name m written to a file f; in particular, we
wish to guarantee that the adversary cannot know m by reading f.

We begin with the example sketched in the introduction. We return to this example

and the others, giving additional details, in Section 4.2.7.

1. Suppose that f is a file created by level T (with implicit owner T, and implicit
initial read and write permissions T and T); further, suppose that in parallel, the

name f is published on net and a fresh name m is written to f by level T.

(vx) Br.new(x); x(f); (net(f) | (vm) Br.write((f,m)))

We claim that m remains secret in this case, since the only way the adversary can
read f is by sending a request on .z, and L does not have read permission for
f; further, the adversary cannot set this read permission, since it does not own f.

Indeed, this example typechecks in our system (see Section 4.2.7).
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2. Next, consider a variation of (1), in which the name f of the file to which m is

written is not the f in scope; instead, f is retrieved from net.

(vx) Br.new(x); x(f); (net(f) [ net(f); (vm) pr.write((f,m)))

But in this case, the name retrieved from net may not be the same as the f in

scope. In particular, the adversary may run the following code in parallel:

(vz) Br.new(z);z(f"); (net(f') | BL.chmod(f’, (L, T)) | BL.read(f’, net);...)

That is, a file f’ is created by _L; further, in parallel, the name f’ is published on
net, the read permissions for f’ are set to L by L, and f’ is read by _L. Unfortu-
nately, now m may be written on f’, and thus be leaked. This example does not

typecheck in our system (see Section 4.2.7).

3. More directly, m may be leaked if it is written to a file created by _L.

(vx) B new(x); x(f); (net(f) | (vm) pr.write((f, m)))
As expected, this example does not typecheck in our system (see Section 4.2.7).

4. Now, consider a variation of (1), in which the read permissions for f are set to L

by T, in parallel.

(vx) Br-new(x); x(f); (net(f) | (vm) Br.write((f,m)) | pr.chmod((L, T)))

Of course, the adversary can read f in this case, so m may be leaked. This exam-

ple does not typecheck in our system (see Section 4.2.7).

5. However, what if the name f is not published on net?

(vx) Br.new(x); x(f); ((vm) Br.write((f, m)) | Br.chmod((L, T)))

We claim that m remains secret in this case, since the adversary cannot even know

the name f. Indeed, this example typechecks in our system (see Section 4.2.7).
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4.2.3 Types

Types include, in particular, those of the standard form L[T| for channels; other
types include those for request channels, files, levels, and pairs (see below). Source
programs can create new channels and declare their types. The reach ||T|| of a type T

is defined as the group within which the inhabitants of T should be secret.

T ::= types
L[T] channel (declared)
Req;.s¢ request channel
L{T}#Lo(Ly, Ly) file
L level
(S, T) pair

e The type L[T] is given to a channel that carries terms of type T; further, the name

of the channel is secret within L, that is, || L[T]|| = L.

e The type Req;.x is given to the request channel B;.s; further, the name of the

request channel is secret within L, that is, ||Req; .| = L.

e The type L{T}#L,(L;, Ly,) is given to a file that contains terms of type T, that
is owned by L,, and whose read and write permissions are at least L, and Ly,;

further, the name of the file is secret within L, that is, ||L{T }#L,(L,, Ly)|| = L.

e The type L is given to a level that is at least as high as L. Further, the special
type L (“public”) is given to a term that may be known to L (the adversary); in

particular, all levels may be known to L, thatis, ||L|| = L.

e The type (S, T) is given to a pair (M, N), such that M is of type S and N is of type
T; since pairs can be projected, we define ||(S, T)|| = ||S|| U || Tl

Type declarations indicate secrecy intentions. However, they do not affect run-time
behaviors, and the same “untyped” process can be type-annotated in several different

ways to verify various secrecy intentions.
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4.2.4 Preliminaries on typechecking

Typechecking a system involves typechecking clients and the file system under the
same assumptions. For clients, the typechecking applies to honest clients; these clients
are restricted in their use of channels and file-system requests, by the typing rules
shown in Section 4.2.5. Typechecking the access policy imposes restrictions on the
permissions of dishonest clients; these restrictions are specified in Section 4.2.6. Type-
checking the store enforces consistency between the types of files and their contents.

The partition between honest and dishonest clients plays a central role in typecheck-
ing the system. The code for the clients as well as the access policy impose typing
constraints that finally determine whether the partition is valid, i.e., whether all hon-
est clients are well-typed, and whether the access policy is suitably restrictive for the
remaining (possibly dishonest) ones. Arriving at the correct partition may be delicate:
overestimating the set of honest clients does not help if one of those clients is ill-typed;
underestimating this set imposes more constraints on the access policy. Once we do
have a valid partition, however, we can prove that an honest client (or indeed a subset

of honest clients) can protect secrets from all other (honest and dishonest) clients.

4.2.5 Typing judgments and rules

We now show typing rules. Let I' be a sequence of type assumptions x : T. The
rules judge well-formed assumptions I' - ¢, well-formed types I' = T, well-typed
terms I' = M : T, and well-typed processes I' - P. Further, we have rules that define a
“subtyping” preorder over types S < T.

The typing rules are based on the following key observations.

e Knowing the name of a channel is sufficient to receive and send messages on that
channel. Consequently, any message sent to a public channel must be public, and
any message received from a public channel must be untrusted. This is the main
idea behind previous type systems for secrecy in the pi calculus. For a channel of
type L[], we maintain the invariant that the name of the channel may be known

only to levels J L.
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¢ In contrast, knowing the name of a file is not sufficient to read or write that file;
having read or write permissions for the file is necessary. Consequently, con-
tents written to a public file may be secret, if the adversary does not have read
permission for that file; and contents read from a public file may be trusted, if
the adversary does not have write permission for that file. For a file of type
L{_}#Lo(L,, L), we maintain the invariant that the name of the file may be
known only to levels J L, and further, the only levels that may have read perms-
sions for the file are J L,, and the only levels that may have write permissions for
the file are J L,; finally, since the level L, can control read and write permissions,

we require that L, J L, and L, = L.

Typing rules S < T

(SuBT) (SUB PAIR) (SuB L) (SuB 1)
(SUBR)
s<s §<T s<§ T<T LIL L 27|
S$<S
S<T (S,T) < (8, T) L<r T< 1

We begin by looking at the rules for S < T. Intuitively, if S < T, then any term of
type S also has type T (see below). By (SUB L), if L is at least as high as L/, then L is a
subtype of L'—since any level that is at least as high as L is also at least as high as L'.
By (SUB 1), if the reach of a type T is L, then T is a subtype of 1 —since any term of
type T may be known to L. The remaining subtyping rules are straightforward. For
any type T, we say that T is public if T < 1, and untrusted if L < T; by the above
subtyping rules, clearly the only untrusted type is L.

Typing rules I' - ¢

(Hyp EMP) (HyP TxP)
T x:_¢{I} x is not of the form B .
IFEo

Ix:Tko

Next, we look at the rules for I' - ¢. By (HYP EMP), an empty sequence of assump-
tions is well-formed. Further, by (HYP TYP), a sequence of assumptions I' remains

well-formed when extended with an assumption x : T, if T is a well-formed type, an
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assumption for x does not already appear in I', and x is not a request channel. (Request

channels are typed directly, rather than from assumptions; see below.)

Typing rules I' = T

(Typ PAIR) (Tyr CHAN)
(Tyr L) (TyP REQ)
res r=r r=r1 1L =T<1, 1T
r-L I' - Reqp.r
' (S,T) '+ L[T]
(Typ FILE)

T L,JL UL, LJLUL =T<1l 1JLULy=1<T
T+ L{T}#Lo(L,, Ly)

In the rules for I' = T, we implicitly require I' - ¢ in the antecedent. By (TYP
CHAN), the type L[T] of a channel is well-formed if T is well-formed; further, if L is
L then T is public and untrusted, since terms of type T may be received and sent on
such a channel. By (TYP FILE), the type L{T }#L,(L,, L,) of a file is well-formed if T is
well-formed, and L, is at least as high as L, and L,,; further, if L and L, are L then T is
public, since terms of type T may be read from that file; and if L and L, are L then T
is untrusted, since terms of type T may be written to that file. The remaining rules for

well-formed types are straightforward.

Typing rules I'- M : T

(TERM ENV)

(TERM REQ) (TERM LEV)
x:TeT
e I'-Br»x:Reqp.>xr THFL:L
F'-x:T
(TERM PAIR) (TERM SUB)
r=M:S FEN:T r-M:s ST
' (M,N):(S5T) rEM:T

In the rules for I' = M : T, we implicitly require I' - T in the antecedent. By (TERM
ENV), names can be typed from assumptions. By (TERM REQ), request channels are
typed directly. By (TERM LEV), every level gets its own type. By (TERM SUB), a term of
type S also has type T if S is a subtype of T. The remaining rules for well-typed terms

are straightforward.
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Typing rules I' - P

(PROC OUT) (PROC IN)
I'tM:L[T] T'EN:T rep I'tM:L[T] ILx:TFP
'+ M(N); P 't M(x); P
(PrOC OUT 1) (PROC IN 1)
r=M: 1L TEN: L rep r=M: 1L Ix: LEP
'~ M(N);P ' M(x); P
(PROC NEW CHAN) (PROC PROYJ)
I,x:L[T|FP r'-M:(ST) Ix:S,y:TEP
't (vx:L[T])P I' - split M as (x,y); P
(PROC PAR) (PROC REPL)
(PROC NIL)
re=p r-Q rep
Lo
r-P|Q P

(PROC read)
THM:Reqread L1 THN:({TH(L,), [T']) TFP
L3L = T<T

I+ M(N); P

(PROC write)
I'-M:Reqqwiite L31L TFN:({T}#.(,Ly),T) TFP
LdL, = T'<T

T+ M(N); P

(PROC chmod)
T M:Req.chmod L1 TFN:({ #Lo(Ly,Ly), (L, L)) TFP
LI L, = (L, Ly) < (Lr, L)

I+ M(N); P

(PROC new)

I'- M : Reqp.new Lol ' N [{HL(., )] r-p
I+ M(N); P

In the rules for I' = P, we implicitly require I' - ¢ in the antecedent. The rules (PROC

OuT) and (PROC IN) are complementary; for any channel of type L[T], terms sent on

that channel must have type T, and terms received on that channel may be assumed
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to have type T. Further, by (PROC OUT L) and (PROC IN L), terms of type L may be
sent and received on a channel of type L. By (PROC NEW), the type declared for a new
name must be a channel type, and this type is assumed for the name. We discuss the
rules for file-system requests next; the remaining rules are straightforward.

By (PROC read), if an honest client at level L requests to read content of type T
from a file of type {T}#_(L,, ), and L is at least as high as L, (so that the request may
succeed), then T must be a subtype of T’. Conversely, by (PROC read), if an honest
client at level L requests to write content of type T’ to a file of type {T}#_(_, L), and L
is at least as high as Ly, (so that the request may succeed), then T’ must be a subtype of
T. Further, by (PROC chmod), if an honest client at level L requests to set permissions
(L, L,,) for a file of type _{_}#L,(L;, Ly), and L is at least as high as L, (so that the
request may succeed), then L, must be at least as high as L,, and L/, must be at least
as high as L. Finally, by (PROC new), if an honest client at level L requests to create a
new file of type _{_}#L,(_, _), then L, must be the same as L.

The following proposition says that any client code with public free names and no
secrecy intentions can be typed. Since such code can be part of the adversary, this
result is similar to ones that allow typing of untyped processes in related type systems

(e.g., [Cardelli et al., 2005]).

Proposition 4.2.1. We say that a process is intention-free if all declared types in it have reach
L. Suppose that P is some intention-free client code, and I is some type environment, such

that for all x € £n(P), there is some T such that x : T € {T'} and ||T|| = L. ThenT I~ P.

4.2.6 Type constraints on the file system

The file system is treated as a process, and is typed under the same assumptions
that type the system of clients, following (PROC PAR). Recall that a state  of the file
system is a pair of the form (F, p), where F is an access policy and p is a store.

Let T be a well-formed type environment such that £n(g) C dom(T'). Further, sup-
pose that dom(p) C dom(F), and for each M € dom(F), either of the following holds.

e I'-M:L{T}#L,(L,;, Ly) for some L, T,L,, L;, L, and
- F(M) = L,(L},L],) such that L, J L, and L], J Ly,
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- if M € dom(p) thenT + p(M) : T.
o 't/ M:L{T}#L,(L;, Ly) forall L,T,L,,L,, Ly, but

-T'FM: 1L
- if M € dom(p) thenT - p(M) : L.

Then I' = {. Note that the typing constraints on states allow dishonest clients to
access only those files whose contents are public. Indeed, say F(f) = _(L}, L!,) for some
file f € dom(p),such that L, ML), C L. TheneitherI'- f: L, orT'F f: L{T}#.(L;, Ly)
such that L, M L, C L. In the former case, we have I' - p(f) : L, as required; and in
the latter case, we have I - p(f) : T, and since dishonest clients cannot know f unless
L C 1, it follows by (TYP FILE) that T = L, as required. Further, dishonest clients
cannot set potentially dangerous permissions for themselves, since by (TYP FILE), if

L,C LthenlL, UL, C 1.

4.2.7 The examples, revisited

Let us now try to typecheck the examples in Section 4.2.2. In all of these examples,
we assume a well-formed type environment I'; further, we assume that net : Tyes € {T'}
for some T}, such that || Tet|| E L. Let Secret £ T[L]; we assume that the type of m is

declared Secret.

1. Let Ty = T[L{Secret}#T (T, T)]. We type-annotate the code as follows:

(vx : Ty) Br.new(x); x(f); (net(f) | (vm : Secret) Br.write((f,m)))

Let Ty £ | {Secret}#T (T, T). Applying (PROC NEW), (PROC new), and (PROC

IN), we are left with the type environment I'y AT, x: Ty, f: Ty and the code

net(f) | (vm : Secret) Br.write((f, m))

By (SUB L), we have Tf < L and Ty < L. So, by (PROC OUT), we have I'; -
net(f). The remaining obligations are discharged by applying (PROC PAR), (PROC
NEW), and (PROC write).
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2. We type-annotate the code as follows:

(vx : Ty) Br.new(x); x(f); (net(f) | net(f); (vm : Secret) Br.write((f,m)))

Proceeding as in (1), we are finally left with the type environment I'y and the

following code (after renaming bound variable f to f').

net(f"); (vm : Secret) Br.write((f',m))

At this point, we can apply either (PROC IN) or (PROC IN _L). In either case, we
are left with the type environment I'; 271, f': L; indeed, by (TYP CHAN), net
cannot have type say L[ L{Secret}#T (T, T)]. Finally, applying (PROC NEW), we
are left with an obligation that we cannot discharge, since neither (PROC write)

nor (PROC OUT _L) can be applied.

3. We type-annotate the code as follows, with T} unknown:

(v : Ty) Bo.new(x); x(f); (net(f) | (vm : Secret) Br.write((f,m)))

Applying (PROC NEW) and (PROC OUT L), we are left with the type environment
I 2 T,x : T, the constraint T/ < 1, and the code

x(f); (net(f) | (vm : Secret) Br.write((f, m)))

Next, applying either (PROC IN) or (PROC IN _L), we are left with the type envi-

ronment I, £ T}, f : | and the code

net(f) | (vm : Secret) Br.write((f, m))

Finally, applying (PROC PAR), (PROC OUT L), and (PROC NEW), we are left with
an obligation that we cannot discharge, since neither (PROC write) nor (PROC OUT

1) can be applied.

Suppose that, instead of specifying the creation of f by L, we leave it implicit as
part of the adversary. Fortunately, the code still fails to typecheck. That is, even
if we have T, £ T/, f : T%, such that say TJQ £ | {Secret}#1 (T, T)], we have that

T} is not well-formed by (TYP FILE).
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4. We can proceed as in (1), with T/ = T[L{Secret}#T(L,L)] forsomeL € {T, L}.
Finally, we are left with the type environment I'} S T,x: T/, f: T/, m: Secret,

such that T/ = | {Secret}#T (L, T), and the code

Br.write((f,m))

But we cannot discharge this obligation—applying (PROC write), we are left with
the constraint Secret < |, which reduces by (SUB L) to T C _L (contradiction).

Moreover, no other definition for T} works, because f is published on net and the

read permissions for f are set to L.

5. Let T/ £ T[T {Secret}#T (L, T)]. We type-annotate the code as follows.
x yp

(va : TV") Br.new(x); x(f); ((vm : Secret) Br.write((f,m)) | Bt.chmod((L, T)))

Proceeding as in (1), we discharge all obligations. In particular, applying (PROC
write) does not require the constraint Secret < 1, since the type of the name f
indicates that it is secret; further, having such a type is not problematic since f is

not published on net.

4.3 Properties of well-typed systems

This section presents our main results for the type system, namely subject reduction
and secrecy. It also explores some related topics: integrity guarantees and treatment of

client collusions.

4.3.1 Type preservation

The principal property of a well-typed system is that each part of the system re-
mains well-typed during system execution. More concretely, if a process and a file-
system state are typed using the same type environment, then they remain well-typed

after an arbitrary number of reductions of their parallel composition.

Proposition 4.3.1 (Subject reduction). Let T - P | and P|{ —* (v77 : T) (P 2.
ThenT, 7 : T +P'| .
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Subject reduction has a number of consequences; the most important is a secrecy

theorem for well-typed systems, which we discuss next.

4.3.2 Secrecy by typing and access control

We view an attacker as arbitrary code that interacts with the system via dishonest
clients. An attacker is modeled by its knowledge, which is a set of names, and is an up-
per bound on the set of free names in its code (see [Abadi and Blanchet, 2003; Cardelli

et al., 2005] for similar analyses). Let Init range over such sets of names.

Definition 4.3.2 (Init-adversary). A process E is an Init-adversary if E is intention-free (i.e.,

all declared types in it have reaches C 1) and fn(E) C Init.

Next, we provide a definition of secrecy, using the usual notion of escape (similar
to that in, e.g., [Abadi and Blanchet, 2003; Cardelli et al., 2005]). A term is revealed if it
may eventually be published on a channel known to the adversary. A term is a L-secret

if its type suggests that it should not be leaked outside the group L.

Definition 4.3.3 (Secrecy). Let P be a process, { be a file-system state, Init be a set of names,
and M be a term. Let 1 = £n(M) \ (£n(P) U £n(Z) U Init).

1. P reveals M, under the assumptions 7 : T, to Initvia { if P |{ | E —*= Q| (v :
T) ¢(M) for some Init-adversary E, ¢ € Init, and process Q.

2. IfTH M: Twith |T|| 3 L, then M is a L-secret under T.
Subject reduction yields the following theorem.

Theorem 4.3.4 (Secrecy by typing and access control). Suppose that T + P | { and for each
c €Init, ¢ : T € {T'} for some T such that | T|| = L. Let K 3 L. Then P does not reveal any

K-secret, under any extension of T', to Init via (.

Thus in a well-typed system, any secret meant to be shared only within a subset of
honest clients is never revealed to the other clients. As a special case, let n : T[L] be a

new name declared inside P. If T - P | , then P does not reveal n to dom(I') via (.
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4.3.3 Integrity consequences

While above we focus on secrecy properties, the type system also yields integrity
properties. Such properties can be specified by declaring “expectations”, and verified
statically with our type system. More concretely, an expectation specifies that a certain
term should have a certain type, but has no observable effect. The reach of the type can

be used to reason about the source of the message. Let
expect(M: T); P = (vx : || T[|[T]) (X(M) | x(y); P)

where x,y ¢ £n(P). Such expectations can be verified statically, by typechecking, al-

though the term M may, of course, contain variables instantiated at run time.

4.3.4 Reasoning under client collusions

The type system can be extended to reason under client collusions by parameteriz-
ing the typing judgmentsI' = M : Tand I' - P by levels K. (See [Chaudhuri and Abadi,
2006b] for details.) Informally, in this system, typing under g requires K to be at least
as high as the reach of any type used by the relation. For example, the code of a client
at level L is typechecked under the relation I~;. Terms that the client may know must
belong to groups that include L. Going further, the code of a collusion of clients at lev-
els Ly, ..., L, is typechecked under the relation I~1,,, 1, so that terms that the clients
may know must belong to groups that include at least some L; for i € 1..n. The file
system is typechecked under -, since it may know terms that belong to any group.
Conversely, the adversary is typechecked under I | , since it may only know terms that
belong to L.

The family of relations I is monotonic in the parameter K, i.e., if ' - P then ' - P
for any K’ J K. Further, a stronger version of the subject reduction property holds
for this system—any process that is well-typed under x remains well-typed under
Fx, when composed in parallel with other well-typed processes and a well-typed file-
system state.

Collusions may arise when a group of honest clients who share a secret want to pro-

tect the secret from the rest of the clients. These remaining clients are then assumed to
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act adversarially by colluding. Specifically, when reasoning about L-secrets, we allow
clients at levels - L and those at levels C L to form a pair of collusions and typecheck
accordingly. Further, by monotonicity, well-typedness of processes is robust under ar-
bitrary collusions with dishonest clients. Therefore, when reasoning under collusions
that involve both honest and dishonest clients, it is sufficient to consider only the levels

of the honest clients in the parameter to the typing relation.
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Chapter 5

Dynamic access control and polymorphism

Systems that share services often exercise some control on access to those services
at run time. Implicitly, access control is intended to be a means to enforce dynamic
specifications for those services at run time. Unfortunately, such enforcement is not
straightforward. For example, users who have access to a file with sensitive contents
may share the contents, intentionally or by mistake, with those who do not have access;
even if the privileged users are careful, dynamic access control may eventually allow

other users to read those contents, or write over them.

A convenient view of access control in this setting results from its characterization
in terms of capabilities: a service may be accessed if and only if a corresponding ca-
pability is shown for its access. This view is independent of higher level specifications
on service usage (say, in terms of types, or identities of principals). It suffices to guar-
antee that the flow of a capability that protects a service respects the corresponding
high-level intention on service usage. For example, in Plutus (Chapter 2) a file must
be written or read with the correct write key or read key; it suffices to guarantee that

those keys are distributed only to the intended sets of writers and readers.

This view in turn relies on a sound low-level implementation of access control in
terms of capabilities. To a first approximation, a capability for a service can be iden-
tified with a link to that service. Exporting a direct link to a service, however, poses
problems for dynamic access control, as discussed in [Redell, 1974]. Redell suggests a

simple alternative that uses indirection: export a link to the direct link, and overwrite
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the direct link to revoke access. Of course, it should be difficult to derive the direct link
from the indirect link, for soundness. We revisit this idea in this chapter.

Our setting is a concurrent object language. Services are often built over other ser-
vices; dependencies between services may entail dependencies on their access assump-
tions for end-to-end safety. For example, suppose that two users read the same file to
obtain what they believe is a shared secret key, that they then use to encrypt secret
messages between themselves; it does not help if a third user can write its own key on
that file and then decrypt the “secret” messages. A natural way to capture such depen-
dencies is to group the related services into objects. (In the example above, the object
would be the file in question, and the services would be a content field that holds the
key, and read and write methods that manipulate that field.)

Building on Redell’s idea in this setting, we develop a variant of Gordon and Han-
kin’s concurrent object calculus concg [Gordon and Hankin, 1998]. In concg, as in
most previous object calculi (e.g., [Abadi and Cardelli, 1995; Blasio and Fisher, 1996;
Vasconcelos, 1994]), a method is accessed by providing the name of the host object and
a label that identifies the method in that object. For example, for a timer object t with
two methods, set and tick, knowing the name ¢ is sufficient to call (or even redefine)
both methods (t.set, t.tick) in concg. We may, however, want to restrict access to set
to the owner of ¢, while allowing other users to access tick. Further, we may want to
allow the owner of t to dynamically control access to tick. Such requirements are not
directly supported by concg. In languages such as Java, there is limited support for
access control via access modifiers—however, such modifiers are not flexible enough
for our purposes.

Our calculus, conc?, supports method names to facilitate access control on methods,
and indirections to facilitate dynamic access control. More specifically, we let every
method inside an object definition be linked with some method name v. The method is
called by sending a message on the indirection 9 of v. We assume that the indirection is
easy to compute but hard to invert, that is, the function - is a one-way function. Access
to the method is revoked simply by linking the method with a different name.

Crucially, calling a method does not require the name of the host object. Instead,

the name of an object is required for redefining and controlling access to its methods.
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Object and method names are meant to be shared between the owner and other ad-
ministrators of objects; their indirections are meant to be made available to the users
of methods. In analogy with Plutus, object and method names correspond to private
keys and RSA seeds, which remain secret to the owners of files; their indirections cor-
respond to public keys, lockbox keys, sign keys, and verify keys, which are secretly
distributed to writers and readers of files.

Dependencies between the methods of an object often require their access control
and redefinition to be atomic—therefore conc? replaces concg’s method update primi-
tive with a more general object update primitive. In analogy with Plutus, new contents
must be written and read with new keys following a revocation. These primitives can
in turn encode the mutex primitives of concgm (an extension of concg), which allow
encodings of locks, channels, etc. in the language.

We show a type system for conc? that guarantees safe manipulation of objects with
respect to dynamic specifications. The key idea behind the type system is the use of
parametric polymorphism in object types. More precisely, we allow methods of an
object to have different (dynamic) types at run time; each such type is derived from
an instantiation of a polymorphic type for the host object. We then show that it is
possible to dynamically enforce those types via access control. Roughly, our run-time
invariant is that a method is always linked with a name of the correct type; as the type
of the method varies, so must the name that the method is linked with. This invariant
ensures that a method is always accessed in a type-safe manner at run time.

Our type system formalizes a common practice in various contexts: indeed, objects
often dynamically implement various specifications at run time. For example, run-
time access to a file may vary to dynamically reflect various secrecy assumptions for
the contents of that file. By a combination of access control (provided by the language)
and static discipline (provided by the type system) we can show that the intentions
of the administrators of objects and users of methods are respected throughout such
variations. In particular, by decorating types with secrecy groups, we show that well-
typedness guarantees secrecy under dynamic access control, even in the presence of
possibly untyped, active environments.

The rest of the chapter is organized as follows. In the next section we present a
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concurrent object calculus, conc 7, with indirections for dynamic access control. We
accompany the formal syntax and semantics of our language with commentary on the
conceptual and technical differences with Gordon and Hankin’s concg calculus. Fi-
nally, in Section 5.2, we present a type system for the language, show examples of
well-typed programs, and state our main theorem, viz. typing guarantees secrecy un-

der dynamically changing type views and even under untyped environments.

5.1 The untyped conc? calculus

In this section we present conc 7, a variant of the concurrent object calculus concg
[Gordon and Hankin, 1998]. The novel aspects of conc 7 lie in the separation of roles
for object update and method call; this separation is induced by introducing method
names and indirections. The separation has a clear effect on the suitability of the result-

ing language as a core calculus for studying security properties of concurrent objects.

5.1.1 Syntax

We begin with the syntax of the language.

U0 = values
X name
il indirection
L level

Values include names, indirections, and levels. The names may be variables, object

names, or method names. The levels belong to a lattice (J,M,L, T, L) with T # L.

d:= denotations
D E—

ZT[& = (y,)bl] object
We use the notation @; to abbreviate a finite sequence ..., ;, ... whose indices are
- TN . -
drawn from some total order { i }. Anobject 7 [¢; = (y;)b;] is defined by |{ i }| meth-
ods; the i" method, defined by the abstraction (y;)b;, is identified by the label ¢;, and

is linked with the method name v;. To simplify the presentation, we do not consider

“self” abstractions (with the binder ¢) as in concg [Gordon and Hankin, 1998].
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a,b = expressions

u value

u—d denomination

(vx)a restriction

alb fork

letx =ainb evaluation

l(u) internal method call
m; internal object update
v(u) external method call
u<—d external object update
if u =ovthena equality check

if L Jovthena level subsumption check

There are separate “internal” and “external” primitives for method call and object
update. The internal primitives ¢(u) and m do not carry a reference to the host
object, unlike [Gordon and Hankin, 1998]. In fact, labels by themselves have no mean-
ing outside objects; hence the use of internal primitives is limited to within objects. The
external primitives, on the other hand, can be used in any context. An external method
call v(u) sends a message 1 on v, where v is the indirection of a method name. Cru-
cially, calling a method does not require the name of the host object (¢f. [Gordon and
Hankin, 1998]). Instead, updating an object requires the name of the object. Specif-
ically, the external object update u <~ d redefines some of the methods of the object
named u, and relinks some of them with different method names. This primitive is a
generalization of concg’s method update primitive.

We also include two syntactic forms for dynamic checking (viz. equality and level
subsumption). The rest of the syntax follows that of concg. Informally, expressions

have the following meanings. (The formal semantics is shown later in the section.)
e 1 is a value that is returned by an expression.
e u — d links the object 4 to the name u.

e (vx)a creates a new name x that is bound in the expression a, and executes a.
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e a " bis the (non-commutative) parallel composition of the expressions a and b;
it returns whatever value is returned by b, while executing a for side-effect. This
form, introduced in [Ferreira et al., 1998], is largely responsible for the elegance
of the syntax, since it provides an uniform way to write expressions that return
values, and “processes” that exhibit behaviours. (Of course, expressions that

return values can have side-effects.)

e let x = ain b binds the value of the expression a to the variable x and then exe-

cutes the expression b; here x is bound in b.

e /(u) is a local method call inside an object; see external method call.
P ————

o /i = (y;)b; is a local object update; see external object update.

e v(u) is an external method call on the indirection v, with message u; the expres-
sion blocks until there is a denomination that contains a method (y)b that is indi-
rectly linked with v; in this case, the expression b is executed after substituting u

for y, and exporting any internal primitives as external primitives (see below).

e u «i d is an external object update; the expression blocks until there is a de-
nomination of the form u — d’; in this case, the method names linked to d are
overwritten with those linked to d’, the methods defined by d are overwritten by

those defined by d’, and _L is returned.
e if u = v then a executes a if u and v are the same value, and blocks otherwise.
e if L J v then a executes a if L is at least as high as level v, and blocks otherwise.

Example 5.1.1. Assume that integers and channels can be encoded in the language,
and there is an indirection | for decrementing positive integers and indirections c! and

c? for sending and receiving messages on a channel.! Consider the following code.

1Both A-calculus and 7t-calculus can be expressed in conc 7, following standard translations of these
languages to object languages such as impg and concg. The encodings of integers and channels can be
built over these translations, although simpler encodings should suffice for this example.
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System £ (vx,val, set, tick) (Server) I Client

Server & x i val, set, tick[val = (_)val, # timer linked to x, with
set = (y) val = (L)y, # set linked to set
tick = (_) letz =val(Ll)in # tick linked to tick
letz' = | (z)inset(Z')]| T
set(N)  c!(tick) P ... # timer gets activated...
(vtick) x « tick'[ ] # timer gets deactivated

Client & letz = c?(L)in (z(L) P ...P z(L)) # timer ticks

A server creates a new timer object, links the tick and set methods of the timer to
the names tick and set, sets the value of the timer to an integer N by calling set, and
sends the indirection tick on c!. A client repeatedly ticks the timer by calling tick. At
some point, the server creates a fresh method name and relinks the tick method of the

timer object to this name. Consequently, the client can no longer tick the timer.

5.1.2 Semantics

We show a chemical semantics for the language, much as in [Gordon and Hankin,

1998; Flanagan and Abadi, 1999], with the following grammar of evaluation contexts.

E = evaluation contexts
° hole
letx=E&inb evaluation
Erb fork side
ar & fork main
(vx) & restriction

Informally, an evaluation context is an expression container with exactly one hole.
By plugging an expression a into the hole of an evaluation context £, we obtain the
expression & [a]. (In general, plugging may not be capture-free with respect to names

or variables.) We define structural congruence of expressions as usual.

Structural congruence a = b # £n (resp. bn) collects free (resp. bound) variables
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(STRUCT RES) (STRUCT PAR)
x ¢ fn(E) Ubn(E) fn(a) Nbn(E) =@

(vx) E[a] = E[(vx) a] ar E[b] = EJar b]

(STRUCT EQV)

= is an equivalence

Next, we define reduction of expressions. Not surprisingly, there are no reduction
rules for internal primitives: we restrict the sites of action to the external primitives.
The reductions for external method call and object update, (Red Call) and (Red Upd),
have some important differences from the corresponding reductions in concg. First,
when a method expression is executed on call reduction, the labels in the expression
are eliminated by translating internal calls to external calls, and internal updates to
external updates. (This translation, called export, is shown below.) Second, an object
update can not only redefine some methods, but also relink some methods with dif-
ferent names. In general, the update can block or unblock some external method calls:
thus it serves as an access control mechanism in the language.

In the following, let 5;) o @) = Z U @, where {?} = {?} \ {7}

Structural reduction 4 — b

(RED CALL)
d =7 [l; = (yi)bi]
(s d)P 3w’y — (> d) P b [y} 47
(RED UPD)
d=Tl= bl &= he il {(TIu{FIC{T)
&' = o Tl > (V)b o b = (v
(u—d)rue—d — (u—d)r L

(RED EVAL) ,

LJL

letx =uinb — b{u/x} if u=uthena —a
if LJL thena — a

(RED CONTEXT)  (RED STRUCT)
a—b a=d ad — b =0

Ela] — &[] a—b

In (RED CALL), the appropriate method is dispatched after eliminating its labels by

the translation éy) ; here, u is the name of the host object and 7; contains the names
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of the methods of that object, at the time of dispatch. Eliminating labels assigns a
definite meaning to the method expression outside the syntactical scope of the host
object. More importantly, eliminating labels ensures that the execution of the method

expression is type safe amidst future object updates (Section 5.2) .

Export a; E’

T def = = e - =
GO E ) e bt s u ST (b )

(arb) ff—; o uéf—i)r’béy (letx =ainb) F e letx:aéFinbéF

a=u, o), u —d oru —d

(vn)a)s T & (vn)as ¥

—
U7 def
ay, = a

To illustrate the semantics, next we show some sample reductions for parts of the
code of Example 5.1.1. Here, let 77 = val, set, tick.
X 7[...]Pset(N) — x> 7[...]P x i 7[val & ()N]

— x> 7[val= (ON,...] 7 L # activate

X 7. ] rtick (L) — ne wl.]r
letz =val(L)inletz' = | (z) in set(z')

—* x> wivales (ON—1,...] 7 L #tick
x— T[]0 x —tick'[] — x> val,set, tick’[...] T L # deactivate

5.2 A type system for enforcing dynamic specifications

In this section we show a type system that can enforce dynamic specifications in
conc?. Specifically, we allow a method to have various types at run time: the type of a
method is dynamically related to the type of the name it is linked with. For example,
suppose that the owner of a file wants to change the type of the content field from

“public” to “secret”. Clearly, the name linked to the content field must be changed:
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while the indirection of the previous name could have been public, the indirection
of the new name has to be secret. Further, if the file has read and write methods that
depend on the content field, their types change accordingly: therefore the names linked
to these methods must be changed as well. In analogy with Plutus, the write and read
keys must be changed whenever the type of contents are changed.

Changing method names is, however, not enough for end-to-end secrecy. (This in-
adequacy is typical of access control mechanisms, as mentioned earlier in this chapter.)
A user that reads the file by calling the new indirection may regard the content as secret
(even if it is not). For example, the user may read some (previously public) content v
by calling the new indirection, believe that v is secret, and thence set ¥ as an indirection
to read some other secret: unfortunately, that “secret” can be publicly read by calling
0. Indeed, it is almost always possible to exploit such “type interpretation” errors to
leak secrets. (For example, interpreting secret content as public can be equally bad.)
To prevent such errors, the content field must be overwritten to reflect its new type. In
analogy with Plutus, the new write and read keys must be used to write and read new
contents; using the new keys without overwriting the content field can to dangerous
type interpretation errors.

Going further, by the same argument, it appears that the read and write meth-
ods need to be overwritten as well. We can however do better. Typically read and
write have types that are parametric with respect to the type of the content: informally,
whenever the content type is X (say, instantiated to “public” or “secret”), the read and
write methods have types (L)X and (X)_L. Therefore, those methods reflect their new
types as soon as the content field is overwritten.

We summarize these insights in the following general principles that govern the
type system below. First, an object update is consistent only if the types of the new
method names match up with the types of the method definitions. Second, type con-
sistency forces some methods to be overwritten. Methods which are parametric with
respect to the overwritten methods, however, need not be overwritten. This form of
polymorphism is typically exhibited by higher-order (generic) functions, composition-
ally defined procedures, or (in the degenerate case) methods that have static types, i.e.,

whose types do not change.
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5.2.1 Polymorphic types, constraints, and subtyping

The primary goal of our type discipline is type safety, despite dynamic variations
of types for methods. We rely on a combination of access control and polymorphic
typing to enforce this safety property. More specifically, we qualify methods with
signs 6 € {+, —}. The — methods must be overwritten whenever method names are
changed. In contrast, the 4+ methods may be overwritten, and if they are, they must
remain polymorphically typed, as indicated above.

As in Chapter 4, we interpret levels as (secrecy) groups and lift them to types. Fur-
ther, every type is associated with a group, which we call its reach. Thus, the type
declaration for a name specifies the group within which that name is intended to be
confined. We use type safety to verify that each such intention is preserved at run time.

Let X’ range over sequences of type variables. We allow universal quantification of
type variables in object types; such variables can be shared by the types of the methods
of those objects. Further, we allow universal quantification of type variables in method
types. Finally, we allow existential quantification of type variables in all types, and
allow types to carry subtyping constraints over the type variables in scope.

More specifically, the syntax of types is as follows. (We use the notation ¢... to

abbreviate a finite string beginning in ¢.)

S, T = types

X type variable (declared)

uc- limit (declared)

G group (declared)

S|C constraint

(3X)T existential type
u:= type schemes

VX [Efi :VYi(Si)Ti object type scheme

YY(S)T method type scheme
G = groups

X group variable

L level
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GuUG supremum

GndG infimum

11Xl reach of type variable (uninterpreted)
Cu= constraints

S<T type subsumption

C=1C implication

Typed processes declare types for new names (with (vx : T) g, instead of (vx) a in
Section 5.1). Such types are restricted to type variables, limit types, and group types;
constraints and existential types cannot be declared for new names.

Informally, the type forms have the following meanings:
e The type variable X may denote a type, and in particular, a group.

e The object type scheme VX [Ei‘s" : VYi(S;)Ti] assigns the type schemes VY;(S;)T;
and the signs J; to the methods ¢; of an object. The type variables X may be
shared by those schemes. Intuitively, at run time, these variables can be substi-
tuted with different concrete types, resulting in different concrete types for the
methods. We maintain, for each method ¢; with §; = +, the following invariant:
for any substitution of &, if every method in the object is assumed to have its

assigned type, then the expression for /; has its assigned type.

e The method type scheme VY(S)T assigns a polymorphic type to a method that
takes a value of type S and returns a value of type T. The type variables ) may
be shared by S and T.

e The limit type U is given to a value that should be secret within the group G.

Further, the indirection of that value is given the type Ua'", defined as follows:

~

uG: uG uG\G/.‘.: uG/...
That is, fori > 1, the (i — 1)”’ successive indirection of a value of type uGi-Gr is
given the type U+ Cr if i < k, and UCk if i > k.

_
For instance, the type VX [(;% : V);(S;)T;]¢ may be given to an object name that
should be secret within G, the group of administrators of that object. The type
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(VYi(S;0) Tio)©Ci may be given to a method name linked to ¢;, where ¢ is some
type substitution for the variables X'. While the method name itself should be
secret within G, its indirection, which is given the type (V);(S;0)T;o)%i, should

be secret within G;, the group of users of that method.

e The group type G is given to a level that is at least as high as G; further, the unit
type L is given to a value that may be known to the public group L.

e The constraint type S | C is given to a value of type S under the constraint C. The

constraint can be any simple logical formula over subtyping assertions.

e The existential type (3X')S is given to a value of type S under some substitution

of the type variables X.

For example, the name of a file object may be given the following type (eliding

useless quantifiers):
VX[content™ : (L)X, read™ : (L)X, write™ : (X)L]Ownert
The indirection of the object name may be distributed as the file path, with the type:
VX[content™ : (L)X, read™ : (L)X, write™ : (X)L]*
If, say, the content is of type T, a method name linked to write may be given the type:

<T> L Owner Writer

The indirection of the method name may be distributed as the write capability, with
the type:
<T> J_Writer

As another example, consider an authenticated encryption object, whose name is

given the type:
VX[key : (L)X, authencrypt™ : VY(Y)(<X>y)L]Authority

The value returned by encryption may be known to the public group L. If the type of
the key is T, then the key and authencrypt capabilities may be given the types

(<L>T)Reader vy((y>(<T>Y)L)Writer
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Examples of constraint types and existential types appear in more sophisticated
applications, such as in Appendix C, that require typing information to be propagated
across contexts for assume/guarantee-style reasoning.

The relationship between types and groups is made explicit by a reach function,
defined below. Informally, the reach of a type is the group within which the values of
that type may be shared (but not without). All groups have reach L. The group at the
head of a limit type is the reach of that type. Reaches are propagated trivially through

constraint types and existential types. The reach of a type variable is left uninterpreted.

Type reach ||T||

us-l=c fcl=L Isicl=Isl I@Ex)s)=]s|

Let I be a sequence of type assumptions x : T. The typing rules judge well-formed
assumptions I' - ¢, well-formed types I' = T, valid inference of constraints I' - C,
and well-typed expressions I' = a : T. We show the core typing rules for well-typed

expressions in Section 5.2.3; the other rules are presented below.

Typing rules I' - ¢

(HYP 2) (Hyp Typ) (HYP VAR) (Hypr <) (Hyr =)
P
TET  u:_¢{T} o X¢T IS, T I,C,C'+o
gk o
I[Lx:Tko ILXkFo ILS<TFo IC=CFlto

By (HYP TYP), well-formed environments can introduce well-formed type assump-
tions for fresh variables. Further, by (HYP VAR), they can introduce fresh type vari-
ables. Finally, by (HYP <) and (HYP =), they can introduce subtyping constraints

over well-formed types.

Typing rules I' = T

(TYP HYP) (Typ || - )) (TyP 1) (Typ L)
(Typ LEV) , ,

X € {T} r-Xx I'-G,G T+G,G
'L

r-X rH|X| r-GgnGé TrrGud
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(Typ OBY) (TyrP METH)
-G rLxXro E)distinct Vi.[,X, V=5, T; r-aG IrLYrEST

—

T Y[ vYi(S) TG T H (YY(S)T)¢
(Typ Lim) (Tyr CONS) (Typ 3)
rFu~ TrHG<C I,CHS LLXFT
I+ ucs- THS|C T (3X)T

In the rules for I' = T, we implicitly require I' - ¢ in the antecedent. By (TYP
HYP), a type variable is well-formed if it is already introduced in the environment.
Indeed, all type variables that may occur in well-formed types must be introduced
explicitly through quantification. By (TYP OBJ), an object type is well-formed if all
method labels in it are distinct, and the type variables quantified in the scheme have the
correct scopes. Similarly, by (TYP METH) the type variables quantified in the scheme
have the correct scopes.

By (TYP LIM), a type of the form UCC" is well-formed only if the type U is well-
formed, and G is a subtype of G’. Indeed, for any value v, any group G that may know
v may also know its indirection 9; in particular, if v has type USC"~, then 9 has type
US', so G must be at least as high as G/, the group that may know 9.

By (TP CONS), a type of the form S | C is well-formed if S is well-formed in an
environment that remains well-formed after introducing C. The remaining rules for

well-formed environments are straightforward.

Typingrules I'-C, T'-a: T

(Sus 1) (SUB LATT) (SUB LATT)
, , (SuB 1) (SuB T)
r- 1L <G L3L L'"3aL
rEG< L r=17<G
rFu® <1 reL<r FTFL<L =1<T
(Sus M) (SUB L)

TFGNG <G, GNG <G TFG<GUG, G <Gud

(SuB TRAN) (Exp SUB)

(SUB REF) , ,
r=s<s r=s'<T I'ta:S r=sS<T

r-s<s

r=s<rT I'ta:T
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(CoNs Hyp) (CONS = INTRO) (CONS = ELIM)

Ce{r I,CHC' TrHC THC=C THC
reC r=Cc=7<= r=c
(CoNs CASE) (Expr CONS) (CONS SUB)
I,LCta:T T,C=1<Ttra:T rFL<T TFS<T
I'ta:T Fka:T CESIE<ITIL T < ISl

In the rules for I' = C, we implicitly require I', C = ¢ in the antecedent. The subtyping
rules generalize those in Chapter 4 to account for group variables. For example, we
use ' = 1L < G instead of G C L, since G may be a group variable constrained by
I'. Similarly, we have the obvious rules (SUB L), (SUB T), (SUB U), and (SUB T1) to
extend J to group variables. By (SUB L), if T 1 < G then UC is a public type, as
expected. The rules (CONS HYP), (CONS = INTRO), (CONS = ELIM), (CONS CASE),
and (ExXp CONS) implement a classical proof system for simple logical formulae over
subtyping constraints, where 1. < T is considered a contradiction. Finally, (CONS SUB)
axiomatizes the condition that reaches are preserved by subtyping, so that subtyping
constraints over types can derive subtyping constraints on groups. The remaining

rules for valid inference of subtyping constraints are straightforward.

5.2.2 Static invariants

Before going any further, let us review some of the static invariants that are captured

by types, and how those invariants are maintained.
_

Consider a name of type VX [Ef" : VY;(S;)T;]¢ . By well-formedness, we can assume
that all quantified type variables in this type are distinct. Further, we can assume that
this name is associated with an object of the form v; [¢; = (y;)b;]. For some type sub-
stitution ¢ of the type variables X', we have that each v; has type scheme VY;(S;0) Tic,
and accordingly, each b; has type T;c assuming y; is of type S;o. In fact, the invariant
that we maintain is somewhat stronger, since we need to prepare for future updates of
this object; let us consider such an update next.

Specifically, consider an update of this object with the denotation v} [{x = (yi)bx].

. - , . .
We assume that 7 and k are both subsets of i, but not necessarily equal to T we
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need to the maintain the invariants above for the resulting object. At the very least,
we require that for some type substitution ¢’ of the type variables &', each v; has type
scheme VY;(S;0”) Tio’. But this is clearly not enough; for any i ¢ {7}, recall that v; is
typed under o, not ¢’. It follows that for any such i, no type variable in X may appear
in the type scheme VY;(S;) T}, that is, S; and T; must already be well-formed under }/;.

At this point, we can fix the type substitution ¢’. Now, at the very least, we require
that each by is of type Tyo’ assuming yy is of type Si. But this is clearly not enough;
for any i ¢ {7}, recall that (y;)b; is typed under o, not ¢’. Therefore, we need to
strengthen our invariants.

Specifically, we assume that {7} includes all i such that §; = —. If §; = +, we
ensure that (y;)b; remains typed under ¢/, and indeed, under any future type substitu-
tion, as follows. We simply require that such b; have type T; assuming y; is of type S;
(without substituting the type variables X in S; and T;).

At this point, we are almost done. Note that if the indirection of a method name
may be public, then—irrespective of the type scheme for the method—the adversary
can call that method with any public value, and the result of executing that method
should be public. For any j, the reach G; of the type of 0; may be L iff 1 < G; does
not introduce a contradiction; we require that any such j be in {7}, and b; have type
1 assuming y; is of type L.

Formally, the condition INVARIANCE(?, 7, ?), parameterized by the indices 7),

7, and & , collects all the above requirements for object update, and is derived by the

following rule.

dom(c) =X  VjThko: (Vyj<5j(7>Tj(7)GGi~-
(I0Yis, Ty {7 c{i}
{i|6==YU{ITL<GYL<TIC{K}c {7}
V. & = — = { L, 7_7) : (vyi<_>SiU>EU)GZi/yk/yk LS s E o Ty )
ke {7 }Y=T,Z,7 : (Wi(Sio)Ti0) %, Ve yi s L, L < Gk byogyt + L
L7, X,% (WSO T)%, Yoy s Si - byt il < T
ke {T}=T0,2,2,% : (WSHT) %, Veye: L L < Geb bl L

- - -
L, ],

k)

Vk.op =+ = {

INVARIANCE(
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The condition INVARIANCE( i

- = e .
i, i, i) for objectinitialization is just a special case.

4 4

Z:, 7 (Yi(Sio

Vi.T Fv;: (YYi(Si0) T;or)©C

T,0) %, Vi, yi : Sio b= bioh

)
Z, % (VVAS0)Ti0) %, Yy« L L<G«Fb'aé§:L
vio— 4 o 4 DT OVUSITIE Yy S bt
T,Zi, X, % (YVASHT)%, Yoy L, L < G Hw L
INVARIANCE( i ,7,?)
5.2.3 Core typing rules
We now present our core typing rules for expressions.
Typing rules I' -a: T
(Exp Hyp) (Exp IND) (Exp IND L)
(Exp LEV) G
x:Te{l} I'o:U I'to: L
————— TFL:L -
F'x:T T2 U r=o:_L
(ExXP 3 INTRO) (ExP 3 ELIM)
dom(c) = X I'ta:To IX,x:Ska:T
T'ta:(3X)T x:(3X)Ska:T
(Exr CONS INTRO) (Exr CONS ELIM)
I'ta:T '=C Ix:S,Ckta:T
I'a:T|C [x:S|Cka:T
(Expr NEW) (Expr FORK) (Exp EVAL)
S declared I''n:Sta:T I'ta:$S T'Eb:T I'ta:S Ix:SEb:T
I'(wn:S)a:T I'karb:T I'tletx=ainb:T
(Exp 1) (Exp =)
F'tu:T IL<STkFa:T 'u:S r~v:5 I[X,X<§5X<SFa:T
T'HifL Juthena: T I'tifu=vthena: T
(Exp CALL) (Exp CALL 1)
FFo: (YY(S)T)%  dom(0c)=Y Tru:S Tro:l Tru:l
I'- o(u):To ' o(u): L
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(ExP DEN)
-
THu:vVX [éf" :VY;(S)T]  INVARIANCE( 7, i, 1)
TEues o7l e (yi)b]: L

(Exr DEN 1)
Thu:l ViTho:l ViT,z:luy:LlbbsZ :L

S
I'Eue o[l e (yi)b]: L

(Exr UPD)
_—
TFou: VX[ VY(SHTIC  INVARIANCE( 7, [, k)
T
I'tFu«— Z)]' Vk = (yk)bk] L
(Exp UPD 1)

Thu:l VjiThko:l VkT,z: Ly LbbdZ: L

'-u« U_;Mk = (]/k)bk] i

In the rules for I' - a : T, we implicitly require I' = T in the antecedent. (EXP 3
INTRO) and (EXP 3 ELIM) are standard rules for introduction and elimination of exis-
tential type quantifiers. By (EXP CONS INTRO), an expression has type T | C if it has
type T, and the constraint C can be derived. Conversely, an assumption of the form
x : S | C can be split into the assumptions x : S and C.

Dynamic checks imply some subtyping constraints, and we type the continuations
of such checks under those constraints. By (ExP J), if u is of type T, then the run-time
check L J u introduces the subtyping constraint L < T; indeed, if T is level L/, then
u is some level at least as high as L/, so that L J u implies L < L'. By (EXP =), if u is
of type S and v is of type S, then the run-time check u = v introduces the constraints
X < Sand X < S’ for some fresh type variable X; indeed, u = v implies that S and S’
have a common subtype that is the type of both # and v.

By (Exp CALL), if v is an indirection with type scheme V) (S)T, then for any type
substitution ¢ for ), v can be called with a value of type So, and result of the call is
of type To. Further, by (EXP CALL L), a public indirection can be called with a public
value, and the result of the call is public. The rules (EXP DEN) and (EXP UPD) respec-

) ) . - - = - = =
tively require the conditions INVARIANCE( i, i, i ) and INVARIANCE( i, j, k ), as

discussed above. On the other hand, if the object name is public, then by (EXP DEN
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1) and (ExP UPD L), the method names linked to the object must be public, and the
method expressions must take public values and return public results.

The remaining rules for well-typed expressions are straightforward.

Example 5.2.1. Recall the example with authenticated encryption objects. Let the object
name x and the indirections kEy and enc have the shown types, and let k be a value of
type T. Then the following denomination is well-typed if Authority, || T||, and Reader
are all higher than L. (Why do we require this condition?)

x — key, enc| key = (_)k, authencrypt = (y)
(vx/ . [decrypt+ . (T)Y]AuthorityL> (vdec . (<T>Y>Auth0rityL)
x' — dec[decrypt = (i) if ' = key(L) then y] P dec]|

A reader belonging to Reader can obtain the key k by calling kéy. A writer belonging
to Writer can encrypt a term M of any type S by calling enic; further, it can make the

encrypted term dec public. A reader can retrieve M by calling dec with k.

5.3 Properties of well-typed code

The main result for our type system is that well-typed code never leaks secrets be-
yond declared boundaries, even under arbitrary untrusted environments. The result
relies on a standard but non-trivial preservation property: well-typed expressions pre-

serve their types on execution.
Proposition 5.3.1 (Preservation). LetI' -a:T.Ifa — b, thenT b : T.

Additionally, the type system has two important properties. First, reaches are pre-
served by subtyping. Second, the type system can accommodate arbitrary expressions,
as long as they do contain only public names. This property is important, since we can-
not assume that attackers attempting to learn secrets would politely follow our typing

discipline.

Proposition 5.3.2 (Typability). Let a be any expression without free labels. Suppose all de-
clared types in aare 1, and x : L € {T'} for all free names x ina. ThenT Fa : L.
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Finally, we present the main result. Let 2 be trusted code typed under environment
I', and b be (perhaps partially) untrusted code typed under the same environment I'.
In general, b may be some trusted code composed with arbitrary untrusted code, and
the trusted code in b may even share secret names with 4. Then no declared secret x

can ever be learnt by executing b in composition with a.

Theorem 5.3.3 (Secrecy). Let T Fa : Sand T Hb: L. IfT, L < ||T| = L < T, then
arb 4> (wx:T)_T x.

The proof is based on a simple argument: if x can be learnt, then by Proposition
5.3.1, T must be a subtype of L; so by (CONS HYP) the reach of T must be L (contra-
diction). A weaker version of the theorem that deals with top-level secrets also holds:
for all variables x such thatx : T € {T} and I', L < ||T|| = L < T, it must be the case
thatal b /> _T x.

A significant application of Theorem 5.3.3 appears in the appendix, where we de-
scribe a type-directed encoding of the secrecy type system of Chapter 4 in this setting.
More precisely, we show that any code that is well-typed under that system can be
compiled to well-typed code in conc 7. The soundness of that system then follows
from Theorem 5.3.3, and some auxiliary lemmas that establish the adequacy of the

compilation (i.e., the preservation of behaviors by the compiler).
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Chapter 6

Access control and types for integrity

Commercial operating systems are seldom designed to prevent information-flow
attacks. Unfortunately, such attacks are the source of many serious security problems
in these systems [Sabelfeld and Myers, 2003]. Microsoft’s Windows Vista operating
system implements an integrity model that can potentially prevent some of those at-
tacks. In some ways, this model resembles other, classical models of multi-level in-
tegrity [Biba, 1977]—every process and object! is tagged with an integrity label, the
labels are ordered by levels of trust, and access control is enforced across trust bound-
aries. In other ways, it is radically different. While Windows Vista’s access control
prevents low-integrity processes from writing to high-integrity objects, it does not pre-
vent high-integrity processes from reading low-integrity objects. Further, Windows
Vista’s integrity labels are dynamic—labels of processes and objects can change at run
time. This model allows processes at different trust levels to communicate, and allows
dynamic access control. At the same time, it admits various information-flow attacks.
Fortunately, it turns out that such attacks require the participation of trusted processes,
and can be eliminated by code analysis.

In this chapter, we provide a formalization of Windows Vista’s integrity model. In
particular, we specify an information-flow property called data-flow integrity (DFI), and

present a static type system that can enforce DFI on Windows Vista.? Roughly, DFI

1In this context, an object may be a file, a channel, a memory location, or indeed any reference to data
or executable code.
2[Castro et al., 2006] specifies and enforces a different property by the same name; see Chapter 1.
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prevents any flow of data from the environment to objects whose contents are trusted.
Our type system relies on Windows Vista’s run-time access checks for soundness. The
key idea in the type system is to maintain a static lower-bound label S for each object.
While the dynamic label of an object can change at run time, the type system ensures
that it never goes below S, and the object never contains a value that flows from a label
lower than S. The label S is declared by the programmer. Typechecking requires no

other annotations, and can be mechanized by an efficient algorithm.

By design, DFI does not prevent implicit flows [Denning and Denning, 1977]. Thus
DFI is weaker than noninterference [Goguen and Meseguer, 1982]. Unfortunately, it
is difficult to enforce noninterference on a commercial operating system such as Win-
dows Vista. Implicit flows abound in such systems. Such flows arise out of frequent,
necessary interactions between trusted code and the environment. They also arise out
of covert control channels which, given the scope of such systems, are impossible to
model sufficiently. Instead, DFI focuses on explicit flows [Denning and Denning, 1977].
This focus buys a reasonable compromise—DFI prevents a definite class of attacks, and
can be enforced efficiently on Windows Vista. Several successful tools for malware de-
tection follow this approach [Castro et al., 2006; Yin et al., 2007; Suh et al., 2004; Vogt
et al., 2007; Clause et al., 2007; Wall et al., 1996], and similar ideas guide the design of
some recent operating systems [Efstathopoulos et al., 2005; Zeldovich et al., 2006].

Our definition of DFI is dual to standard definitions of secrecy based on explicit
flows—while secrecy prevents sensitive values from flowing to the environment, DFI
prevents the flow of values from the environment to sensitive objects. Since there
is a rich literature on type-based and logic-based analysis for such definitions of se-
crecy [Cardelli et al., 2005; Abadi and Blanchet, 2005; Tse and Zdancewic, 2004; Chaud-
huri, 2006], it makes sense to adapt this analysis for DFI. Such an adaptation works,
but requires some care. Unlike secrecy, DFI cannot be enforced in practice without
run-time checks. In particular, access checks play a crucial role by restricting untrusted
processes that may run in the environment. Further, while secrecy prevents any flow of
high-security information to the environment, DFI allows certain flows of low-security
information from the environment. We need to introduce new technical devices for

this purpose, including a technique based on explicit substitution [Abadi et al., 1990] to
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track precise sources of values. This device is required not only to specify DFI precisely
but also to prove that our type system enforces DFL

We design a simple higher-order process calculus that models Windows Vista’s se-
curity environment [Howard and LeBlanc, 2007; Conover, 2007; Russinovich, 2007].
(The design of this language is discussed in detail in Chapter 8.) In this language,
processes can fork new processes, create new objects, change the labels of processes
and objects, and read, write, and execute objects in exactly the same ways as Windows
Vista allows. Our type system exploits Windows Vista’s run-time access checks to en-
force DFI, and can recognize many correct programs. In particular, it encodes a more
precise discipline than the one studied in Chapter 3. At the same time, our type system
subsumes Windows Vista’s execution controls, allowing them to be optimized away.

To sum up, we make the following main contributions in this chapter:

e We propose DFI as a practical multi-level integrity property to enforce in the
setting of Windows Vista, and formalize DFI using a semantic technique based

on explicit substitution.

e We present a type system that can enforce DFI on Windows Vista. Typechecking
is efficient, and guarantees DFI regardless of what untrusted code runs in the

environment.

e We show that while most of Windows Vista’s run-time access checks are required
to enforce DFI, Windows Vista’s execution controls are not necessary and can be

optimized away.

The rest of this chapter is organized as follows. In Section 6.1, we introduce Win-
dows Vista’s security environment, and show how DFI may be violated in that envi-
ronment. In Section 6.2, we design a calculus that models Windows Vista’s security
environment, equip the calculus with a semantics based on explicit substitution, and
formalize DFI in the calculus. In Section 6.3, we present a system of integrity types
and effects for this calculus. Finally, in Section 6.4, we prove soundness and other
properties of typing. Supplementary material, including proof details and an effi-
cient typechecking algorithm, appear in [Chaudhuri et al., 2007] available online at
http://arxiv.org/abs/0803.3230.
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6.1 Windows Vista’s integrity model

In this section, we provide a brief overview of Windows Vista’s integrity model.® In
particular, we introduce Windows Vista’s security environment [Howard and LeBlanc,
2007; Conover, 2007; Russinovich, 2007], and show how DFI may be violated in that
environment. We observe that such violations require the participation of trusted pro-
cesses. Intuitively, the responsibility of security lies with trusted users. Our type sys-

tem provides a way for such users to manage this responsibility automatically.

6.1.1 Windows Vista’s security environment

In Windows Vista, every process and object is tagged with a dynamic integrity label.
We indicate such labels in brackets (_) below. Labels are related by a total order C,
meaning “at most as trusted as”. Let a range over processes, w over objects, and P, O
over labels. Processes can fork new processes, create new objects, change the labels
of processes and objects, and read, write, and execute objects. In particular, a process

with label P can:
(i) fork a new process a(P);
(ii) create a new object w(P);
(iii) lower its own label;
(iv) change the label of an object w(O) to O"iff OO’ C P;
(v) read an object w(O);
(vi) write an object w(0O) iff O C P;
(vii) execute an object w(O) by lowering its own label to P 11 0.

Rules (i) and (ii) are straightforward. Rule (iii) is guided by the principle of least priv-
ilege [Saltzer and Schroeder, 1975; Lampson, 1974], and is used in Windows Vista to

implement a feature called user access control (UAC) [Russinovich, 2007; Windows Vista

3This overview elaborates on the one in Chapter 3; as noted there, Windows Vista further implements
a discretionary access control model, which we ignore in this chapter.
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Tech Center]. This feature lets users execute commands with lower privileges when
appropriate. For example, when a system administrator opens a new shell (typically
with label High), a new process is forked with label Medium; the shell is then run by the
new process. When an Internet browser is opened, it is always run by a new process
whose label is lowered to Low; thus any code that gets run by the browser gets the
label Low—by Rule (i)—and any file that is downloaded by the browser gets the label
Low—by Rule (ii).

Rules (iv) and (v) facilitate dynamic access control and communication across trust
boundaries, but can be dangerous if not used carefully. (We show some attacks to il-
lustrate this point below.) In particular, Rule (iv) allows trusted processes to protect
unprotected objects by raising their labels. (Users are required to confirm such pro-
tections via the user interface.) Moreover, Rule (v) allows processes to read objects at
lower trust levels.

Rule (vi) protects objects from being written by processes at lower trust levels. Thus,
for example, untrusted code forked by a browser cannot touch local user files. User
code cannot modify registry keys protected by a system administrator. Rule (vii) is
part of UAC; it prevents users from accidentally launching less trusted executables
with higher privileges. For example, a virus downloaded from the Internet cannot run

in a trusted user shell. Neither can system code dynamically link user libraries.

6.1.2 Some attacks

We now show some (unsurprising) attacks that remain possible in this environment.

Basically, these attacks exploit Rules (iv) and (v) to bypass Rules (vi) and (vii).

(Write and copy) By Rule (vi), a(P) cannot modify w(O) if P = O. However, a(P) can
modify some object w’(P), and then some process b(O) can copy w’(P)’s content

to w(0). Thus, Rule (iv) can be exploited to bypass Rule (vi).

(Copy and execute) By Rule (vii), a(P) cannot execute w(O) at P if O C P. However,
a(P) can copy w(0O)’s content to some object w’(P) and then execute w’(P). Thus,

Rule (iv) can be exploited to bypass Rule (vii).
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(Unprotect, write, and protect) By Rule (vi), a(P) cannot modify w(0O) if P — O. How-
ever, some process b(0) can unprotect w(O) to w(P), then a(P) can modify w(P),
and then b(0O) can protect w(P) back to w(O). Thus, Rule (v) can be exploited to

bypass Rule (vi).

(Copy, protect, and execute) By Rule (vii), a(P) cannot execute w(O) at P if O C P.
However, some process b(O) can copy w(O)’s content to an object w’(0), and
then a(P) can protect w’(0) to «w'(P) and execute w'(P). Thus, Rules (iv) and (v)
can be exploited to bypass Rule (vii).

All of these attacks can violate DFI; however, we observe that access control forces

the participation of a trusted process (one with the higher label) in any such attack.

e In (Write and copy) or (Unprotect, write, and protect), suppose that the contents
of w(0) are trusted, and P is the label of untrusted code, with P C O. Then data
can flow from a(P) to w(0O), violating DFI, as above. Fortunately, some process

b(O) can be blamed here.

¢ In (Copy and execute) or (Copy, protect, and execute), suppose that the contents
of some object w” (P) are trusted, and O is the label of untrusted code, with O C P.
Then data can flow from some process b(0) to w” (P), violating DFI, as follows:
b(0O) packs code to modify w” (P) and writes the code to w(0), and a(P) unpacks

and executes that code at P, as above. Fortunately, a(P) can be blamed here.

Our type system can eliminate such attacks by restricting trusted processes (Section
6.3). (The type system does not restrict untrusted code running in the environment.)

7 "

Conceptually, this guarantee can be cast as Wadler and Findler’s “well-typed programs
can’t be blamed” [Wadler and Findler, 2007]. We rely on the fact that a trusted process
can be blamed for any violation of DFI; it follows that if all trusted processes are well-

typed, there cannot be any violation of DFI.

6.2 A calculus for analyzing DFI on Windows Vista

To formalize our approach, we design a simple higher-order process calculus that

models Windows Vista’s security environment. We introduce the syntax and informal
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semantics, and present some examples of programs and attacks in the language. We

then present a formal semantics, guided by a precise characterization of explicit flows.

6.2.1 Syntax and informal semantics

Several simplifications appear in the syntax of the language. We describe processes
by their code. We use variables as object names, and let objects contain packed code
or names of other objects. We enforce a mild syntactic restriction on nested packing
(see below), which makes typechecking significantly more efficient [Chaudhuri et al.,

2007]. Finally, we elide conditionals—for our purposes, the code
if condition then a else b

can be conservatively analyzed by composing a and b in parallel. (DFI is a safety prop-
erty in the sense of [Alpern and Schneider, 1985], and the safety of the latter code im-
plies that of the former. We discuss this point in more detail in Section 6.2.3.)

Values include variables, unit, and packed expressions.* Expressions include those
for forking new processes, creating new objects, changing the labels of processes and
objects, and reading, writing, and executing objects. They also include standard ex-
pressions for evaluation and returning results (see Gordon and Hankin’s concurrent

object calculus [Gordon and Hankin, 1998]).

a,b = process
arb fork
t action
letx =ainb evaluation
u value
U,0 = value
r result
pack(f) packed expression

4Packed expressions may be viewed as “thunks” of executable code, that must be unpacked to allow
further evaluation. In particular, packed expressions can be written to objects, and unpacked by executing
those objects; such objects model “binaries” in the language.
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f,gu= expression

frg fork

t action

letx =fing evaluation

r result
to= action

new(x #S) create object

[P]a change process label

(0) w change object label

lw read object

w:=x write object

exec w execute object
ri= result

XY,Z,...,W variable

unit unit

Syntactically, we distinguish between processes and expressions: while every ex-
pression is a process, not every process is an expression. For example, pack(f) is
not an expression, while [P] pack(f) is. Only expressions can be packed. In partic-
ular, a process cannot be of the form pack(pack(...)). This distinction does not re-
duce expressivity, since such a process can be expressed in the language as let x =
pack(...) in pack(x). The benefits of this distinction become clear in Section 6.4, where
we discuss an algorithm for typechecking. However, for the bulk of the chapter,
the reader may overlook this distinction—neither the semantics nor the type system
depend on it.

Processes have the following informal meanings.

e a [ bforks a new process a with the current process label and continues as b (see
Rule (i)).

e new(x #S) creates a new object w with the current process label, initializes w
with x, and returns w (see Rule (ii)); the annotation S is used by the type system

(Section 6.3) and has no run-time significance.
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[P] a changes the current process label to P and continues as 4; it blocks if the

current process label is lower than P (see Rule (iii)).

(O) w changes w'’s label to O and returns unit; it blocks if w is not bound to an
object at run time, or the current process label is lower than w’s label or O (see

Rule (iv)).

'w returns the value stored in w; it blocks if w is not bound to an object at run

time (see Rule (v)).

w = x writes the value x to w and returns unit; it blocks if w is not bound to an

object at run time, or if the current process label is lower than w’s label (see Rule

(vi)).

exec w unpacks the value stored in w to a process f, lowers the current process
label with w’s label, and executes f; it blocks if w is not bound to an object at run

time or if the value stored in w is not a packed expression (see Rule (vii)).

let x = ain b executes 4, binds the value returned by a to x, and continues as b

with x bound.

u returns itself.

6.2.2 Programming examples

We now consider some programming examples in the language. We assume that

Low, Medium, High, and T are labels, ordered in the obvious way. We assume that the

top-level process always runs with T, which is the most trusted label.

Example 6.2.1. Suppose that a Medium user opens an Internet browser ie.exe with Low

privileges (recall UAC), and clicks on a url that contains virus.exe; the virus contains

code to overwrite the command shell executable cmd.exe, which has label T.

p1 = let cmd.exe = new(... # T) in
let url = [Low] new(... # Low) in

let binIE = pack(let x = !url in exec x) in
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let ie.exe = new(binIE# T)in

[Medium] (... T [Low| exec ie.exe) I’

[Low] (let binVirus = pack(cmd.exe :=...) in
let virus.exe = new(binVirus # Low) in

url := virus.exe I’

This code may eventually reduce to

q1 £ [Medium] (... " [Low| cmd.exe :=...) T

[Low] (...)

However, at this point the write to cmd.exe blocks due to access control. (Recall that a

process with label Low cannot write to an object with label T.)

Example 6.2.2. Next, consider the following attack, based on the (Copy, protect, and
execute) attack in Section 6.1.2. A Medium user downloads a virus from the Internet
that contains code to erase the user’s home directory (home), and saves it by default in

setup.exe. A High administrator protects and executes setup.exe.

p2 = leturl = [Low] new(... # Low) in
let setup.exe = [Low] new(... # Low) in
let binIE = pack(letz = lurlin
let x = !zin setup.exe := x) in

let ie.exe = new(binIE# T)in
let home = [Medium] new(. .. # Medium) in
let empty = unitin
[High] (...r

let - = (High) setup.exe in

exec setup.exe) [

[Medium] (... I [Low] exec ie.exe) T
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[Low] (let binVirus = pack(home := empty) in
let virus.exe = new(binVirus # Low) in

url := virus.exe I’

)

This code may eventually reduce to

g2 = [High] (... T home := empty) I’
[Medium] (...) 7
[Low] (...)

The user’s home directory may be erased at this point. (Recall that access control does

not prevent a process with label High from writing to an object with label Medium.)
Here the administrator is required to confirm the protection of setup.exe via the

user interface. Our type system can detect that this protection is dangerous, and warn

the administrator.

6.2.3 An overview of DFI

Informally, DFI requires that objects whose contents are trusted at some label S
never contain values that flow from labels lower than S. In Example 6.2.1, we trust
the contents of cmd.exe at label T, as declared by the static annotation T. DFI is not
violated in this example, since access control prevents the flow of data from Low to
cmd.exe. On the other hand, in Example 6.2.2, we trust the contents of home at label
Medium. DFI is violated in this example, since the value empty flows from Low to home.

By design, DFl is a safety property [Alpern and Schneider, 1985]—it can be defined
as a set of behaviors such that for any behavior that is not in that set, there is some finite
prefix of that behavior that is not in that set. Thus, DFI considers only explicit flows of
data. Denning and Denning characterize explicit flows [Denning and Denning, 1977]
roughly as follows: a flow of x is explicit if and only if the flow depends abstractly on x
(that is, it depends on the existence of x, but not on the value x). Thus, for example, the

violation of DFI in Example 6.2.2 does not depend on the value empty—any other value
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causes the same violation. Conversely, empty is not dangerous in itself. Consider the
reduced process g, in Example 6.2.2. Without any knowledge of execution history, we
cannot conclude that DFI is violated in q,. Indeed, it is perfectly legitimate for a High-
process to execute the code home := empty intentionally, say as part of administration.
However, in Example 6.2.2, we know that this code is executed by unpacking some
code designed by a Low-process. The violation of DFI is due to this history.

It follows that in order to detect violations of DFI, we must distinguish between
various instances of a value, and track the sources of those instances during execution.
We maintain this execution history in the operational semantics (Section 6.2.4), by a
technique based on explicit substitution [Abadi et al., 1990].

Before we move on, let us clarify the role of control constructs, such as conditionals,
in DFIL. In general, conditionals can cause implicit flows [Denning and Denning, 1977];
a flow of x can depend on the value x if x appears in the condition of some code that

causes that flow. For example, the code
if x = zero then w := zero else w := one

causes an implicit flow of x to w that depends on the value x. DFI abstracts away this
dependency by interpreting the code if condition then a else b as the parallel compo-
sition of 2 and b. Recall that DFI is a safety property. Following [Lamport, 1977], the
safety of this parallel composition can be expressed by the logical formula F £ F, A F;,
where F, is the formula that expresses the safety of a, and F, is the formula that ex-
presses the safety of b. Likewise, the safety of if condition then a else b can be ex-
pressed by the formula F/ £ (condition = F,;) A (-condition = F,). Clearly, we
have F = F/, so that the code if condition then a else b is a refinement of the parallel
composition of a and b. It is well-known that any safety property is preserved under
refinement [Lamport, 1977], so our abstraction is correct.

But implicit flows are of serious concern in many applications; one may wonder
whether focusing on explicit flows is at all desirable. Indeed, consider the code above;
the implicit flow from x to w violates noninterference, if x is an untrusted value and

the contents of w are meant to be trusted. In contrast, DFI is not violated in the code
w :=zero " w := one
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if zero and one are trusted values. Clearly, DFI ignores the implicit flow from x to w.
But this may be fine—DFI can still guarantee that “the contents of w are trusted values

(either zero or one)”. This is certainly a non-trivial guarantee; for example, the code
w:i=x

does not maintain this invariant, since x may be an arbitrary value—and as expected,

DFl is violated in this code.

6.2.4 An operational semantics that tracks explicit flows

We now present a chemical-style operational semantics for the language, that tracks

explicit flows.> We begin by extending the syntax with some auxiliary forms.

a,b= process

source process

w S, x store

(vx/u@P)a explicit substitution
W= substituted value

u value

new(x #9S) object initialization

The process w . x asserts that the object w contains x and is protected with label O. A
key feature of the semantics is that objects store values “by instance”—only variables
may appear in stores. We use explicit substitution to track and distinguish between the
sources of various instances of a substituted value. Specifically, the process (vx/u@P)a
creates a fresh variable x, records that x is bound to y by a process with label P, and
continues as a with x bound. Here x is an instance of y and P is the source of x. If y is
a value, then this process is behaviorally equivalent to 2 with x substituted by u. For
example, in Example 6.2.2 the source of the instance of empty in binVirus is Low; this

fact is described by rewriting the process g, as

(vx/empty@Low) [High] (... home:=x)TI ...

5This presentation is particularly convenient for defining and proving DFI; a concrete implementation
of the language may rely on a lighter semantics that does not track explicit flows.
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DFI prevents this particular instance (x) of empty from being written to home; but it
allows other instances whose sources are at least as trusted as Medium. The rewriting
follows a structural equivalence rule (STRUCT BIND), explained later in the section.

While explicit substitution has been previously used in language implementations,
we seem to be the first to adapt this device to track data flow in a concurrent language.
In particular, we use explicit substitution both to specify DFI (in Definitions 6.2.3 and
6.2.4) and to verify it statically (in proofs of Theorems 6.4.4 and 6.4.7). We defer a more
detailed discussion on this technique to Section ??.

We call sets of the form {x1/u1@P1, ..., xx/ 1y @Py} substitution environments.

Definition 6.2.3 (Explicit flows). A variable x flows from a label P or lower in a substitution
environment o, written x ¥ P, if x/u@P’" € o for some y and P’ such that either P’ C P, or

u is a variable and (inductively) p VP

In other words, x flows from a label P or lower if x is an instance of a value substi-
tuted at P or lower. In Definition 6.2.4 below, we formalize DFI as a property of objects,
as follows: an object is protected from label L if it never contains instances that flow from L or
lower. We define o (x) to be the set of values in ¢ that x is an instance of: x € ¢(x), and
if (inductively) y € o(x) and y/u@ _ € o for some y and u, then u € o(x). The opera-
tional semantics ensures that substitution environments accurately associate instances
of values with their run-time sources.

We now present rules for local reduction, structural equivalence, and global reduc-
tion. Reductions are of the form a —% b, meaning that “process a may reduce to
process b with label P in substitution environment ¢”. Structural equivalences are of
the form a = b, meaning that “process a may be rewritten as process b”. The notions of
free and bound variables (fv and bv) are standard. We write x < v if o(x) N o (y) # @,

that is, there is a value that both x and y are instances of.

. Po
Local reduction a —— b

(REDUCT EVALUATE) (REDUCT NEW)

letx = uina % (vx/u@P)a new(x #S) LEA (vw/new(x #S)@P) (w Poxr w)
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(REDUCT READ) (REDUCT WRITE)

w=w wZw OCP
wxr 1w 2% w0y wS P =2 % w0 xr unit
(REDUCT EXECUTE) (REDUCT UN/PROTECT)
wZw  pack(f) €c(x) P =PMoO wZw ouocCP
w S 2P exec ' 25 ngr’[P’]f wrgxf’<0/>w’mngf’unit

We first look at the local reduction rules. In (REDUCT EVALUATE), a substitu-
tion binds x to the intermediate value u and associates x with its run-time source P.
(REDUCT NEW) creates a new store denoted by a fresh variable w, initializes the store,
and returns w; a substitution binds w to the initialization of the new object and as-
sociates w with its run-time source P. The value x and the trust annotation S in the
initialization are used by the type system (Section 6.3). The remaining local reduction
rules describe reactions with a store, following the informal semantics.

Next, we define evaluation contexts [Felleisen, 1988]. An evaluation context is of
the form &p,,, and contains a hole of the form ep/.,/; the context yields a process that
executes with label P in substitution environment ¢, if the hole is plugged by a process

that executes with label P’ in substitution environment ¢’.

Epy 1= evaluation context
b, hole
letx =Epyinb sequential evaluation
Epo D fork left
ar Epy fork right
(vx/p@P") Ep.(1/uapiue explicit substitution
[Pl &y (PPCP) lowering of process label

Evaluation can proceed sequentially inside let processes, and in parallel under forks
[Gordon and Hankin, 1998]; it can also proceed under explicit substitutions and low-
ering of process labels. In particular, note how evaluation contexts build substitution
environments from explicit substitutions, and labels from changes of process labels.

We denote by Ep,,[a]pr,» the process obtained by plugging the hole ep/., in £p., with a.
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Structural equivalence a = b

(STRUCT BIND) (STRUCT RESULT)
Eplaf{x/ul]p o = Ep[(vx/u@P') a]p: o [P] u = (vx/u@P) x
(STRUCT SUBSTITUTION)
x ¢ fv(Epy) Ubv(Epy) () Nbv(Epy) =0

SP;O[[(VX/V@P”) a]] Plo = (VX/V@PH) gP,{x/y@P”}Ua[[a]] P’o’
(STRUCT FORK)

(STRUCT STORE) (STRUCT EQUIV)
fv(a) Nbv(Ep,) = O o o

[Pl(w—=xra)=ww—xr [Pla = is an equivalence

IEP;U[[‘Z r b]]P,v/ =ar EP,‘(T[[b]]P,(T/ .
. P;o
Global reduction a — b
' (REDUCT CONTEXT) (REDUCT CONGRUENCE) '
PRy a=d %y v=b
P; P;
Epolalpror =% Epobprr a—% b

Next, we look at the structural equivalence and global reduction rules. In (STRUCT
BIND), a{x/u} is the process obtained from a by the usual capture-avoiding substitu-
tion of x by u. The rule states that explicit substitution may invert usual substitution
to create instances as required. In particular, variables that appear in packed code can
be associated with the label of the process that packs that code, even though those
variables may be bound later—by (REDUCT EVALUATE)—when that code is eventually
unpacked at some other label. For example, the instance of empty in binVirus may be
correctly associated with Low (the label at which it is packed) instead of High (the label
at which it is unpacked). In combination, the rules (REDUCT EVALUATE) and (STRUCT
BIND) track precise sources of values by explicit substitution. By (STRUCT RESULT), the
process label of a result can be captured in an explicit substitution and eliminated.

By (STRUCT SUBSTITUTION), substitutions can float across contexts under stan-
dard scoping restrictions. By (STRUCT FORK), forked processes can float across con-
texts [Gordon and Hankin, 1998], but must remain under the same process label. By
(STRUCT STORE), stores can be shared across further contexts.

Reduction is extended with contexts and structural equivalence in the natural way.

Finally, we formalize DFI in our language, as promised.
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Definition 6.2.4 (DFI). The object w is protected from the label L by process a if there is no
process b, substitution environment o, and instance x such that a " [L] b 12 Erplw =

%
X]tsand x ¥ L.

For example, cmd.exe is protected from Low by (the trusted part of) p;; but home is
not protected from Low by (the trusted part of) po, since p» L2 &1 z[home = x|

and x ¥ Low for o = {x/empty@Low} and a suitable £ .

6.3 A type system to enforce DFI

We now show a type system to enforce DFI in the language. (The formal protection
guarantee for well-typed code appears in Section 6.4.) We begin by introducing types
and typing judgments. We then present typing rules and informally explain their prop-
erties. Finally, we consider some examples of typechecking. An efficient algorithm for

typechecking is outlined in [Chaudhuri et al., 2007].

6.3.1 Types and effects

The core grammar of types is shown below. Here effects are simply labels; these

labels belong to the same ordering C as in the operational semantics.

T.= type
Obj(T) object
Vp. Bin(T) packed code
Unit unit

T = static approximation
(= type and effect

e The type Obj(7°) is given to an object that contains values of type T. Such con-
tents may not flow from labels lower than S; in other words, S indicates the trust

on the contents of this object. DFI follows from the soundness of object types.

e The type Vp. Bin(7F) is given to packed code that can be run with label P. Val-

ues returned by the code must be of type T and may not flow from labels lower
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than E. In fact, our type system admits a subtyping rule that allows such code to

be run in a typesafe manner with any label that is at most P.
o The effect E is given to a value that does not flow from labels lower than E.

When creating an object, the programmer declares the trust on the contents of that
object. Roughly, an object returned by new(_#S) gets a type Obj(_°). For example,
in Examples 6.2.1 and 6.2.2, we declare the trust T on the contents of cmd.exe and the
trust Medium on the contents of home.

A typing environment I' contains typing hypotheses of the form x : T. We assume
that any variable has at most one typing hypothesis in I, and define dom(T) as the
set of variables that have typing hypotheses in I'. A typing judgment is of the form
I' Fp a : T, where P is the label of the process a, T is the type and effect of values
returned by 4, and £v(a) C dom(T).

6.3.2 Core typing rules

We now present typing rules that enforce the core static discipline required for our
protection guarantee. Some of these rules have side conditions that involve a predicate
* on labels. These conditions are ignored in our first reading of these rules. (The
predicate x is true everywhere in the absence of a special label L, introduced in Section
6.3.4.) One of the rules has a condition that involves a predicate L] on expressions; we

introduce that predicate in the discussion below.

Core typing judgments ' Fpa: T

(TYP VARIABLE) (TYP PACK)

TYP UNIT
( ) x:tEer Thp f:T  Of
T bp unit : Unit” S EEEEE——
[Fpx:tEP T Fp pack(f) : Vpr. Bin(T)P
(TYP FORK) (TYP LIMIT)
Fl—pa:, rl—pb:T F}—p/a:T
rl—pﬂF}bZT F"p[Pl]ﬂlT
(TYP EVALUATE) (TYP SUBSTITUTE)
IF'tpa: T T,x:T'Fpb:T Thp p: T I,x:T'Fpa:T
Itpletx=ainb: T Ttp (vx/pu@P")a: T
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(TYP STORE) (TYP NEW)
{w:0bj(t°),x: 5} CT SCOME FFpx:t8  SCE

Thpwx: P T Fp new(x #S) : Obj(t5)P

(TYP UN/PROTECT)
IFpw:0bj(S)E  SCO
I'+p (O) w : Unit"

*P = xE

(TYP WRITE)
Ttpw:Obj(t%)F  Thpx:7F  SCFE

*P = xE
Frpw:i=x: Unit"
(TYP READ)
w:0bj(t°)Eer
*(PMS) = «E
I'kp lw: 7SMP
(TYP EXECUTE)
w: Obj((Vp.Bin(tF))$)EeT PCPMS
*P = xE

!
Thpexecw: 8P

The typing rules preserve several invariants.
(1) Code that runs with a label P cannot return values that have effects higher than P.
(2) The contents of an object of type Obj(_°) cannot have effects lower than S.
(3) The dynamic label that protects an object of type Obj(_°) cannot be lower than S.
(4) An object of type Obj(_>) cannot be created at a label lower than S.

(5) Packed code of type Vp. Bin(_) must remain well-typed when unpacked at any

label lower than P.

Invariant (1) follows from our interpretation of effects. To preserve this invariant in
(TYP VARIABLE), for example, the effect of x at P is obtained by lowering x’s effect in
the typing environment with P.

In (TYP STORE), typechecking is independent of the process label, that is, a store is
well-typed if and only if it is so at any process label; recall that by (STRUCT STORE)
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stores can float across contexts, and typing must be preserved by structural equiva-
lence. Further, (TYP STORE) introduces Invariants (2) and (3). Invariant (2) follows from
our interpretation of static trust annotations. To preserve this invariant we require In-
variant (3), which ensures that access control prevents code running with labels less
trusted than S from writing to objects whose contents are trusted at S.

By (TYP NEW), the effect E of the initial content of a new object cannot be lower than
S. Recall that by (REDUCT NEW), the new object is protected with the process label
P; since P 1 E by Invariant (1), we have P 3 S, so that both Invariants (2) and (3)
are preserved. Conversely, if P C S then the process does not typecheck; Invariant (4)
follows.

Let us now look carefully at the other rules relevant to Invariants (2) and (3); these
rules—combined with access control—are the crux of enforcing DFI. (TYP WRITE) pre-
serves Invariant (2), restricting trusted code from writing values to w that may flow
from labels lower than S. (Such code may not be restricted by access control.) Con-
versely, access control prevents code with labels lower than S from writing to w, since
by Invariant (3), w’s label is at least as trusted as S. (TYP UN/PROTECT) preserves In-
variant (3), allowing w’s label to be either raised or lowered without falling below S.
In (TYP READ), the effect of a value read from w at P is approximated by S—the least
trusted label from which w’s contents may flow—and further lowered with P to pre-
serve Invariant (1).

In (TYP PACK), packing code requires work akin to proof-carrying code [Necula,
1997]. Type safety for the code is proved and “carried” in its type Vp:. Bin(T), inde-
pendently of the current process label. Specifically, it is proved that when the packed
code is unpacked by a process with label P/, the value of executing that code has type
and effect T. In Section 6.4, we show that such a proof in fact allows the packed code to
be unpacked by any process with label P C P/, and the type and effect of the value of
executing that code can be related to T (Invariant (5)). This invariant is key to decidable
and efficient typechecking [Chaudhuri et al., 2007]. Of course, code may be packed to
run only at specific process labels, by requiring the appropriate label changes.

Preserving Invariant (5) entails, in particular, preserving Invariant (4) at all labels

P C P’. Since a new expression that is not guarded by a change of the process label
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may be run with any label P, that expression must place the least possible trust on the

contents of the object it creates. This condition is enforced by predicate LI

Onew(x#S) = VP.SCP

O(frg = Ofalg

Oletx = fing) = OfADg
O(...) & true

(TYP EXECUTE) relies on Invariant (5); further, it checks that the label at which the
code is unpacked (P) is at most as trusted as the label at which the code may have
been packed (approximated by S). This check prevents privilege escalation—code that
would perhaps block if run with a lower label cannot be packed to run with a higher
label. For example, recall that in Example 6.2.2, the code binVirus is packed at Low
and then copied into setup.exe. While a High-process can legitimately execute home :=
empty (so that the code is typed and is not blocked by access control), it should not
run that code by unpacking binVirus from setup.exe. The type system prevents this
violation. Let setup.exe be of type Obj((V_. Bin(_))%). Then (TYP STORE) requires
that S © Low, and (TYP EXECUTE) requires that High T S (contradiction).

Because we do not maintain an upper bound on the dynamic label of an executable,
we cannot rely on the lowering of the process label in (REDUCT EXECUTE) to prevent
privilege escalation. (While it is possible to extend our type system to maintain such
upper bounds, such an extension does not let us typecheck any more correct programs
than we already do.) In Section 6.4, we show that the lowering of the process label can

in fact be safely eliminated.

In (TYP EVALUATE), typing proceeds sequentially, propagating the type and effect
of the intermediate process to the continuation. (TYP SUBSTITUTION) is similar, except
that the substituted value is typed under the process label recorded in the substitution,
rather than under the current process label. In (TYP LIMIT), the continuation is typed
under the changed process label. In (TYP FORK), the forked process is typed under the

current process label.
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6.3.3 Typing rules for stuck code

While the rules above rely on access control for soundness, they do not exploit run-
time protection provided by access control to typecheck more programs. For example,
the reduced process g1 in Example 6.2.1 cannot yet be typed, although we have checked
that DFI is not violated in g;. Below, we introduce stuck typing to identify processes that
provably block by access control at run time. Stuck typing allows us to soundly type
more programs by composition. (The general principle that is followed here is that
narrowing the set of possible execution paths improves the precision of the analysis.)
This powerful technique of combining static typing and dynamic access control for
run-time protection is quite close to hybrid typechecking [Flanagan, 2006]. We defer a
more detailed discussion of this technique to Section ??2.

We introduce the static approximation Stuck for processes that do not return values,

but may have side effects.

T := static approximation
code

Stuck stuck process

We now present rules for stuck-typing. As before, in our first reading of these rules we

ignore the side conditions (which involve the predicate x).

Stuck typing judgments I' Fp a : Stuck

(TYP WRITE STUCK)
(TYP ESCALATE STUCK) w - Obi(fS)E cT PCS

PCP *E
I'Fp w:=x:Stuck

I'Fp [P]a: Stuck

(TYP UN/PROTECT STUCK)
w:0bj(>)Eer PCSUO

I'tp (O) w : Stuck

*E

(TYP SUBSUMPTION STUCK-I) (TYP SUBSUMPTION STUCK-II)
_:Stuck €T I'tkpa: Stuck

I'tp a: Stuck F'tpa:T
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(TYP WRITE STUCK) identifies code that tries to write to an object whose static trust
annotation S is higher than the current process label P. By Invariant (3), the label O
that protects the object must be at least as high as S; thus P © O and the code must
block at run time due to access control. For example, let cmd.exe be of type Obj(_") in
Example 6.2.1. By (TYP WRITE STUCK), the code g; is well-typed since Low C T. (TyP
UN/PROTECT STUCK) is similar to (TYP WRITE STUCK); it further identifies code that
tries to raise the label of an object beyond the current process label. (TYP ESCALATE
STUCK) identifies code that tries to raise the current process label. All such processes
block at run time due to access control.

By (TYP SUBSUMPTION STUCK-I), processes that are typed under stuck hypotheses
are considered stuck as well. For example, this rule combines with (TYP EVALUATE)
to trivially type a continuation b if the intermediate process a is identified as stuck.
Finally, by (TYP SUBSUMPTION STUCK-II), stuck processes can have any type and effect,

since they cannot return values.

6.3.4 Typing rules for untrusted code

Typing must guarantee protection in arbitrary environments. Since the protection
guarantee is derived via a type preservation theorem, arbitrary untrusted code needs
to be accommodated by the type system. We assume that untrusted code runs with a
special label L, introduced into the total order by assuming L C L for all L. We now

present rules that allow arbitrary interpretation of types at L.

Typing rules for untrusted code

(TYP SUBSUMPTION _L-T) (TYP SUBSUMPTION _L-II)
[,w:0bj(N)EFpa:T Ix: ttpa:T
[,w:0bj(t)Erpa:T Lx:ttbkpa:T

By (TYP SUBSUMPTION _L-I), placing the static trust L on the contents of an object
amounts to assuming any type for those contents as required. By (TYP SUBSUMPTION
L-II), a value that has effect 1 may be assumed to have any type as required. These

rules provide the necessary flexibility for typing any untrusted code using the other
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typing rules. On the other hand, arbitrary subtyping with objects can in general be
unsound—we now need to be careful when typing trusted code. For example, consider
the code

High . .
wr 2 x T wy ﬂvwz r [High] letz =!lwiinz:=u

A High-process reads the name of an object (w») from a Low-object (w1), and then writes
u to that object (wy). DFI is violated if w, has type Obj(_"e") and u flows from Low.
Unfortunately, it turns out that this code can be typed under process label T and typing
hypotheses

wy : Obj (738" T, wy : Obj(Obj(Ty" 81T, x: )&, u - koW
Specifically, the intermediate judgment
z: Obj(Ty ™M), T gy z =

can be derived by adjusting the type of z in the typing environment to Obj(t°") with
(TYP SUBSUMPTION _L-II).

This source of unsoundness is eliminated if some of the effects in our typing rules
are required to be trusted, that is, to be higher than L. Accordingly we introduce the
predicate *, such that for any label L, *L simply means L 73 L. We now revisit the
typing rules earlier in the section and focus on the side conditions in shaded boxes
(which involve ). In some of those conditions, we care about trusted effects only if
the process label is itself trusted. With these conditions, (TYP WRITE) prevents type-
checking the offending write above, since the effect of z in the typing environment is

untrusted.

6.3.5 Compromise

The label L introduced above is an artificial construct to tolerate a degree of “anar-
chy” in the type system. We may want to specify that a certain label (such as Low) acts
like L, i.e., is compromised. The typing judgment I' Fp a : T despite C allows us to type
arbitrary code a running at a compromised label C by assuming that C is the same as L,

i.e., by extending the total order with C C _L (so that all labels that are at most as trusted
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as C collapse to L). We do not consider labels compromised at run time (as in Gordon
and Jeffrey’s type system for conditional secrecy [Gordon and Jeffrey, 2005]); however
we do not anticipate any technical difficulty in including run-time compromise in our

type system.

6.3.6 Typechecking examples

We now show some examples of typechecking.
We begin with the program p, in Example 6.2.2. Recall that DFI is violated in p,.
Suppose that we try to derive the typing judgment

... 1 p2 1 - despite Low

This amounts to deriving ... =1 py : by assuming Low T L.
As a first step, we apply (TYP NEW), (TYP READ), (TYP WRITE), (TYP PACK), and

(TYP EVALUATE), directed by syntax, until we have the following typing environment.

r = ...,
url : Obj(to) T,
setup.exe : Obj(_*")7,
binIE : (V| oy. Bin(Unit)) ',
ie.exe : Obj((Viow. Bin(Unit))")7,
home : Obj(_Medium)T

empty : Unit’

The only complication that may arise is in this step is in deriving an intermediate judg-
ment

U R

Here, we can apply (TYP SUBSUMPTION _L-II) to adjust the typing hypothesis of z to
Obj(_)*, so that (TYP READ) may apply.

After this step, we need to derive a judgment of the form:
[+ [High] (...) ' [Medium] (...) 7 [Low] (...)
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Now, we apply (TYP FORK). We first check that the code [Low] (...) is well-typed. (In

fact, untrusted code is always well-typed, as we show in Section 6.4.) The judgment
I' FLow home := empty : Unit

typechecks by (TYP WRITE STUCK). Thus, by (TYP PACK) and (TYP EVALUATE), we add

the following hypothesis to the typing environment.
binVirus : (V| . Bin(Unit))-"

Let Toinvirus = (Viow- Bin(Unit))". Next, by (TYP NEW) and (TYP EVALUATE), we

add the following hypothesis to the typing environment.

virus.exe : Obj(Tyinvirus)"®"

Finally, the judgment
I,...,virus.exe: Obj(TbiHVirus)L"W Flow url := virus.exe

can be derived by (TYP WRITE), after massaging the typing hypothesis for virus.exe
to the required *°" by (TYP SUBSUMPTION _L-II).
On the other hand, the process [High] (...) does not typecheck; as seen above, an

intermediate judgment
I' Fhigh exec setup.exe : _ (6.1)

cannot be derived, since (TYP EXECUTE) does not apply.

To understand this situation further, let us consider some variations where (TYP
EXECUTE) does apply. Suppose that the code exec z is forked in a new process whose
label is lowered to Low. Then p; typechecks. In particular, the following judgment can

be derived by applying (TYP EXECUTE).
I' Fhigh [Low] exec setup.exe : _ (6.2)

Fortunately, the erasure of home now blocks by access control at run time, so DFI is not

violated.
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Next, suppose that the static annotation for setup.exe is High instead of Low, and
setup.exe is initialized by a process with label High instead of Low. Then p, typechecks.
In particular, the type of setup.exe in I becomes Obj(_High). We need to derive an

intermediate judgment
I,...,x:_ FLow setup.exe := x : Unit (6.3)

This judgment can be derived by applying (TYP WRITE STUCK) instead of (TYP WRITE).
Fortunately, the overwrite of setup.exe now blocks by access control at run time, so
DFl is not violated.

Finally, we sketch how typechecking fails for the violations of DFI described in Sec-
tion 6.1.2.

(Write and copy) Let the type of w be Obj(_>), where O J S 1 P. Then the write to
w(0) does not typecheck, since the value to be written is read from «w’(P) and

thus has some effect E such that E C P, so that E C S.

(Copy and execute) Let the type of w’ be Obj(_%). If S’ C O then the execution of
w'(P) by a(P) does not typecheck, since S’  P. If S 71 O then the write to w’(P)
does not typecheck, since the value to be written is read from w(0O) and thus has

some effect E such that E C O,sothatEC S'.

(Unprotect, write, and protect) Let the type of w be Obj(_°), where O O S 1 P. Then
the unprotection of w(0O) does not typecheck, since P C S.

opy, protect, and execute) Let the type of w’ be _> ), Where C O. en the
(Copy, p d ) Let the type of w' be Obj(_5'), where S’ C O. Then th

execution of w’(P) does not typecheck, since S’ C P.

6.4 Properties of typing

In this section we show several properties of typing, and prove that DFI is preserved
by well-typed code under arbitrary untrusted environments. All proof details appear
in [Chaudhuri et al., 2007].

We begin with the proposition that untrusted code can always be accommodated

by the type system.
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Definition 6.4.1 (Adversary). A C-adversary is any process of the form [C| _ that does not

contain stores, explicit substitutions, and static trust annotations that are higher than C.

Proposition 6.4.2 (Adversary completeness). Let I' be any typing environment and c be

any C-adversary such that £v(c) C dom(T). Then T -+ c : _ despite C.

Proposition 6.4.2 provides a simple way to quantify over arbitrary environments.
By (TYP FORK) the composition of a well-typed process with any such environment
remains well-typed, and thus enjoys all the properties of typing.

Next, we present a monotonicity property of typing that is key to decidable and
efficient typechecking [Chaudhuri et al., 2007].

Proposition 6.4.3 (Monotonicity). The following inference rule is admissible.

Thp f:t8  Of PCP

Thpf:7EP

This rule formalizes Invariant (5), and allows inference of “most general” types for
packed code [Chaudhuri et al., 2007]. Further, it implies an intuitive proof principle—
code that is proved safe to run with higher privileges remains safe to run with lower
privileges, and conversely, code that is proved safe against a more powerful adversary
remains safe against a less powerful adversary.

The key property of typing is that it is preserved by structural equivalence and
reduction. Preservation depends delicately on the design of the typing rules, relying
on the systematic maintenance of typing invariants. We write I' - ¢, meaning that
“the substitution environment ¢ is consistent with the typing environment I'”, if for all

x/u@P € o thereexists Tsuchthatx: T € 'and I't-p p : T.

Theorem 6.4.4 (Preservation of typability). Suppose that T = cand I p a: _. Then
o ifao=bthenT Fpb:
. ifaibthenfl—pb:,.

We now present our formal protection guarantee for well-typed code. We begin by

generalizing the definition of DFI in Section 6.2. In particular, we assume that part of
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the adversary is known and part of it is unknown. This assumption allows the analysis
to exploit any sound typing information that may be obtained from the known part of
the adversary. (As a special case, the adversary may be entirely unknown, of course. In
this case, we recover Definition 6.2.4; see below.) Let () be the set of objects that require
protection from labels L or lower. We let the unknown part of the adversary execute
with some process label C (C L). We say that () is protected if no such adversary can

write any instance that flows from L or lower, to any object in ().

Definition 6.4.5 (Generalized DFI). A set of objects () is protected by code a from label L
despite C (C L) if there is no w € Q), C-adversary c, substitution environment o, and instance

x such that a v ¢ -2+ Erglw = x]7 5 and x vL

For example, we may want to prove that some code protects a set of High-objects
from Medium despite (the compromised label) Low; then we need to show that no in-
stance may flow from Medium or lower to any of those High-objects under any Low-
adversary.

We pick objects that require protection based on their types and effects in the typing

environment.

Definition 6.4.6 (Trusted objects). The set of objects whose contents are trusted beyond the
label L in the typing environment T is {w | w : Obj(>)E € Tand STE O L}.

Suppose that in some typing environment, () is the set of objects whose contents are
trusted beyond label L, and C (C L) is compromised; we guarantee that () is protected

by any well-typed code from L despite C.

Theorem 6.4.7 (Enforcement of strong DFI). Let () be the set of objects whose contents are
trusted beyond L in I'. Suppose that T -1 a : _ despite C, where C T L. Then a protects ()
from L despite C.

In the special case where the adversary is entirely unknown, we simply consider L
and C to be the same label.

The type system further enforces DFI for new objects, as can be verified by applying
Theorem 6.4.4, (TYP SUBSTITUTE), and Theorem 6.4.7.
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Finally, the type system suggests a sound run-time optimization: whenever a well-
typed process executes packed code in a trusted context, the current process label is

already appropriately lowered for execution.

Theorem 6.4.8 (Redundancy of execution control). Suppose that T’ =+ a : _ despite C and
0 5% Erplw O P exec W']p.o such that w = «w' and P 3 C. Then P C O.

It follows that the rule (REDUCT EXECUTE) can be safely optimized as follows.

wZw  pack(f) € o(x)

0] P;o 0]
wrxlexecw —— wxl f

This optimization should not be surprising. Lowering the process label for execution
aims to prevent trusted code from executing untrusted code in trusted contexts; our
core static discipline on trusted code effectively subsumes this run-time control. On
the other hand, write-access control cannot be eliminated by any discipline on trusted
code, since that control is required to restrict untrusted code.

Lastly, typechecking can be efficiently mechanized thanks to Proposition 6.4.3 and

our syntactic restriction on nested packing.

Theorem 6.4.9 (Typechecking). Given a typing environment I' and code a with 1L distinct
labels, the problem of whether there exists T such that T &+ a : T, is decidable in time O (IL|a|),

where |a| is the size of a.

A typechecking algorithm is outlined in [Chaudhuri et al., 2007]. As usual, the
algorithm builds constraints and then checks whether those constraints are satisfiable.
The only complication is due to pack processes, which require “most general” types.

Briefly, the grammar of types is extended with type variables, and a distinguished
label ? is introduced to denote an “unknown” label. Let a typechecking environment A be
a typing environment augmented by simple type constraints, and a label constraint (a
boolean formula with propositions of the form L; = Ly). The following typechecking

judgments are defined, with mutually recursive rules:
o Alpa: T A, where the label constraint in A’ is true.
e A f: T A, where A’ contains a label constraint over ?.
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The rules for A Fp a : T > A’ build simple type constraints in A’, following the original
typing rules. To derive a judgment of the form A Fp pack(f) : > _, we need to derive
ajudgment of the form A - f : _i> _. Therules for A - f : T > A’ build label constraints
from conditions on labels in the original typing rules; here, the implicit (unknown)
process label is taken to be ?. To derive a judgment of the form A - [P]a : _> _, we
need to derive a judgment of the form A p a : _> _. On the other hand, the syntactic
restriction on expressions ensures that we do not need to consider judgments of the
form A F pack(f): _> ..

Solving the simple type constraints built by a judgment of the form A Fp a : _>_
takes time O(]a|); solving the label constraint built by a judgment of the form A |- f :
_> _takes time O(IL|f|). The running time of the typechecking algorithm follows by a

straightforward inductive argument.

148



Part 111

Preserving Security by Correctness
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Overview

In this final part, we focus on advanced techniques for security analysis of com-
puter systems. Specifically, we consider techniques to specify and verify security of
computer systems through correctness of their implementations. These techniques
roughly serve to bridge directions (a) and (b) of our research program. In particu-
lar, we apply these techniques to specify and verify the security of networked storage
systems through the correctness of their implementations of access control.

Indeed, distributed implementations of access control abound in such networked
storage protocols. While such implementations are often accompanied by informal
justifications of their correctness, our formal analysis reveals that their correctness can
be tricky. In particular, we discover several subtleties in a state-of-the-art implementa-
tion based on capabilities, that can undermine correctness under a simple specification
of access control.

We consider both “safety” and “security” for correctness; loosely, safety requires
that an implementation does not introduce unspecified behaviors, and security re-
quires that an implementation preserves the specified behavioral equivalences. We
show that a secure implementation of a static access policy already requires some care
in order to prevent unspecified leaks of information about the access policy. A dy-
namic access policy causes further problems. For instance, if accesses can be dynam-
ically granted then the implementation does not remain secure—it leaks information
about the access policy. If accesses can be dynamically revoked then the implementa-
tion does not even remain safe. We show that a safe implementation is possible if a
clock is introduced in the implementation. A secure implementation is possible if the
specification is accordingly generalized.

Our analysis details how a distributed implementation can be systematically de-
signed from a specification, guided by precise formal goals. While our results are
based on formal criteria, we show how violations of each of those criteria can lead
to real attacks. We distill the key ideas behind those attacks and propose corrections in
terms of useful design principles. Other stateful computations can be distributed just

as well using those principles.
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Chapter 7

Distributed access control

Most file systems rely on access control for protection. Usually, the access checks are
local—the file system maintains an access policy that specifies which principals may
access which files, and any access to a file is guarded by a local check that enforces the
policy for that file. In recent file systems, however, the access checks are distributed,
and access control is implemented via cryptographic techniques.

In this chapter, we reason about the extent to which such access control imple-
mentations preserve the character of local access checks.! In particular, we consider
implementations based on capabilities that appear in protocols for networked storage,
such as the Network-Attached Secure Disks (NASD) and Object-based Storage Devices
(OSD) [Gobioff et al., 1997; Halevi et al., 2005] protocols. Such protocols distribute ac-
cess checks to improve performance. Specifically, when a user requests access to a file,
an access-control server certifies the access decision for that file by providing the user
with an unforgeable capability. Subsequently, the user accesses the file at a storage
server by presenting that capability as proof of access; the storage server verifies that
the capability is authentic before allowing access to the file.

We study the correctness of access control in this setting, under a simple specifica-
tion of local access control. Implementing static access policies already requires some
care; dynamic access policies cause further problems that require considerable analysis

to iron out. We study these cases separately, in detail, in Sections 7.1 and 7.2.

ISince local access checks assume that the underlying file system is trusted, protocols for untrusted
storage such as Plutus (Chapter 2) are outside the scope of this chapter.
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We consider both “safety” and “security” for correctness; loosely, safety requires
that an implementation does not introduce unspecified behaviors, and security re-
quires that an implementation preserves the specified behavioral equivalences. We
introduce these concepts in Section 7.1.

We formalize our results in the applied pi calculus [Abadi and Fournet, 2001]. Ba-
sically, our correctness theorems imply that safety and security properties that are
proved in the specification carry over “for free” in the implementation. Our correct-
ness proofs are built modularly by showing simulations; we develop the necessary
definitions and proof techniques in Section 7.3, and outline the proofs in Section 7.4.

Our analysis details how a distributed implementation can be systematically de-
signed from a specification, guided by precise formal goals. While our results are
based on formal criteria, we show how violations of each of those criteria can lead
to real attacks (Sections 7.1 and 7.2). We distill the key ideas behind those attacks and
propose corrections in terms of useful design principles (Sections 7.1 and 7.2). Other
stateful computations can be distributed just as well using those principles, as shown
in [Chaudhuri, 2008a].

7.1 Implementing static access policies

To warm up, let us focus on implementing access policies that are static. In this
case, a secure implementation appears in [Chaudhuri and Abadi, 2005]. Below, we
systematically reconstruct that implementation, focusing on a detailed analysis of its
correctness. This analysis allows us to distill some basic design principles, marked
with bold R, in preparation for later sections, where we consider the more difficult
problem of implementing dynamic access policies.

Consider the following protocol, NS°, for networked storage.? This protocol cap-
tures the essence of the NASD and OSD protocols [Gobioff et al., 1997; Halevi et al.,

2005]; as we move along, we present more complicated variants of this protocol. Prin-

2In protocol names throughout this chapter, we use the superscript * or ¢ to indicate whether the
access policy in the underlying protocol is “static” or “dynamic”; sometimes, we also use the superscript
T or ~ to indicate whether the underlying protocol is derived by “extending” or “restricting” some other
protocol.
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cipals include users U, V, W, and so on, an access-control server A, and a storage server
S. We assume that A maintains a static access policy F and S maintains a store p. Access
decisions under F follow an arbitrary relation F I~;; op over users U and operations op.
Execution of an operation op under p follows an arbitrary relation pfop] | p'[r] over
next stores p’ and results r. Let K45 be a secret key shared by A and S, and mac be
a function over messages and keys that produces unforgeable message authentication
codes (MACs) [Goldwasser and Bellare, 2001]. We assume that MACs can be decoded
to retrieve their messages. (Usually MACs are explicitly paired with their messages, so

that the decoding is trivial.)

(1) u — A : op
(2) A — U : mac(op,Kus) ifFltyop

2y A — U : error otherwise

B3 V —- § : «x
4 S =V :r if k = mac(op, Kas) and p[op] 4 p'[7]

4) S — V : error otherwise

Here a user U requests A for access to an operation op, and A returns a capability for
op only if F specifies that U may access op. Elsewhere, a user V requests S to execute an
operation by sending a capability «, and S executes the operation only if x authorizes
access to that operation.

What does “safety” or “security” mean in this setting? A reasonable specification
of correctness is the following trivial protocol, IS°, for ideal storage. Here principals
include users U, V, W, and so on, and a server D. The access policy F and the store p
are both maintained by D; the access and execution relations remain as above. There

is no cryptography.

i) V. — D : op
i) D — V :r if FFy op and plop] | p'[7]
(i) D — V : error otherwise
Here a user V requests D to execute an operation op, and V executes op only if F

specifies that V may access op. This trivial protocol is correct “by definition”; so if NS°
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implements this protocol, it is correct as well.
What correctness criteria are appropriate here? A basic criterion is that of safety (by

refinement) [Abadi and Lamport, 1991].

Definition 7.1.1 (Safety). Under any context (adversary), the behaviors of a safe implemen-

tation are included in the behaviors of the specification.

In practice, the requirement of strict inclusion is often inconvenient, and a suitable
alternative may need to be crafted to accommodate specific implementation behaviors
by design (such as those due to messages (1), (2), and (2') in NS°). Typically, those be-
haviors can be eliminated by a specific context (called a “wrapper”), and safety may be
defined modulo that context as long as other, interesting behaviors are not eliminated.

Still, safety only implies the preservation of certain trace properties. A more power-
ful criterion is derived from the programming languages concept of semantics preser-

vation, otherwise known as full abstraction [Milner, 1977; Abadi, 1998].

Definition 7.1.2 (Security). A secure implementation preserves behavioral equivalences of the

specification.

In this chapter, we tie security to an appropriate may-testing equivalence [Nicola
and Hennessy, 1984]. We consider a protocol instance to include the file system and
some code run by “honest” users, and assume that an arbitrary, unspecified context
colludes with the remaining “dishonest” users. From any NS° instance, we derive its
IS® instance by an appropriate refinement map [Abadi and Lamport, 1991] (roughly, a
map from implementation states to specification states). Then NS° is a secure imple-
mentation of IS°® if and only if for all NS° instances Q; and Q,, whenever Q; and Q;
can be distinguished, so can be their IS° instances.

Breaking safety usually suffices to break security. For example, we are in trouble
if operations that cannot be executed in IS° can be executed in NS° by manipulating
capabilities. Suppose that F /v op for all dishonest V. Then no such V can execute op
in IS°. Now suppose that some such V requests execution of op in NS°. Of course, op
is executed only if V shows a capability « for op. Since x cannot be forged, it must be

obtained from A by some honest U that satisfies F t-; op. Therefore:
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R1 Capabilities obtained by honest users must not be shared with dishonest users.

(However U can still share such x with honest users, and any execution request with x
can then be reproduced in the specification as an execution request by U.)

While (R1) prevents explicit leaking of capabilities, we in fact require that capabilities
do not leak any information that is not available to IS® contexts. Information may also

be leaked implicitly (by observable effects). Therefore:

R2 Capabilities obtained by honest users should not be examined (say, with destruc-

tors) or compared (say, with equality checks), i.e., they must remain abstract.

Both (R1) and (R2) may be enforced by typechecking the code run by honest users.

Finally, we require that information is not leaked via capabilities obtained by dis-
honest users. (Recall that such capabilities are already available to the adversary.) Un-
fortunately, a capability for an operation op is provided only to those users who have
access to op under F; in other words, A leaks information on F whenever it returns
a capability! (If we do not care about this leak, then we must allow the same leak in
the specification.) This leak breaks security. Why? Consider implementation instances
Q1 and Q; with op as the only operation, whose execution returns error and may be
observed only by honest users; suppose that a dishonest user has access to op in Q;
but not in Q. Then Q; and Q> can be distinguished by a context that requests a capa-
bility for op—a capability will be returned in Q; but not in Q>—but their specification
instances cannot be distinguished by any context.

Why does this leak concern us? After all, we expect that executing an operation
should eventually leak some information about access to that operation, since other-
wise, controlling access to that operation makes no sense. However, the leak here is
premature; it allows a dishonest user to obtain information about its access to op in an
undetectable way, without having to request execution of op.

To prevent this leak:

R3 “Fake” capabilities for op (rather than error) must be returned to users who do not

have access to op.

The point is that it should not be possible to distinguish the fake capabilities from
the real ones prematurely. Let K45 be another secret key shared by A and S. As a
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preliminary fix, let us modify the following message in NS°.
(2) A — U : mac(op,Kas) if FtAyop

Unfortunately, this modification is not enough, since the adversary can still compare
capabilities that are obtained by different users for a particular operation op, to know

if their accesses to op are the same under F. To prevent this leak:
R4 Capabilities for different users must be different.

For example, a capability can mention the user whose access it authenticates. Mak-
ing the meaning of a message explicit in its content is a prudent practice for security
[Abadi and Needham, 1996], and we use it on several occasions in this chapter. Ac-

cordingly, we modify the following messages in NS°.

(2) A — U : mac((U,op),Kas) ifFlyop
(2) A — U : mac((U,op),Kas) otherwise

4 S — V :r if k = mac((_,op), Kas) and p[op] | o'[7]
(On receiving a capability x from V, S still does not care whether V is the user to which
K is issued, even if that information is now explicit in «.)

The following result can then be proved [Chaudhuri and Abadi, 2005]; see Section

7.3 for a formal statement of this result.
Theorem 7.1.3. NS° is a secure implementation of IS°.

Recall that in this case, the access policy is forced to be static. It follows that if a
capability correctly certifies an access decision, that decision is always correct. This
restriction simplifies the implementation. However, in general, the access decision
certified by a capability may not be correct in the future. This fact is a major source of

difficulties, and we study those difficulties in the next section.

7.2 Implementing dynamic access policies

We now consider the general problem of implementing dynamic access policies. Let

F be dynamic; the following protocol, NS*, is obtained by adding administration mes-
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sages to NS°. Execution of an administrative operation 6 under F follows an arbitrary

relation F[0] |} F'[r] over next policies F’ and results r.

5) W — A : 6
6) A — W :r if F -y 0and F[0] | F'[r]

(/) A — W : error otherwise

Here a user W requests A to execute an administrative operation 6, and A executes
6 (perhaps modifying F) if F specifies that W controls 6. The following protocol, IS, is

obtained by adding similar messages to IS°.

i) W — D : 8
(iv. D - W :r if Fw 6and F[0] | F'[r]

(iv’)) D — W : error otherwise

Unfortunately, NS? does not remain a secure implementation of IS?. Consider the
NS? pseudo-code below. Here « is a capability for an operation op and 8 modifies access

to op. Informally,

e acquire k means “obtain capability x”—Dby sending op in message (1), receiving

a capability in message (2) or (2'), and binding the capability to «;
e use k¥ means “request execution with x”"—by sending x in message (3);

e success means “detect successful use of a capability”—by receiving a result in

message (4) or (4') and examining the result;

e chmod f means “request access modification 8”—by sending 0 in message (5).

T1 acquire x; chmod 8;use k; success

T2 chmod 6; acquire k;use k; success

Now (T1) and (T2) map to the same I8¢ pseudo-code chmod 6; exec op; success, where

informally,

e exec op means “request execution of op”—by sending op in message (i).
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(Requesting execution with x in NS? amounts to requesting execution of op in I8%, so
the refinement map from NS? pseudo-code to IS? pseudo-code erases occurrences of
acquire and replaces occurrences of use with the appropriate occurrences of exec.)

Now, suppose that initially no user has access to op, and 6 specifies that all users
may access op. Then (T1) and (T2) can be distinguished by testing the event success.
In (T1), x cannot authorize access to op, so success must be false; but in (T2), x may
authorize access to op, so success may be true.

Worse, if revocation is possible, NS? does not even remain a safe implementation of
I1S"t Why? Let 6 specify that access to op is revoked for some user U, and revoked be
the event that 0 is executed (thus modifying the access policy). In IS, U cannot execute
op after revoked. But in NS?, U can execute op after revoked by using a capability that

it acquires before revoked.

7.2.1 Safety in a special case

One obvious way of eliminating the counterexample above is to assume that:
A1 Accesses cannot be dynamically revoked.

This assumption may be reasonable enough for particular applications; crucially, it
does not restrict the access policy from dynamically accommodating new users. On
the other hand, it suggests that any access should be granted only with sufficient care,
because that access cannot be subsequently denied. While this situation is not ideal, it
suffices, e.g., for storing short-term secrets. Further, it allows us to prove the following

new result, without complicating capabilities at all (see Section 7.4).
Theorem 7.2.1. NS? is a safe implementation of IS® assuming (A1).3

The key observation is that with (A1), since a user cannot access an operation until it
can always access that operation, the user gains no advantage by acquiring capabilities
early.

Of course, we must still find a way to recover safety (and security) with revocation.
It is generally recognized that revocation is problematic for distributed implementa-

tions of access control, where authorization is certified by capabilities or keys. At the

3Some implementation details, such as (R3), are not required for safety.

158



very least, we expect that capabilities need to be more sophisticated. Below, we show

how to recover safety by introducing time.

7.2.2 Safety in the general case

Let A and S share a counter, and let a similar counter appear in D. We use these

counters as (logical) clocks, and refer to their values as time. We require that:
R5 Any capability that is produced at time Clk expires at time Clk + 1.

R6 Any administrative operation requested at time Clk is executed at the next clock
tick (to time Clk + 1), so that policies in NS? and IS? may change only at clock

ticks (and not between).

We call this scheme midnight shifting, since the underlying idea is roughly that
of “changing permissions for the day while users are sleeping”. Implementing this
scheme is straightforward. To implement (R5), capabilities carry timestamps. To im-
plement (R6), an auxiliary variable & is introduced to shadow I'—administrative op-
erations are executed on E instead of I', and at every clock tick, I' is updated to &.

Accordingly, we modify the following messages in NS to obtain the protocol NS¢+
(2) A — U: mac((U,op, Clk),Kag) if Flyop
(2') A — U: mac((U,op,Clk),Kas) otherwise

4) S — V:ur if K = mac((_, op, Clk), Kas) and p[op] | p'[7]

6) A — W:r if Fy 0and E[0] | E'[r]

Likewise, we modify the following message in IS” to obtain the protocol 159 ™.

(iv) D — W :r ifFkw6and Z[0] | E'[r]

Now a capability that carries Clk as its timestamp certifies a particular access deci-
sion at the instant Clk: the meaning is made explicit in the content, following prudent

practice. However, recall that MACs can be decoded to retrieve their messages. In
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particular, users can tell the time in NS%* by decoding capabilities. Clearly we require

that:

R7 If it is possible for users to tell the time in NSt it must also be possible for users

to do so in IS?T.

So we must make it possible for users to tell the time in I $7*. (The alternative is to
make it impossible for users to tell the time in N. $7*. We can do this by encrypting the
timestamps carried by capabilities—recall that the notion of time here is purely logical.
We consider this alternative later in the section.) Accordingly we add the following
messages to s+,

(v) U — D : ()
(vii D — U : Clk

The following result can then be proved. A version of this result already appears

in [Chaudhuri and Abadi, 2006a], but the definition of safety there is rather ad hoc; in

Section 7.4, we prove this result again, for a stronger definition of safety.
Theorem 7.2.2. NS®* is a safe implementation of IS*™.

Unfortunately, beyond this result, [Chaudhuri and Abadi, 2006a] does not consider
security. In the rest of this section, we analyze the difficulties that arise for security,

and present further results that appear in [Chaudhuri, 2008b].

7.2.3 Obstacles to security

It turns out that there are several recipes to break security, and expiry of capabilities

is a common ingredient. Clearly, using an expired capability has no counterpart in

187, So:
R8 Any use of an expired capability must block (without any observable effect).

Indeed, security breaks without (R8). Consider the N. e pseudo-code below. Here

K is a capability for operation op. Informally,

e stale means “detect any use of an expired capability”—by receiving a result in

message (4) or (4') and examining the result.
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T3 acquire x;use x; stale

Without (R8), (T3) can be distinguished from a false event by testing the event stale.
But consider implementation instances Q; and Q> with op as the only operation, whose
execution has no observable effect on the store; let Q; run (T3) and Q; run false.
Since stale cannot be reproduced in the specification, it must map to false. So the
specification instances of Q; and Q; run exec op;false and false. These instances

cannot be distinguished.

Before we move on, let us carefully understand what (R8) implies. The soundness of
this condition hinges on the fact that blocking is not observable by may-testing [Nicola
and Hennessy, 1984]. However, under some reasonable fairness assumptions, block-
ing becomes observable. Then, the only way out is to allow a similar observation in
the specification, say by letting an execution request block nondeterministically. We
consider such a solution in more detail below; but first, let us explore how far we can
go with (R8).

Expiry of a capability yields the information that time has elapsed between the ac-
quisition and use of that capability. We may expect that leaking this information is
harmless; after all, the elapse of time can be trivially detected by inspecting times-
tamps. Why should we care about such a leak? If the adversary knows that the clock
has ticked at least once, it also knows that any pending administrative operations have
been executed, possibly modifying the access policy. If this information is leaked in a
way that cannot be reproduced in the specification, we are in trouble. Any such way
allows the adversary to implicitly control the expiry of a capability before its use. (Ex-
plicit controls, such as comparison of timestamps, are not problematic, since they can
be reproduced in the specification.)

For example, consider the NS“" pseudo-code below. Here x and «’ are capabilities

for operations op and op’, and 6 modifies access to op.
T4 acquire x’; chmod 6; acquire k;use k; success;use x’; success

T5 chmod 6; acquire K;use K; success; acquire x’;use k’; success
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Both (T4) and (T5) map to the same IS** pseudo-code
chmod 6; exec 0p, success; exec op'; success

But suppose that initially no user has access to op and all users have access to op’, and
8 specifies that all users may access op. Now, the intermediate success event is true
only if 6 is executed; therefore it “forces” time to elapse for progress. It follows that
(T4) and (T5) can be distinguished by testing the final success event. In (T4), ¥’ must
be stale when used, so the event must be false; but in (T5), ¥’ may be fresh when used,

so the event may be true. Therefore, security breaks.

7.2.4 Security in a special case

One way of plugging this leak is to consider that the elapse of time is altogether
unobservable to users. (This prospect is not as shocking as it sounds, since time here is

simply the value of a privately maintained counter.) Let us assume that:

A2 Accesses cannot be dynamically granted.

A3 Any unsuccessful use of a capability blocks (without any observable effect).

It turns out that with (A2) and (A3), there remains no way to detect the elapse of time,

except by comparing timestamps. To prevent the latter, we assume that:
A4 Timestamps are encrypted.

Let E4s be a secret encryption key shared by A and S. The encryption of a term M
with E 45 under a random coin m is written as {m, M} g .. Randomization takes care of
(R4), so capabilities do not need to mention users. Now, we remove message (4') and

modify the following messages in NS?* to obtain the protocol N5/~

(2) A — U : mac({op, {m,Clk}E,,),Kas) ifT Fyop
(2') A — U : mac({op, {m,Clk}g,,),Kas) otherwise

4 S — V:r if « = mac((op, {_, Clk}£,,), Kas) and p[op] | p[7]

Likewise, we remove the messages (iv’), (v), and (vi) from IS?* to obtain the protocol

IS?~. We can then prove the following new result (see Section 7.4):
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Theorem 7.2.3. NS~ is a secure implementation of 159~ assuming (A2), (A3), and (A4).

The key observation is that with (A2), (A3), and (A4), the adversary cannot force
time to elapse, so capabilities do not need to expire! In this model, any access revo-
cation can be faked by indefinitely delaying the service of requests that require that
access. Note that (A4) is perfectly reasonable as an implementation strategy. On the
other hand, (A2) is a bit conservative; in particular, new users must be accommodated
by some default access policy that is based (at least partially) on static information.
Finally, (A3) is as problematic as (R8). Thus, this result is largely of theoretical inter-
est. Its main purpose is to expose the limitations of a secure implementation under the

current specification.

7.2.5 Security in the general case

More generally, we may consider some static analysis for plugging all problematic
information leaks caused by expiry of capabilities. (Any such analysis must be incom-
plete because of the undecidability of the problem.) However, several complications

arise in this effort.

e The adversary can control the elapse of time (and hence the expiry of capabil-
ities) by interacting with honest users in subtle ways. Such interactions lead
to counterexamples of the same flavor as the one with (T4) and (T5) above,
but are difficult to prevent statically without severely restricting the code run
by honest users. For example, even if the suspicious-looking pseudo-code
chmod 6; acquire x;use «;success in (T4) and (T5) is replaced by an innocuous
pair of signals on a public channel net, the adversary can still run that code in

parallel and serialize it between this pair of signals.

e Even if we restrict the code run by honest users, such that every use of a capability
immediately follows its acquisition (or can be serialized as such), the adversary
can still delay the service of requests by interacting with the file system. Unless
we have a way to constrain this elapse of time, we are in trouble. (This point can

be better appreciated by looking at our proof details, in the appendix.)
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For example, consider the NS**

pseudo-code below. Here « is a capability for operation
op, and 6 modifies access to op; further, net() and net() denote input and output on a

public channel net, and done() denotes output on a public channel dorne.
T6 acquire k;use k; chmod 6; net(); net(); success; done()
T7 net(); net(); done()

Although use x immediately follows acquire x in (T6), the adversary can force time to
elapse between use x and success. Suppose that initially no user has access to op or
op’, 0 specifies that a honest user U may access op, and 6’ specifies that all users may

access op’. Consider the following context. Here «’ is a capability for op’.
net(); chmod 0'; acquire ’; use «’; success; net()

This context forces time to elapse between a pair of signals on net—indeed, success is
true only if 6’ is executed. Therefore, this context can distinguish (T6) and (T7) by test-
ing output on done: in (T6), x does not authorize access to op, so success must be false
and there is no output on done; on the other hand, in (T7), there is. Security breaks as a
consequence. Why? Consider implementation instances Q; and Q, with U as the only
honest user and op and op’ as the only operations, such that only U can detect execution
of op and all users can detect execution of op’; let Q1 run (T6) and Q; run (T7). Then the
specification instances of Q; and Q, run exec op; chmod 6; net(); net(); success; done()
and net(); net(); done(). These instances cannot be distinguished, since the execution of
op can always be delayed until 6 is executed, so that success is true and there is an
output on w.

Intuitively, an execution request in NS commits to a time bound (specified by
the timestamp of the capability used for the request) within which that request must

St make no such commitment. In

be serviced for progress; but operation requests in I
the end, the only way out is to allow such a commitment in IS?". Therefore, we assume

that:

A5 InIS?", a time bound is specified for every operation request, so that the request is

dropped if it is not serviced within that time bound.
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Implementing this assumption is safe. Indeed, it refines the current specification—any
request with time bound T can be abstractly interpreted as an unrestricted request.
Conversely, implementing (A5) is adequate; any unrestricted request can carry a time
bound co. Further, (A5) obviates the need for the problematic (R8), since using an ex-

pired capability now has a counterpart in 154+

Nas

. Accordingly, we modify the following

messages in I

(i) V. —- D : (opT)
(i) D - V : r if Clk < T,T v op, and p[op] | p'[r]

Now, if a capability for an operation op is produced at time T in NS**, then any use
of that capability in NS?* is mapped to an execution request for op in IS?" with time

bound T. We can then prove our main new result (see Section 7.4):

Sd+

Theorem 7.2.4 (Main theorem). NS is a secure implementation of IS"" assuming (A5).

While this result is quite pleasant, we should be careful about its limitations.

e On the bright side, (A5) captures and removes the essence of the difficulties of
achieving security for an implementation of dynamic access control with capa-

bilities. Further, implementing (A5) makes a lot of sense in practice.

e On the dark side, it seems that (A5) is necessary to reduce security proofs over
NS to those over IS9. Thus, even in abstract proofs, we are forced to deal with
expiry, which is an implementational artifact. (In contrast, we do not require (A5)

to reduce safety proofs.)

7.2.6 Some alternatives

Let us now revisit the principles developed in Sections 7.1 and 7.2, and discuss some
alternatives.

First, recall (R3), where we introduce fake capabilities to prevent premature leaks of
information about the access policy I. What if we do not care about such leaks (and
return, say, error in message (2’) in NS°)? Then, we must allow those leaks in the
specification. For example, we can make I' public. More practically, we can add mess-

ages to IS° that allow a user to know whether it has access to a particular operation.
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Next, recall (R5) and (R6), where we introduce the midnight-shift scheme. This
scheme can be relaxed to allow different capabilities to expire after different intervals;
we only require that administrative operations that affect their correctness are not exe-
cuted before those intervals elapse.

Finally, the implementation details in Sections 7.1 and 7.2 are far from unique.
Guided by the same underlying principles, we can design capabilities in various other
ways. For example, we may have an implementation in which any capability is of the
form mac(((U,op,Clk), {m,L}g,.), Kas), where m is a fresh nonce and L is the access-
decision predicate ' F; op. In particular, the key K5 is not required; the access de-
cision for U and op under I is explicit in the content of any capability that certifies
that decision, following prudent practice. What does this design buy us? Consider
applications where the access decision is not a bit, but a predicate, a decision tree, or
some other data structure. The design in NS?* requires a different signing key for each
value of the access decision. Since the number of such keys may be infinite, verifica-
tion of capabilities becomes very inefficient. The design above is appropriate for such

applications, and we discuss it further in [Chaudhuri, 2008a].

7.3 Definitions and proof techniques

Let us now develop formal definitions and proof techniques for security and safety;
these serve as background for Section 7.4, where we outline formal proofs for security
and safety of NS“" under IS?*.

We write a process P under a context ¢ as ¢[P]. Contexts act as tests for behav-
iors; intuitively, those behaviors refute specific safety properties [Nicola and Hennessy,
1984]. Let < be a precongruence on processes and =~ be the associated congruence.*
P < Q means that any test that is passed by P is passed by Q—in other words, “P
satisfies any safety property that Q satisfies”. In practice, Q is usually a process that

trivially satisfies some safety property of interest; P < Q then implies that P satisfies

that property as well.

4 A precongruence is a preorder that is closed under arbitrary contexts. The associated congruence is
the intersection of the precongruence and its inverse.
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We describe an implementation as a binary relation R over processes, which relates
specification instances to implementation instances. This relation conveniently gener-
alizes a refinement map [Abadi and Lamport, 1991]. Next, we define full abstraction

and security.

Definition 7.3.1 (Full abstraction and security (cf. Definition 2)). An implementation R
is fully abstract if it satisfies:

(PRESERVATION) V(P,Q) € R. V(P',Q)eR. PP = Q=
(REFLECTION) V(P,Q) € R. V(P',Q"YeR. Q=<Q = PP

An implementation is secure if it satisfies (PRESERVATION).

(PRESERVATION) and (REFLECTION) are respectively soundness and completeness
of the implementation under <. Security only requires soundness. Intuitively, a secure
implementation does not introduce any bad behaviors—if (P, Q) and (P/,Q’) are in a
secure R and P satisfies any safety property that P’ satisfies, then Q satisfies any safety
property that Q' satisfies. A fully abstract implementation moreover does not eliminate
any bad behaviors.

Any subset of a secure implementation is secure. Security implies preservation of

~. Finally, testing itself is trivially secure since < is a precongruence.

Proposition 7.3.2. Let ¢ be any context. Then {(P, p[P]) | P € W} is secure for any set of

processes V.

On the other hand, a context may eliminate some bad behaviors by acting as a test

for those behaviors. A fully abstract context does not; it merely translates behaviors.

Definition 7.3.3 (Fully abstract context). A context ¢ is fully abstract for a set of processes
W if the relation {(P, [P]) | P € W} is fully abstract.

A fully abstract context can be used as a wrapper to translate behaviors between
the specification and the implementation. We define an implementation to be safe if it

preserves safety properties of the specification under such a wrapper.
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Definition 7.3.4 (Safety (cf. Definition 1)). An implementation R is safe if there exists a
fully abstract context ¢ for the set of specification instances such that R satisfies:

(INCLUSION) Y(P,Q) € R. Q < ¢[P]

Let us see why ¢ must be fully abstract in the definition. Suppose that it is not.
Then for some P and P’ we have ¢[P] < ¢[P'] and P A P'. Intuitively, ¢ “covers up”
the behaviors of P that are not included in the behaviors of P’. Unfortunately, those
behaviors may be unsafe. For example, suppose that P’ is a pi calculus process [Milner,
1993] that does not contain public channels. Further, suppose that {P'} is in fact the
set of specification instances (so that any output on a public channel is unsafe). Let net
be a public channel; suppose that P = net(); P’ and ¢ = e | ! net(). Then P A P’ and
¢[P] < ¢[P’], as required. But clearly P is unsafe by our assumptions; yet P < ¢[P’], so
that by definition {(P’, P)} is safe! Thus, the definition of safety is too weak unless ¢ is
required to be fully abstract.

We now present some handy proof techniques for security and safety. A direct
proof of security requires mappings between subsets of <. Those mappings may be
difficult to define and manipulate. Instead, a security proof may be built modularly
by showing simulations, as in a safety proof. Such a proof requires simpler mappings

between processes.

Proposition 7.3.5 (Proof of security). Let ¢ and i be contexts such that for all (P,Q) € R,

Q <X ¢[P]and P < ¢[Q] and ¢[p[Q]] = Q. Then R is secure.

Proof. Let (P,Q) € R, P <X P/, and (P/,Q') € R. Then Q < ¢[P] < ¢[P'] (by Proposi-

tion 7.3.2) < ¢[[Q’]] (by Proposition7.3.2) < Q' <
Intuitively, R is secure if R and its inverse both satisfy (INCLUSION), and the wit-

nessing contexts “cancel out”. A simple technique for proving full abstraction for con-

texts follows as a corollary.

Corollary 7.3.6 (Proof of full abstraction for contexts). Let there be a context ¢! such that
forall P € W, ¢~ [@[P]] = P. Then ¢ is a fully abstract context for W.

Proof. Take ¢ = ¢! and i = ¢ in the proposition above to show that {(¢[P],P) | P €

W} is secure. The converse follows by Proposition 7.3.2. <
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7.4 Formal analysis

We now outline models of NS** and IS?* in the applied pi calculus [Abadi and
Fournet, 2001], and present proofs of our results. We omit the treatment of other ver-
sions that appear in Sections 7.1 and 7.2; the details remain essentially the same.

We fix an equational theory X that includes a theory of natural numbers with sym-
bols 0 (zero), - + 1 (successor), and - < _ (less than or equal to); a theory of finite
tuples with symbols (-, -) (concatenate) and -. _ (project); and exactly one equation that

involves the symbol mac, which is
msg(mac(x,y)) = x

Users U are identified by natural numbers k; we fix a finite subset Z of IN and assume
that any user not identified in 7 is dishonest. File-system code and other processes are
conveniently modeled by parameterized process expressions [Milner, 1993]; we define
their semantics by extending the usual semantic relations of structural equivalence =
and reduction — [Abadi and Fournet, 2001].° Some of those processes model functions
[Milner, 1993], and we define their semantics directly as such. To distinguish parame-

terized processes from terms, we write all parameters in subscript.

7.4.1 Models

Below, we show applied pi calculus models for the file systems under study. Let
k € IN. Both file systems are parameterized by an access policy F, an auxiliary variable
E to shadow F, a time Clk, and a store p. For the networked file system Nfsg = cik o, the
interface includes channels ay, Bi, and 7, for every k; a user identified by k may send
authorization requests on &y, execution requests on By, and administration requests on
Yk For the ideal file system Ifsf = ci o, the interface includes channels «y, 87, and 7y} for
every k; a user identified by k may send time requests on «y, operation requests on 3y,
and administration requests on 7. Other parameterized processes, such as CReqy o, ;1

TReqy, EReqy p1, OReqy o, 7,m1, EOKL0p,m, and AReqy g )y, denote various internal states

5These expressions can be readily expanded to standard applied pi-calculus processes, that implement
the specified semantics up to observational equivalence.
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that are reached by the file systems on receiving and processing requests. The adver-
sary is an arbitrary evaluation context in the language [Abadi and Fournet, 2001].

We encode the relations F F op, plop] U 0'[r], F Fx 6, and E[0] | E'[r] in the
equational theory. In particular, auth(F,k, op) = ok means that k may access op un-
der F; auth(F,k,6) = ok means that k controls # under F; exec(L,op,p) = (N,p’)
means that executing op on store p under decision L returns N and store p’; and
exec(L,0,8) = (N,E’) means that executing 6 on accumulator & under decision L

returns N and accumulator E'. We define the following functions:

true if auth(F,k,O) = ok
permr ;o =

false otherwise
mac((k,op, Clk),Kas) if auth(F, k,0p) = ok

certrkop,Clk = _ )
mac((k,op, Clk),Kas) otherwise

true  if x = mac(msg(x), Kas)
verif, = _
false if x = mac(msg(x), Ks)

Networked file system

(AUTHORIZATION)
(AUTHORIZATION REQUEST)

Certrkop,Clk = K

Nst,E,CIk,p = "‘k(opl x)} CReqk,op,x NfSP,E,CIk,p

CRedyop,m | Nfspz,cikp — M(x) | Nfsp s cik o
(EXECUTION REQUEST)
Nfsp .z clkp = Br(x, x); EReqy . | Nfsp = cikp

(EXECUTION OK)
verify = L L € {true, false} msg(x) = (-, op, Clk)

EReqy | Nfspz cikp — EOkLopm | Nfspz ciicp
(EXECUTION)

exec(L,op,p) = (N,p')
EOkpopM | Nfsgz cikp — M(N) | Nfsgz ik

(ADMINISTRATION)
(ADMINISTRATION REQUEST) —

permp; o =L exec(L,0,E) = (N,&)

Nfsrz,cikp = Vk(0,X); AReqg g . | Nfsg = cik

AReqy g 1 | Nfspz,cie — M(N) | Nfspz ci,p

=
7=
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(T1iCK)

Nfsg s cikp — Nfszz cik+1,

For the networked file system, the rules (AUTHORIZATION REQUEST) and (AUTHO-
RIZATION) model behaviors in the course of receiving and processing authorization re-
quests. The rules (EXECUTION REQUEST), (EXECUTION OK), and (EXECUTION) model
behaviors in the course of receiving and processing execution requests. The rules (AD-
MINISTRATION REQUEST) and (ADMINISTRATION) model behaviors in the course of
receiving and processing administration requests. Finally, the rule (TICK) models the

internal ticking of the clock.

Ideal file system

(TIME REQUEST) (TIME)

Ifspz,cikp = &g (x); TReay | fspzcip  TRedy | Ifsez cikp — M(CIk) | Ifspz cikp
(OPERATION REQUEST)
Ifse,ciko = Br(op, T, x); ORedy o, 7,1 | IfSF 5 Clkp

(EXECUTION OK)
permpy,, = L Ck<T

ORedy,op, .M | IfsEz,Clkp — EOKLopm | IfSEz,Clk p
(EXECUTION)
exec(L,op,p) = (N,p')

EOKLop,m | s z,cikp — M(N) | Ifsp = cik

(ADMINISTRATION)
(ADMINISTRATION REQUEST) - —
permp;y =L exec(L,0,8) = (N,&")

Ifse,Ciko = 7k (0, x); ARedg g« | Ifs z,cikp —
ARed o | fsez ciko — M(N) | Ifspzr cikp

(Tick)

Ifspz,cikp — IfSgz Clk+1,0

On the other hand, for the ideal file system, the rules (TIME REQUEST) and (TIME)
model behaviors in the course of receiving and processing time requests. The rules

(OPERATION REQUEST), (EXECUTION OK), and (EXECUTION) model behaviors in the
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course of receiving and processing operation requests. The rules (ADMINISTRATION
REQUEST) and (ADMINISTRATION) model behaviors in the course of receiving and pro-
cessing administration requests. Finally, the rule (TICK) models the internal ticking of
the clock.

Roughly, states of the networked file system can be related to states of the ideal file
system; for example, CReqy,, » is related to TReqy,, EReq, 5 is related to OReqy 7,11,
and so on. Further, this relation can be lifted to code interacting with these file systems.

Formally, a networked storage system may be described as
NSEL(C) £ (viezaiBivi)(C | (vKasKas) Nfskr0,)

Here C is code run by honest users, F is an access policy, and p is a store; initially
the auxiliary shadowing variable is F and the time is 0. On the other hand, an ideal

storage system may be described as
ISEH(C) 2 (vieza B377)(C | Ws ko)

Channels associated with honest users are hidden from the adversary (or context).
The adversary itself is left implicit; in particular, channels associated with dishonest

users may be available to the adversary.

7.4.2 Proofs

We take < to be the standard may-testing precongruence for applied pi calculus
processes: P < Q if and only if for all evaluation contexts ¢, whenever ¢[P] outputs on
the distinguished channel done, so does ¢[Q]. Let F and p range over terms that do not
contain any channel or key used by the file systems under study. Let C range over code

for honest users in NS?*, and let [_] abstract such C in IS?* (see below). We define

IMP = [ J {(ISE5,([C1), NSE,(C))}
Fp,C

We describe [ -] as a typed compilation [_|r under an appropriate type environment I'.

Leti € IN, and Cert (i, op) be the type of any capability obtained by user i for operation
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op. We show a fragment of the compiler below.

(AUTHORIZATION REQUEST TO TIME REQUEST)

cé¢ fn(Q) (Q-| T, x:Cert(i,op) — p
[(ve) wiop, c);e(x); Qlr = (ve) af {c); c(x); P

(EXECUTION REQUEST TO OPERATION REQUEST)
I(x) = Cert(f,0p)  [Qlr =P
[Bi{x, M); QIr = B5 (op, x, M); P
(ADMINISTRATION REQUEST TO ADMINISTRATION REQUEST)
[Plr=Q
[Yi{adm, M); Qlr = 7; (adm, M); Q

The omitted fragment may be built from any type system that guarantees strong se-

crecy of terms of type Cert(i,op) for any i and op [Chaudhuri, 2008a].

We then show evaluation contexts ¢ and ¢ such that:

Lemma 7.4.1. NS{H(C) =< @[SEL([C])], ISEL([C]) = ¢INSEL(C)], and
QD[IJJ[NS?:’J;(C)H = NS?;;(C)for any F, p, and C.

More precisely, we define processes 1155 and 11 (see below), that translate public
requests from NS** to IS" and from IS"* to NS*". Let j € N \ Z. We define

¢ = (VienzaiBirs) (o] (vKz) 1)
v = (Viem\za;Bi7;) (o | 15)

The process Tﬁs

(DUMMY AUTHORIZATION REQUEST)
Tﬁs = ocj(op,x); (vm) 07]‘.’<m>;m(Clk);§<mac(<j,op, Clk), K>) | Tﬁs

(DuMMY EXECUTION REQUEST)

115 = Bj(x, x); DReqy., | 115

(DuMMY OPERATION REQUEST)
(DUMMY ADMINISTRATION REQUEST)

x = mac(msg(x), K;) msg(x) = (j,op, Clk) _
1Ns = 7(0p, x); 77 {op, x) | 1R

DReq, p — [37’<0p, Clk, M)
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The process Tgs

(DuMMY TIME REQ)

1S = a7 (x); (ve) @i(x, c); e(y); ¥(msg(y).3) | 118

(DuMMY OPERATION REQUEST)

1S = B5 (0p, T,%); (ve) T{op, ¢); c(x); DReqy, | 1157
(DuMMY EXECUTION REQUEST)
msg(k).3<t jeN\Z

DReqy p1 — [57(1(, M)

(DUMMY ADMINISTRATION REQUEST)

1 = 7 (op, x); 7 (op, x) | 118

Intuitively, a networked storage system is simulated by an ideal storage system by
forwarding public requests directed at Nfs to a hidden Ifs interface (via ¢). Capabilities
are simulated by terms that encode the same messages, but are signed with a dummy
key K; that is secret to the wrapper. Conversely, an ideal storage system is simulated by
a networked storage system by forwarding public requests directed at Ifs to a hidden
Nfs interface (via ). Finally, a networked storage system simulates another networked
storage system where requests directed at Nfs are filtered through a hidden Ifs interface
before forwarding them to a hidden Nfs interface (via ¢[¢]). This detour essentially
forces capabilities to be acquired immediately before their use. The existence of these

simulations implies that:

Theorem 7.4.2 (cf. Theorem 5). IIMIP is secure.

Proof. By Lemma 7.4.1 and Proposition 7.3.5. <
Further, we show that:

Lemma 7.4.3. 1/J[4)[IS§;( [Ch]] = IS‘Z’Z;;( [C]) forany F, p, and C.

So in fact, IIMIP is fully abstract. Finally:

Theorem 7.4.4 (cf. Theorem 3). IIMIP is safe.

Proof. By Lemma 7.4.1, we already have NSId,-’J; (C) < 47[15‘11;;( [C])]. Further, by Lemma
741, 1SE([CT) = 9INSEL(C)] < 9[@lISE,([C])]]. So by Lemma 7.4.3 and Corollary
7.3.6, ¢ is fully abstract (taking ¢! = ¢). <
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7.4.3 Some examples of security

Let us now revisit the counterexamples in Section 7.2. We model them formally, and
show that they are eliminated.

The NS** code below formalizes (T1) and (T2). Here x is received on a fresh channel
¢, and later used to execute op. The result of execution is received on a fresh channel #;
we assume that success is an appropriate predicate that can detect successful use of x

by inspecting the result.

T1 (ve) & (op, c); c(k); (vm) 7i(0, m); m(z);

(vn) Bi(x,n);n(x); [success(x)] w()

T2 (vm) 7i(0,m); m(z); (vc) &iop, c); c(k);

(vn) Bi(x, n);n(x); [success(x)] w()

This code is abstracted to the following IS** code.

T1 (ve) af(c); c(T); (vm) 73 (6, m); m(z);

(vn) B¢ (op, T, n); n(x); [success(x)] w()

T2 (vm) 47(0, m);m(z); (ve) af(c);c(T);

(vn) B2 (op, T, n); n(x); [success(x)] w()
Now whenever (T1) and (T2) can be distinguished, so can (T1’) and (T2'). Indeed the
time bound T is the same as the timestamp in x; so the operation request in (T1') is
dropped whenever the execution request in (T1) is dropped.

A similar argument refutes the counterexample with (T4) and (T5). Finally, recall

(T6) and (T7). The following NS+ code formalizes (T6).
T6 (vm) i {op, m); m(x); (vn) Byl m);

c(); (vm) 7;(6, my; m(z); c(); n(x); [success(x)] w()

This code is abstracted to the following IS** code.

T6' (vm) af (m); m(T); (vn) B; {op, T, n);

c(); (vm) y2(0,m); m(z);c(); n(x); [success(x)] w()
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The following N $9* context distinguishes (T6) and (17):
c();wj{op’, mo); mo(xj); Bj(xp, noY; no(x); [failure(x)]
7i(0, p); a;(op’, my); my(x});
Bj{xq, n1);m(x); [success(x)] &()
But the following IS9F context distinguishes (T6’) and (17):
c();wj(mo); mo(Té);,BT?@p/, T}, no); no(x); [failure(x)]
V5 (0, p)i e (ma);my (Ty);

,B; (op’, T, m1); n1(x); [success(x)] ¢()
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Chapter 8

Discussion

In Chapter 1, we point out the importance—and the unfortunate lack—of under-
standing the foundations of access control for security in computer systems. We pro-

pose the following thesis:

A formal understanding of the foundations of access control for secure stor-
age can significantly help in articulating, evaluating, and improving the

security of computer systems.

We claim that through this dissertation, we successfully defend the thesis above. In-
deed, we develop and apply formal techniques to specify and verify security properties
of a variety of computer systems. Through this exercise, we lay the foundations of ac-
cess control for security in such systems. Formal techniques play a significant role in

articulating, evaluating, and improving the security of such systems. More concretely:

o We specify security properties of several file systems (such as Plutus and
NASD/OSD) and operating systems (such as Windows Vista and Asbestos).
These properties are typically not straightforward, since the designs of the un-

derlying systems often balance conflicting concerns of security and practice.

e We develop new, specialized techniques to analyze these security properties—in
some cases, automatically. These techniques build on a rich and mature literature
on calculi, semantics, type systems, logics, and other foundations for program

verification.
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e Finally, applying these techniques, we discover various attacks, implementation
issues, and other weaknesses in these systems, and invent methods to provably

eliminate such weaknesses.

We structure our work along a research program with two complementary direc-
tions: in direction (a), we focus on the correctness of access controls in a variety of
computer systems; in direction (b), we show how to exploit such access controls in
proofs of information-flow properties.

The motivation for direction (a) stems from the complexity of access-control im-
plementations in contemporary file systems and operating systems. Such complexity
is often justifiable in practice; there are various underlying assumptions and guar-
antees in these systems, and unusual improvisations may be required to meet them.
For instance, we study various cryptographic implementations of access control in the
context of untrusted storage (Chapter 2) and distributed storage (Chapter 7). These
implementations often combine cryptographic primitives in innovative ways, driven
by practical concerns. Similarly, we study various implementations of access control
with security labels in operating systems (Chapter 3). Again, these implementations
relax standard models in unexpected ways, driven by practical concerns. Verifying the
correctness of these implementations is typically not straightforward; in fact, formal
verification helps understand the nuances of these implementations, uncover poten-
tial flaws, and articulate their precise properties.

But correct access control is seldom enough for security. The motivation for di-
rection (b) stems from the inadequacy of formal understanding of the role of access
control for security in computer systems. Indeed, without proper care, access control
may turn out to be completely ineffective as a security mechanism. Showing how to
achieve concrete information-flow properties through access control helps formalize
the intended security guarantees of the access-control implementations in such sys-
tems. To that end, we develop special type systems that leverage access control to
guarantee secrecy and integrity properties in various file system and operating system
environments (Chapters 4,5, and 6). These environments correspond to the systems we
study above.

Below, we outline related work and discuss our contributions in more detail.
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In Chapter 2, we formally study an interesting, state-of-the-art protocol for secure
file sharing on untrusted storage (in the file system Plutus), and analyze its security
properties using the automatic verifier ProVerif. Our study demonstrates that proto-
cols for secure storage are worth analyzing. Indeed, the analysis vastly improves our
understanding of the above protocol; we formally specify and verify its security prop-
erties, find and patch some unknown attacks, and clarify some design details that may
be relevant for other storage protocols.

Working in the Dolev-Yao model allows a deep analysis of the security conse-
quences of some promising new features of the protocol. At the same time, some con-
sequences remain beyond the scope of a Dolev-Yao analysis. It should be interesting
to study those consequences in the computational model, perhaps using an automated
verifier such as CryptoVerif [Blanchet, 2007b,a]. Unfortunately, our initial attempts
at modeling the protocol in CryptoVerif indicate that the tool is presently not mature
enough to prove the relevant properties. We therefore postpone that study to a point
at which tools for proofs in the computational model are more developed.

Our techniques build on a huge body of work on formal methods for the verification
of security protocols, e.g., [Lowe, 1996; Abadi and Gordon, 1999; Abadi, 1999; Paulson,
1998; Gordon and Jeffrey, 2003a; Bodei et al., 2005; Backes et al., 2007]. We refer the
reader to [Blanchet, 2008] for more information on this work, and we focus here on
more closely related work on the design and verification of secure file systems.

In file systems based on the network-attached/object storage protocols (NASD,
OSD) [Gobioff, 1999; Halevi et al., 2005], distributed access control is implemented on
trusted storage via cryptographic capabilities. A semi-formal security analysis of this
protocol appears in [Halevi et al., 2005], while we present formal models and manual
security proofs for this protocol in the applied pi calculus [Chaudhuri and Abadi, 2005,
2006a; Chaudhuri, 2008b]. This material is covered in detail in Chapter 7.

Among other protocols for secure file sharing on untrusted storage, the closest to the
one we study here are those behind the file systems Cepheus [Fu, 1999], SiRiUS [Goh
et al., 2003], and SNAD [Miller et al., 2002]. Lazy revocation first appears in Cepheus;
see [Kallahalla et al., 2007] for a summary of the origins of lazy revocation, and its

limitations. Keys for reading and writing files in SiRiUS are the same as those in Plutus.
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However, those keys are stored and distributed securely by the server (“in-band”),
instead of being directly distributed by users (“out-of-band”). Moreover, revocation in
SiRiUS is immediate, instead of lazy. In SNAD, keys for reading files are distributed
in-band as in SiRiUS. However, unlike Plutus and SiRiUS, there are no keys for writing
files—any user can write contents by signing those contents with its private key, and
the storage server is trusted to control access to writes.

While the protocol we study partially trusts the storage server to prevent so-called
rollback attacks (where contents received from the file system are not the most recent
contents sent to the file system), the protocol behind the file system SUNDR [Mazieres
and Shasha, 2002] specifically provides a guarantee called fork consistency, that allows
users to detect rollback attacks without trusting the storage server. The correctness
of that protocol is formally proved in [Maziéres and Shasha, 2002]. SUNDR does not
focus on other secrecy and integrity guarantees.

Recently several schemes for key rotation have been proposed and manually proved
in the computational model of security [Backes et al., 2005, 2006; Fu et al., 2006], and
various alternative schemes for key distribution and signatures have been designed
to eliminate public-key cryptography in this context [Naor et al., 2005]. Mechanically
verifying these schemes should be interesting future work.

Finally, to guarantee stronger information-flow properties than the ones studied
in this chapter (and the next), access control must be complemented by precise code
analysis. Recently, several type systems have been designed for such purposes [Pistoia
et al., 2007a; Zheng and Myers, 2004; Chaudhuri and Abadi, 2006b; Chaudhuri, 2006].
We cover some of these type systems in Chapters 4-6. The type system in Chapter 5
is particularly suitable for proving such properties in the presence of dynamic access
control and untrusted storage.

Over the years, storage has assumed a pervasive role in modern computing, and
understanding secure storage has become as important as understanding secure com-
munication. The study of secure communication has taught us the importance of rigor
in the design and analysis of protocols. This observation certainly applies to secure
storage as well. As far as we know, we are the first to present an automated formal

analysis of a secure storage protocol. Our approach should be fruitful for other secure
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storage protocols, and we expect to see further work in this new area.

Similar ideas can be applied to the study of secure operating systems. Specifically,
in Chapter 3, we present EON, a logic-programming language and tool that can be
used to model and analyze dynamic access control systems. Security violations can
be modeled as temporal queries in this language, and query evaluation can be used to
find attacks. We show that query evaluation in EON can be reduced to decidable query
satisfiability in a fragment of Datalog, and under further restrictions, to efficient query
evaluation in Datalog.

We are certainly not the first to propose a dynamic logic-programming language.
Related languages have been studied, for instance, in [Abadi and Manna, 1989] and
[Orgun, 1996]. However, we seem to be the first to introduce a new operator to Data-
log, and show that it can be reduced to existential quantification in Datalog. Such an
operator allows us to express specifications that quantify over an unbounded number
of processes and objects.

Our design of EON requires much care to keep query evaluation decidable. In par-
ticular, we require that any base relation that is introduced or transformed be unary—
allowing dynamic binary base relations easily leads to undecidability (see the ap-
pendix). Moreover, for correctness, we require transitions to have monotonic guards,
and queries to be monotonic.

These restrictions do not prevent us from modeling state-of-the-art access control
systems, such as those implemented by Windows Vista and Asbestos. With unary base
relations and new clauses, we can create and label processes and objects. Further, with
next clauses, we can model runtime effects such as dynamic access control, commu-
nication, and taint propagation. Thus, EON turns out to be a good fit for modeling
dynamic access control systems.

Further, we demonstrate that EON can verify various security properties of interest.
Since our query evaluation strategy is both sound and complete, EON either finds bugs
or decisively proves the absence of bugs. We expect that there are other classes of
systems that can be modeled and analyzed using this approach.

Of course, it is well-known that the “safety” problem for access control models (i.e.,

whether a given access is allowed by a given access control model) is undecidable
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in general [Harrison et al., 1975; Denning, 1976]. Nevertheless, there are restricted
classes of access control models for which this problem is decidable. Our work may be
viewed as a step towards identifying such classes of models: we design an expressive
language for dynamic access control systems, in which information-flow properties
remain decidable. [Li et al., 2003] makes similar discoveries about security properties
in the context of trust management languages.

Analyzing access control models with logic programs has a fairly long history. We
focus here only on more closely related work. Recently [Dougherty et al., 2006] pro-
poses a technique to study the security properties of access control policies under
dynamic environments. There, a policy is specified in a fragment of Datalog with-
out negation and recursion, and an environment is specified as a finite state machine.
The composition of the policy and the environment is then analyzed by reduction to
tirst-order logic formulae. While the authors identify some decidable problems in this
framework, the lack of recursion and negation limits the expressivity of both mod-
els and queries, and it is not always possible to specify accurate finite state machines
for environments. Indeed, none of the dynamic access control models studied in this
paper can be analyzed in their framework.

In another line of work, [Sarna-Starosta and Stoller, 2004] studies the Security-
Enhanced Linux (SELinux) system in Prolog. The SELinux system enforces access con-
trol policies written in SELinux’s policy language. The authors describe a tool called
PAL that translates such policies into logic programs, and analyzes them by query eval-
uation. [Naldurg et al., 2006] studies both SELinux and Windows XP configurations in
Datalog in a tool called Netra. Unlike PAL, Netra is both sound and complete, since
query evaluation is decidable in Datalog (while in Prolog is not). However, neither
tool can find vulnerabilities that are exploited dynamically. Some of these concerns
are addressed by later work on policy analysis for administrative role-based access
control [Stoller et al., 2007], which is similar in spirit to ours.

Recently, [Becker et al., 2007] proposes a language called SecPAL that can express
authorization policies and fine-grained delegation control in decentralized systems.
Their specifications are compiled down to programs in Datalog, much as in our work.

Since Datalog is a subset of EON, it follows that EON is at least as expressive as Sec-
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PAL. On the other hand, it is not clear whether SecPAL is as expressive as EON; the
former is tailored to express authorization and delegation policies, while the latter re-
mains largely agnostic in that respect. An interesting aspect of SecPAL is that it allows
negations within queries. While EON allows such negations, the fragment discussed
in Section 3.2.4 does not. However, we have checked that this restriction can be lifted
from that fragment without compromising correctness or efficiency. More recently,
[Gurevich and Neeman, 2008] proposes a distributed-knowledge authorization lan-
guage called DKAL, based on existential fixed-point logic, that is more expressive than
SecPAL. We leave the comparison of DKAL and EON as future work.

Other relevant work includes, of course, ProVerif [Blanchet, 2001b], which we use
to study Plutus in Chapter 2. ProVerif is sound but not complete; it may not terminate
on queries, and it may also fail to prove or disprove queries. Indeed, while ProVerif
can handle Windows Vista’s access control model, it does not terminate on our model
of Asbestos’s webserver. In sum, EON is less expressive than ProVerif; but for models
that satisfy our restrictions, EON guarantees sound and complete results.

Going further, security properties can be enforced by a combination of static and dy-
namic checks. In Chapter 4, we investigate the interplay of secrecy types with access-
control checks in the setting of a fairly standard file system. Our goal is to enable the
analysis of programs that use the file system; the details of the file-system implementa-
tion can then be refined while preserving secrecy properties. The main novelty of this
work is a principled integration of static and dynamic checks for security, in the spirit
of hybrid typechecking. This idea is further explored in Chapter 6.

Our type system extends previous ones so as to deal with access checks. It is par-
ticularly close to an intermediate type system developed in the study of group cre-
ation [Cardelli et al., 2005]. It goes beyond that type system by introducing secrecy
types for file-system constructs, in such a way that dynamic access checks, together
with static scoping, play a role in guaranteeing secrecy of file contents.

Mobility regions [Kirli, 2001] for distributed functional programs are similar to
groups as presented here. Yet another calculus uses group creation to specify discre-
tionary access policies [Bugliesi et al., 2004b]; the type system controls the flow of val-

ues according to those policies. Ideas similar to group creation also appear in a calculus
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for role-based access control [Braghin et al., 2004]. However, it is not clear how to ap-
ply these approaches to our setting. For example, in [Bugliesi et al., 2004b] it is possible
to specify access controls statically, and verify that those access controls are enforced at
run time; instead, in our setting it is possible to declare secrecy intentions, and verify
that those intentions are enforced via appropriate access controls at run time.

As in most access control systems, and as in the study of group creation, we do not
define secrecy as the absence of certain flows of information (that is, as some sort of
non-interference property). Rather, we define secrecy as the impossibility of certain
communication events (such as sending a message that contains a particular sensitive
value). One may however imagine many possible variants, dealing with other con-
cepts of secrecy, and also with authenticity properties beyond the ones verifiable in
our system (e.g., [Gordon and Jeffrey, 2003b]). We leave the investigation of such vari-
ants for further work.

The recent literature also includes a few calculi with constructs for authorization.
In particular, [Fournet et al., 2005] develops a spi calculus with authorization asser-
tions; a type system for that calculus serves for checking generalized correspondence
assertions, rather than secrecy properties.

Several other works emphasize distribution. In the language KLAIM [de Nicola
et al., 1998], a type system checks that processes have been granted the necessary per-
missions to perform operations at specified localities [Nicola et al., 2000]. Another type
system for a distributed pi-calculus ensures that agents cannot access the resources of a
system without first being granted the capability to do so [Hennessy and Riely, 1998].
[Bugliesi et al., 2004a] explores access-control types for the calculus of boxed ambients
with a typing relation similar in form to ours, but without dynamic access control—
access control is specified in terms of static secrecy levels.

Yet another research direction addresses access control in languages such as Java.
[Banerjee and Naumann, 2003] examines the use of access control for secure informa-
tion flow in that setting. [Pottier et al., 2005] develops type systems that guarantee the
success of access checks. In contrast, our type system does not guarantee the success of
access checks; indeed, type soundness depends on the failure of some of those checks.

This approach of combining access control with types for security is itself close to hy-
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brid typechecking [Flanagan, 2006], where dynamic checks are used where possible to

as required to complement static checks.

More generally, in Chapter 5, we show that access control can soundly enforce dy-
namic specifications, i.e., specifications that can vary at run time. Such specifications
are quite useful, since they can rely on accurate, run-time security assumptions, instead
of “worst-case”, static security assumptions. Not surprisingly, they allow finer analy-
ses than static specifications. For example, they allow us to reason about the secrecy
of file contents that are written after revocation of public access; such reasoning is not
possible if the contents of the file are statically assumed to be either public or secret.
The possibility of enforcing such dynamic specifications seems to capture the essence

of access control.

In this context, we implement low-level dynamic access controls in an existing ob-
ject language to make it suitable as a core calculus for studying security properties of
concurrent, stateful services, such as those implemented by network objects [Birrell
et al., 1993]. We then show a typing approach for verifying high-level intentions on
service manipulation in the resulting language. The type system allows dynamic spec-
ifications for services, and crucially relies on corresponding low-level dynamic access
controls provided by the language runtime to verify those specifications. This combi-
nation helps in developing precise security analyses for shared services that are used

under varying assumptions over time.

Along these lines, one body of work studies the enforcement of policies specified
as security automata [Schneider, 2000; Hamlen et al., 2006]. Yet another studies sys-
tems with declassification, i.e., conservative relaxation of secrecy assumptions at run
time [Myers et al., 2004]. There is also some recent work on compromised secrets [Gor-
don and Jeffrey, 2005; Haack and Jeffrey, 2005] in the context of network protocols. In
comparison, our analyses apply more generally to varying assumptions at run time.
Perhaps closest to our work are analyses developed for dynamic access control in lan-
guages with locality and migration [Hennessy et al., 2003; Gorla and Pugliese, 2003].
Similar ideas appear in a type system for noninterference that allows the use of dy-

namic security labels [Zheng and Myers, 2004].
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Our approach of combining access control with types for security is also fruitful for
formalizing the security designs of operating systems. Specifically, in Chapter 6, we
formalize DFI—a multi-level integrity property based on explicit flows—and present
a type system that can efficiently enforce DFI in a language that simulates Windows
Vista’s security environment.

By design, our analysis is control-insensitive—it does not track implicit flows. In
many applications, implicit flows are of serious concern. It remains possible to extend
our analysis to account for such flows, following the ideas of [Volpano et al., 1996;
Zdancewic and Myers, 2001; Myers et al., 2004; Li and Zdancewic, 2005]. However, we
believe that it is more practical to enforce a weaker property like DFI at the level of an
operating system, and enforce stronger, control-sensitive properties like noninterfer-
ence at the level of the application, with specific assumptions.

Our core security calculus is simplified, although we believe that we include all key
aspects that require conceptual modeling for reasoning about DFI. In particular, we
model threads, mutable references, binaries, and data and code pointers; other features
of x86 binaries, such as recursion, control flow, and parameterized procedures, can be
encoded in the core calculus. We also model all details of Windows Vista that are
relevant for mandatory integrity control with dynamic labels. On the other hand, we
do not model details such as discretionary access control, file virtualization, and secure
authorization of privilege escalation [Howard and LeBlanc, 2007], which can improve
the precision of our analysis. Building a typechecker that works at the level of x86
binaries and handles all details of Windows Vista requires much more work. At the
same time, we believe that our analysis can be applied to more concrete programming
models by translation.

Our work is closely related to [Tse and Zdancewic, 2004] and [Zheng and Myers,
2004] on noninterference in lambda calculi with dynamic security levels. While [Tse
and Zdancewic, 2004] does not consider mutable references in their language, it is pos-
sible to encode the sequential fragment of our calculus in the language of [Zheng and
Myers, 2004]; however, well-typed programs in that fragment that rely on access con-
trol for DFI do not remain well-typed via such an encoding. Specifically, any restric-

tive access check for integrity in the presence of dynamically changing labels seems to
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let the adversary influence trusted computations in that system, violating noninterfer-
ence [Zheng, 2007].

Noninterference is known to be problematic for concurrent languages. In this con-
text, [Zdancewic and Myers, 2003] studies the notion of observational determinism;
[Abadi, 1999; Hennessy and Riely, 2002] study information flow using testing equiv-
alence; and [Boudol and Castellani, 2002; Honda and Yoshida, 2002] use stronger no-
tions based on observational equivalence. Sophisticated techniques that involve lin-
earity, race analysis, behavior types, and liveness analysis also appear in the litera-
ture [Honda and Yoshida, 2002; Zdancewic and Myers, 2003; Hennessy and Riely, 2002;
Kobayashi, 2005]. While most of these techniques are developed in the setting of the pi
calculus, other works consider distributed, multi-threaded, and higher-order settings
to study mobile code [Hennessy et al., 2005; Russo and Sabelfeld, 2006; Barthe et al.,
2007; Yoshida, 2004].

DFI being a safety property [Alpern and Schneider, 1985] gets around some of the
difficulties posed by noninterference. A related approach guides the design of the oper-
ating systems Asbestos [Efstathopoulos et al., 2005] and HiStar [Zeldovich et al., 2006],
and dates back to the Clark-Wilson approach to security in commercial computer sys-
tems [Clark and Wilson, 1987; Shankar et al., 2006]. In comparison with generic models
of trace-based integrity that appear in protocol analysis, such as correspondence asser-
tions [Gordon and Jeffrey, 2003b; Fournet et al., 2005], our integrity model is far more
specialized; as a consequence, our type system requires far less annotations than type
systems for proving correspondence assertions.

Our definition of DFI relies on an operational semantics based on explicit substi-
tution. Explicit substitution, as introduced in [Abadi et al., 1990], has been primar-
ily applied to study the correctness of abstract machines for programming languages
(whose semantics rely on substitution as a rather inefficient meta-operation), and in
proof environments. It also appears in the applied pi calculus [Abadi and Fournet,
2001] to facilitate an elegant formulation of indistinguishability for security analysis.
However, we seem to be the first to use explicit substitutions to track explicit flows in a
concurrent language. Previously, dependency analysis [Lévy, 1978; Abadi et al., 1996]

has been applied to information-flow analysis [Abadi et al., 1999; Pottier and Conchon,
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2000; Zdancewic and Myers, 2002]. These analyses track stronger dependencies than
those induced by explicit flows; in particular, the dependencies are sensitive to control
flows. In contrast, the use of explicit substitutions to track explicit flows seems rather
obvious and appropriate in hindsight. We believe that this technique should be useful
in other contexts as well.

Our analysis manifests a genuine interplay between static typing and dynamic ac-
cess control for runtime protection. We seem to be the first to study this interaction
in a concurrent system with dynamic labels for multi-level integrity. This approach of
combining static and dynamic protection mechanisms is reflected in previous work on
typing, e.g., for noninterference in a Java-like language with stack inspection and other
extensions [Banerjee and Naumann, 2003; Pistoia et al., 2007b], for noninterference in
lambda calculi with runtime principals and dynamic labels [Tse and Zdancewic, 2004;
Zheng and Myers, 2004], and for secrecy in concurrent storage calculi with discre-
tionary access control mechanisms, as covered in Chapters 4 and 5. A verification
technique based on this approach is developed by Flanagan [Flanagan, 2006] for a
lambda calculus with arbitrary base refinement types. In these studies and ours, dy-
namic checks complement static analysis where possible or as required, so that safety
violations that are not caught statically are always caught at runtime. Moreover, static
typing sometimes subsumes certain dynamic checks (as in our analysis), suggesting
sound runtime optimizations. This approach is reflected in previous work on static
access control [Hennessy and Riely, 2002; Pottier et al., 2005; Hoshina et al., 2001].

In most real-world systems, striking the right balance between security and practice
is a delicate task that is never far from controversy. It is reassuring to discover that
perhaps, in the future, such a balance can be enforced formally in a contemporary
operating system.

Finally, in Chapter 7, we present a comprehensive analysis of the problem of im-
plementing distributed access control with capabilities. This culminates a line of work
that we begin in [Chaudhuri and Abadi, 2005] and continue in [Chaudhuri and Abadi,
2006a]. In [Chaudhuri and Abadi, 2005], we show how to securely implement static ac-
cess policies with capabilities; in [Chaudhuri and Abadi, 2006a], we present a safe (but

not secure) implementation of dynamic access policies in that setting. In this chapter,
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we explain those results in new light. In particular, we reveal the several pitfalls that
any such design must care about for correctness, while discovering interesting special
cases that allow simpler implementations. Further, we systematically analyze the diffi-
culties that arise for security in the case of dynamic access policies. Our analysis leads
us to develop variants of the implementation in [Chaudhuri and Abadi, 2006a] that
we can prove secure with appropriate assumptions. Further, guided by our analysis
of access control, in [Chaudhuri, 2008a] we show how to automatically derive secure
distributed implementations of other stateful computations. This approach is remi-
niscent of secure program partitioning [Zdancewic et al., 2002], and deserves further
investigation.

Access control for networked storage has been studied in lesser detail in [Gobioff
et al., 1997] using belief logics, and in [Halevi et al., 2005] using universal compos-
ability [Canetti, 2001]. The techniques used in this chapter are similar to those used
previously for secure implementation of channel abstractions [Abadi et al., 1998] and
authentication primitives [Abadi et al., 2000], and for studying the equivalence of com-
munication patterns in distributed query systems [Maffeis, 2006]. These techniques
rely on programming languages concepts, including testing equivalence [Nicola and
Hennessy, 1984] and full abstraction [Milner, 1977; Abadi, 1998]. A huge body of such
techniques have been developed for formal specification and verification of systems.

We do not consider access control for untrusted storage [Kallahalla et al., 2003]; a
detailed treatment already appears in Chapter 2. In file systems for untrusted stor-
age, such as Plutus, files are cryptographically secured before storage, and their access
keys are managed and shared by users. As such, untrusted storage is quite similar to
public communication, and standard techniques for secure communication on public
networks apply for secure storage in this setting. Related work in that area includes
formal analysis of protocols for secure file sharing on untrusted storage [Mazieres and
Shasha, 2002; Blanchet and Chaudhuri, 2008] (some of which is covered in Chapter 2),
as well as correctness proofs for the cryptographic techniques involved in such proto-
cols [Backes et al., 2005; Fu et al., 2006; Backes et al., 2006].
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Appendix A

Extended models of Plutus

In this appendix, we list a more detailed model of Plutus in ProVerif, that takes into

account server-verified writes (and PATCH).

1 free net, newgroup, revoke, rkeyreq, wkeyreq, corrupt.

private fun rprivchannel /1.
private fun wprivchannel/1.
private fun tokenprivchannel /1.

private fun writefs/0.

SN G = W DN

private fun readfs/0.

N

let processOwr =

e

new seedl; new seed2;
let ownerpubkey = (e(seed1, seed2), N(seed1)) in
10  let ownerprivkey = (d(seedl,seed2),N(seed1)) in
11 out(net, ownerpubkey);

(* public channels *)

(* private channels *)

(* create owner’s RSA key pair *)

(* publish owner’s RSA public key *)

(* receive a new group creation request;

initreaders and initwriters are the initial lists of allowed readers and writers, respectively *)

(* create the new group g *)

(* publish the group name g *)

12 (

13 !in(net, (= newgroup, initreaders, initwriters));

14 new g;

15 out(net,g);

16 new currentstate; (* create a private channel for the current state for group g *)
17 (
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18
19

20
21
22
23

24
25
26

27

28
29
30
31

32
33
34
35

36
37
38
39
40
41
42
43
44
45
46

( new initt; (* create initial token *)

out(tokenprivchannel(g), (hash(initt), succ(zero)));

(* send initial token’s hash to the server *)

event istoken (initt, g, zero); (* assert that initt is the token for group g at version 0 *)
new initlk; (* create initial Ik *)
new seed3; let initsk = (d(seed3, initlk), N(seed3)) in (* generate initial sk *)

out(currentstate, (zero, initreaders, initwriters, initlk, initsk, initt))

(* store state for version 0 on channel currentstate *)

(* Next, we move from version 0 to version 1 *)

(in(net, (= revoke, = g, newreaders, newwriters));  (* receive a revoke request for group g;

newreaders and newwriters are the new lists of allowed readers and writers *)
in(currentstate, (= zero, oldreaders, oldwriters, oldlk, oldsk, oldt));

(* read state for version 0 *)
new seed3; (* choose new RSA seed *)
new newt; (* create new token *)
in(tokenprivchannel(g), (hashx, = zero));
out(tokenprivchannel(g), (hash(newt), succ(zero)));

(* send new token’s hash to the server *)
event istoken (newt, g, succ(zero));(* assert that newt is the token for group g at version 1*)
let newlk = exp(oldlk, ownerprivkey) in (* wind old Ik to new Ik *)
let newsk = (d(seed3, newlk), N(seed3)) in (* generate new sk *)
out(currentstate, (succ(zero), newreaders, newwriters, newlk, newsk, newt))

(* store state for version 1 on channel currentstate *)

)

N (* Similarly, we move from version 1 to version 2, and so on *)

(

in(net, (= rkeyreq,7,= g)); (* receive read key request for reader r and group g *)
in(currentstate, (v, readers, writers, Ik, sk, t)); (* get the current state *)
out(currentstate, (v, readers, writers, Ik, sk, t));
if member(r, readers) then (* check that the reader v is allowed *)
( event isreader(r,g,0); (* assert that r is a reader for group g and version v *)

out(rprivchannel(r), (g, v, lk, ownerpubkey)) ) (* send lk and owner’s public key to r *)
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47
48
49
50
51
52
53
54
55

56
57
58

59
6
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

o

77
78
79

(
lin(net, (= wkeyreq, w, = g)); (* receive write key request for writer w and group g *)
in(currentstate, (v, readers, writers, Ik, sk, t)); (* get the current state *)
out(currentstate, (v, readers, writers, Ik, sk, t));
if member(w, writers) then (* check that the writer w is allowed *)
(let (., n) =skin
let sn = exp(hash((n,g,v)), ownerprivkey) in (* sign the modulus *)
event iswriter(w, g, v); (* assert that w is a writer for group g and version v *)
out(wprivchannel(w), (g, v, Ik, sk,sn, t)))
(* send Ik, sk, signed modulus, and token to w *)
)
).
let processWir =
lin(net, (w,g)); (* initiate a writer w for group g *)
out(net, (wkeyreq, w,g)); (* send write key request *)
in(wprivchannel(w), (= g, v, Ik, sk,sn, t)); (* obtain Ik, sk, signed modulus, and token *)

(

( new m; (* create data to write *)
let encx = enc(m, Ik) in (* encrypt *)
let sencx = exp(hash(encx), sk) in (* sign *)
event puts(w, m, g,v); (*assert that data m has been written by w for group g at version v *)
let (_,n) = sk in
out(writefs, (t, (g, v,n,sn, encx, sencx))) (* send content with token to the server *)

)

|

(in(net, = (corrupt,w)); (* receive corrupt request for w *)
event corrupt(w, g,v); (* assert that w has been corrupted for group g at version v *)
out(net, (Ik, sk, sn,t)) (* leak Ik, sk, signed modulus, and token *)

)

).
let processAdvWir = (* allow the adversary to send data to the server *)
!'in(net, (¢, content));
out(writefs, (¢, content)).
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80 let processServer =

81 !in(net,g); (* initiate a group g *)
82

8

84 !'in(tokenprivchannel(g), (hashx,vx)); (* receive a hash of the current token from g's owner *)
85 out(tokenprivchannel(g), (hashx, vx)) (* carry the hash of the current token for g *)
86 )

87 |

88 |

89 !in(writefs, (¢, content)); (* receive content sent with token t *)
90 out(net, content); (* leak the content *)
91 in(tokenprivchannel(g), (hashx,vx));(* get the hash of the token at (the current version) vx *)
92 out(tokenprivchannel(g), (hashx, vx));

93 if hash(t) = hashx then (* check that t hashes to the same string as the token at vx *)
94 event authwrite(g, vx, t); (* assert that content sent with token t is verified for g at vx *)
95 ! out(readfs, (content, g, vx)) (* write server-verified content for ¢ at vx *)
9% )

97 ).

98 let processRdr =

99 lin(net,(r,8)); (* initiate a reader r for group g *)
100  out(net, (rkeyreq,7,¢)); (* send read key request *)
101 in(rprivchannel(r), (= g, v, lk, ownerpubkey)); (* obtain Ik and owner’s public key *)
102 (

103 (in(readfs, ((= g, vx, n,sn,encx, sencx), = g,v'));

(* obtain header and server-verified content from the server *)

104 if hash((n,g,v)) = exp(sn, ownerpubkey) then (* verify signature in header *)
105 (if (v,vx) = (succ(zero), zero) then

106 (let Ik = exp(lk, ownerpubkey) in (* unwind lk )
107 let vk = (genExp(n, lk),n) in (* derive vk *)
108 if hash(encx) = exp(sencx, vk) then (* verify signature of encryption®)
109 let x = dec(encx, k) in (* decrypt to obtain data *)
110 event gets(r,x,g,vx,v)

(* assert that reader r read data x for group ¢ and version vx, from content written at v’ *)
111 )

194



112

113 )

114 |

115  (in(net,= (corrupt,r)); (* receive corrupt request for r *)
116 event corrupt(r,g,v); (* assert that r has been corrupted for group g at version v *)
117 out(net, lk) (* leak Ik *)
18 )

119 ).

120 process processOwr | processWtr | processAdvWir | processServer | processRdr

(* put all processes together *)
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Appendix B

Supplementary material on EON

In this appendix, we provide supplementary material for Chapter 3. Specifically, in
Appendix B.1, we review an algorithm for deciding satisfiability in Datalog, on which
we rely in Section 3. In Section B.2, we outline an undecidability proof for query eval-

uation in an extension of EON with dynamic binary base relations.

B.1 Satisfiability in Datalog

We review a decision procedure for satisfiability of safe stratified Datalog programs
with unary base relations. This procedure is due to Halevy et al. [Halevy et al., 2001].
By translating EON into this particular Datalog subset (as shown in Section 3.2), we
arrive at a decision procedure for queries on EON programs.

Intuitively, Halevy et al. show that safe stratified Datalog programs with unary base
relations can be translated to equivalent first-order logic formulae over unary relations,
whose satisfiability is decidable. In fact, we show that due to the pleasant structure
of those formulae, their satisfiability can be further reduced to satisfiability of simple
boolean logic formulae.

We begin by recalling some key data structures from [Halevy et al., 2001]. A region

R(x) for a variable x is of the form
B(x),!B'(x)
R(x) is said to be unsatisfiable if BN B' # @. Two regions for x are said to
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be equivalent if they are the same or are both unsatisfiable. Intuitively, a region
R(x) = B(x),!B'(x) is a membership constraint on x in the set B\ U B'.

Next, a generalized tuple G(X') for X’ = x1,...,%, is of the form
Rl(x1), ey Rn(xn),

WRIY), - RLWY),
Az RY(z), ..., BzR{(z)

This generalized tuple is interpreted as the first-order logic formula

Rl(xl) VAN Rn(xn)/\
JyRIy) A .. A TR (y) A
BzRI(z) AN ... N AzR(z)

Two generalized tuples for X" are said to be the same if they have equivalent regions
for X', and equivalent sets of regions for both the positive as well as the negative ex-
istential variables. Intuitively, a generalized tuple G(X") is a constraint that involves
multiple variables X, yet is expressed entirely via region constraints on individual
variables. (In other words, variables do not constrain each other in G(X").) As shown
below, every positive literal of the form S(X’) in a safe stratified program with unary
base relations can be expressed as a set of generalized tuples for ', called the extension
of S(X'), so that S(X") can be interpreted as the disjunction of the interpretations of

those generalized tuples.

B.1.1 Computing extensions

We mention a few elementary operations that involve straightforward applications
of boolean laws. The negation of a generalized tuple for X yields a set of generalized
tuples for X¥. The conjunction of a generalized tuple for X and a generalized tuple
for % yields a generalized tuple for ¥ U x'. The conjunction of sets of generalized
tuples is the cross product of those sets. Negation of a set of generalized tuples is the
conjunction of their negations. The projection of a generalized tuple for ¥ on ¥’ C X
is a generalized tuple for x’; projection is trivially generalized to a set of generalized

tuples.
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Extensions for each literal of the form S(X"), where S is a relation in the program,
can be computed by topologically sorting the strongly connected components in the
dependency graph on relations, and visiting these components from the bottom up.
For each base relation B, let the extension of B(x) be {Gp(x)}, where Gp(x) = B(x).
The extensions of all other positive literals in the program are initialized to @.

Let S be the component that is currently under visit. Suppose that C is a clause with
S(X’) in its head for some S € S. For each literal in the body of C, we compute the
negation of its extension; we then take the union of the resulting sets of generalized
tuples, and project the result to yield a set of generalized tuples for x. Finally, we
take the union of this set with the extension of S(x"). Clauses such as C are iteratively

considered to compute the extension of each literal of the form S( ") in S, till fixpoint.

B.1.2 Satisfiability of generalized tuples

It is easy to see that satisfiability of generalized tuples is decidable. Indeed, the
interpretation of G( ") is a FOL formula F;(X") over unary relations, and satisfiability
of such formulae is decidable. In this case, a simple procedure exists given the structure

of generalized tuples. If G(X) is

Rl(xl), ey Rn(xn),

FyRY), - FRL®Y),
Az R (z), ..., BzR{(z)

then 3% .Fg(X) is equivalent to

Elxl.Rl (xl)/\ N Elxn.Rn(xn) A
JyRIWA .. A FYRL(y) A
Bz R ()N ... AN Bz R (z2)

which is further equivalent to

Jz. (Ri(z) A "RI@)A...AIRL(z)) A
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Jz. (Ru(z) A IRY()A...A IR (2)) A
Jz. (Ri(z) A "RI@)A...AIRL(z)) A

Jz. (R, (z) A "R{E)A...AIR{(z))A

We claim that these are m + n satisfiability problems in boolean propositional logic. In-
deed, we can interpret unary base relations as propositional variables, rewrite regions

R(x) = B(x),!B(x) as formulae Fgr = AB A !\ B/, and rewrite
Jz. (R(z) A IRV (z) Ao A ITRY(2))

as

Fr A 'Fpo A... A 1Fpy
Finally, a literal S(X') is satisfiable if and only if its extension contains a satisfiable
generalized tuple.

Note that the test mentioned in [Halevy et al., 2001] for satisfiability of generalized
tuples is obviously incomplete; there, it is stated that a generalized tuple is unsatisfi-
able if and only if the region for a negative existential variable is the same as the region
for a non-negative existential variable. However, a generalized tuple is unsatisfiable
even if the union of the regions for several negative existential variables is a superset

of the region for a non-negative existential variable.

B.2 Undecidable query evaluation in an extension of EON

Recall that in EON, we restrict the relations in the head of new and next clauses
to be unary. We show that lifting this restriction leads to a language in which query
evaluation is undecidable.

Specifically, consider an extension of EON with the following sort of clauses:

new B(_,y) :— R(y).

The semantics of the language is extended as follows.

new B(,,y) :— R(y). € P R(c') € Z(P,DB) c is a fresh constant

DB - DB U {B(c,c')}
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Basically, we show that we can encode an arbitrary instance of Post’s correspondence
problem (PCP) in this language. Let e denote concatenation over bitstrings. The PCP

problem is:

Given two finite lists of bitstrings a1,...,a, and by, ..., by, is there a non-
empty sequence of indices iy, ..., i (1 < iy < m)such thata; o...04q;, =

bil.'--.bik?

The PCP problem is a classic undecidable problem. Given an arbitrary instance
ai,...,amand by, ..., by, of the PCP problem, we now construct a program in the exten-
sion of EON that encodes that instance. We denote the condition x = 0 e y by Zero(x, ),
and the condition x = 1 e y by One(x,y). (Note that Zero and One are binary base rela-

tions.)

new Empty.

new Zero(_,y) :- Bitstring(y).
new One(_,y) :- Bitstring(y).
Bitstring(x) :- Empty(x).
Bitstring(x) :- Zero(x,y).

Bitstring(x) :- One(x,y).

Next, we define the derived relations Concat_aj and Concat_bj for each a; and b;

(1 <j < m), as follows. Say a; = 0100. Then we include the following clause:

Concat_aj(x,y) :-
Zero(x,yl) ,0ne(yl,y2) ,Zero(y2,y3),Zero(y3,y).

Intuitively, Concat_aj(x,y) denotes the condition x = a; e y. Finally, we define the

relation Gen as follows, by including a clause for each a; and b; (1 < j < m):
Gen(x,y) :-

Concat_aj(x,x1),Concat_bj(y,yl),Gen(x1l,y1).

Gen(x,y) :- Empty(x), Empty(y).
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Now Gen(x, y) is true if and only if there is a sequence iy, - - -, iy (1 < j < m) such that
x=a;e...eq, andy =b; e...eb;. Now, if query evaluation in this language is de-

cidable, evaluating the query Gen(x, y) solves the given PCP instance (contradiction).
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Appendix C

Implementing a typed file system in conc?

In this appendix, we implement a typed file system in conc 7. More precisely, we
lift the type system of Chapter 4 to a type-directed compilation whose target language
is conci. We prove that the compiled programs are well-typed and can simulate their
sources. The soundness of the former type system follows from the soundness of the

type system for conc?.

C.1 Type-directed compilation

The compilation judgements are of the form I' = P ~» a. The rules for these judg-
ments extend the ones for well-typed processes I' = P in Chapter 4. The specified
compiler is type-directed, in the sense that the compilation of processes is guided by
their typing derivations. In the target language, pairs can be constructed by the syntax

(u,v), and destructed by the syntax split p as (x,y); a (see below).

Typing rules I'- P ~~ a

(PROC OUT) (PROC IN)
TFM:LT] TFN:T TFP~a TFM:L[T] T,x:THP~a
split M as (-, y); split M as (v, -);
[+ M(N);P~ | let_=y(N)in I'EM(x);P~ | letx =y(L)in
a a
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(PrOC OUT 1)
r=-M: L 'EN: L IT'EP~a

I M(N);P~ | let_=y(N)in

a

split M as (_, y); . ( let _ = net!{N) in )

a

(PROC IN L)
't-M:_L Ix:LEFP~a

lit M ,);
split Mas (y, ) R ( let x = net?(_L) in )

I'EM(x);P~ | letx =y(L)in

a

(PROC NEW CHAN)
[,x:L[|T]]FP~a
(vn : [Receivet : (L) | T|,Send™ : (| T])L]")
(vm?: ((L)LT])™)
(vmt: ((LT])L)™)
Ik (vx:L[T]) P~ | n+ m?m![Receive = (_).Receive(L),
Send = (M').Receive = (). M| T’

let x = (m?,m!) in

a

(PROC PAR) (PROC REPL)
(PROC NIL)
THP~a r-Q~»n TFP~sa
FrF0~ L
TEP|Q~albrl L (vn: 1)
rrpe | (mid
n—mle= (J)ar (L)
m{_) r L

(PROC read)
Ik x:Reqrread Thy: ({TH (L, ), [T']) I'EP~a
LOl LJL =T<T

I'Ex(y);,P~let_=x(y)ina

(PROC write)
I'F x:Reqp.write Thy: ({TH.(LLy), T I'EP~sa
L3Ol LJL, =T <T

I'-x(y);,P~let_=x(y)ina
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(PROC chmod)
[k x:Reqp.chmod Tty (({}#Lo(Ls, Ly), (L}, L)) IT'EP~a
L3l L3L,= L, JL,L,3Ly

I'x(y);,P~let_=x(y)ina

(PROC new)
I'-x:Reqpmew T Fc: [[{_}L(, )] I'P~sa
Lol

I'=%(c);P~>let_=x(c)ina

For completeness, we show a type-directed encoding of pairs in conc?. The derived
typing rules for pair construction and destruction are standard, and we omit them.

A pair type is an object type with 1eft and right fields.
(S,T) = [1eft™ : (L)S,right™ : (L)T]ISIMITI

A pair is constructed by creating an object with 1left and right fields, populating the

fields with its left and right projections, and returning the name of the object.

'Fu:S I'Fo:T
(vn:(S,T))
(vimy = ((L)S)ISILITIFISI
(v, = ((L)YT)ISIDITIENTI

n v my,m[left™ : ()u,right’ : (\)o] I

n

A pair is destructed by binding new method names to the left and right fields of the
underlying object, and reading the fields by calling those names.

I'p:(S,T)
(vmy : ((L)S)ISI ISILITI
(vm, : (<J_>T)HT|| H5||U||TH)

p — my, my|

I Fsplitpas(x,y); a <
letx =m;(L)inlety =m,(L)ina
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'Ep:L

(1/71’11 : J_)

L

I'tsplitpas(x,y); a o (vrn )
p = my, ]

letx =m;(L)inlety =m,(L)ina
A pi-calculus channel is compiled to a pair of indirections for receiving and sending
on that channel. In particular, a new channel is compiled by creating a new object with
Receive and Send methods, and binding the channel name to a pair of indirections to

those methods.
LLITI) = (((DLTDE (LT
Further, we assume that a public channel net is available in the context, and compile

that channel similarly. In the sequel, ® represents a hole in a context.

(vn : [Receivet : (L) 1,Send™ : (L)1]")

(vm?: ({(L)L)*T)

(vm!: ((L)L)*T)

n+— m?m![ Receive = (_).Receive(l),
Send = (y).Receive = (). y

nets = r B, Read(y)

r By Write(y)

r B .Chmod(y)

B New(y)] ¢

let (net?, net!) = (m?,m!) in

.
The compiler forwards any message sent on a public channel to net; conversely, any
message expected from a public channel can be received on net. Such channels include,
e.g., the channels B | .s¢, which are not compiled as usual pi-calculus channels; instead,
any message sent on net is internally forwarded to the compiled channels j  .»¢.

A file is compiled to the indirection of a file object name. In particular, a new file is

compiled by creating a new object with owner, acl, read, write, and chmod methods.

IL{THLo(L,, Ly)| = [owner™ : (L) Lo,
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Further, the indirections for the methods of the file object are recorded in a system

acl™: (1) (L, Ly),
(L) LT1,
(LT L

chmod™ : ((L,, Ly)) L *

read™ :

write™

table (via sysSnd), indexed by the file.

. def
newfiley 1y, 1,1, =

A request channel B .5 is compiled to an indirection that, when called, simulates the
behavior of the file system on receiving a message on fB;.». The compilation strategy
for L # L is slightly different from that for L = L. (Different methods must be called

to account for differences in the required typing invariants. We defer a more detailed

(vn: [owner™ : (1) L,,
aclt: (L) (Ly, Ly),
read® : (L) T,

(T) L,
chmod™ : ((Ly, Ly)) L

vyt ((L) L))

(L, L)) ™)
) (LULy) )

write™

(

(vmg = ((L)
(vmy = ((L)
(vmy : ((T)
(vme = ((Ly, L) L) T(EULo))

n— Mo, Mg, My, My, mc[

) (LULy) )

owner = (7) Lo,

acle (U).(T,T),

read = (_). read(l),

write = (y). read & (1)y,

chmod = (y).acl= ()y | T
let f =7 in

sysSnd((f, (1o, Mg, my, My, me))) T

f

discussion of this problem.) We begin by assuming that L # L.
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def

BLE =

For i

{Read, Write, Chmod}, the file system proceeds as follows. First, it retrieves the indirec-
tions for the methods of relevant file object from the system table (via sysRcv). These

indirections can be used to look up the owners, readers, or writers of the file, and to

(vn: [Read™ : VY, Z,Y,, Vs, Yo, X, Z/
(AZIY (Y, Yo), X[Z']) [IL< Y, = Z < Z')
1,
write : VY, Z,Y,,Y,, Yo, Z/
(Y{Z}#Yo(Yy, Yu), Z') [L< Y, = Z' < Z)
1,
Chmod™ : VY, Z, Yo, Yy, Yo, Y, Y,
(H{ZHY% (%, Yo), (Y)Y | L Yo = Y < Y, Yl < Ya)
1,
Newt :VX,Y,Z,Y:, Yo
(X[Y{Z}L(Y,, Yo)] | L < Y, U Ya,
1<YUY,=2Z2<1,1<YUYy=1<2Z)
Y{ZML(Y:, Yo) ]7)
(vReady : (...) L) (vWriter : (...)TE) (vChmody @ (...) TF) (vNewy : (...)TE)
n +— Readp, Writey, Chmodp, Newp |
Read = (y) let (f,c) =yin
split syshcv(f) as (-, 0a, 0r, -, -); let (gr,-) = v,(L) in
if L J grthenletx = v,(_) insplitcas (., c!); c!{x),
write = (y) let (f,M') = yin
split syshcv(f) as (., 0a, -, Uy, -); let (L, gw) = va(L) in
if L 3 gy then vy, (M),
Chmod = (y) let (f, (87, 8%)) =y in
split sysRev(f) as (v, -, —, -, vc); let go = v,(L) in
if L 2 o then vc((87, &%),
New = (c) let f = neufiley ;|\ . in
splitcas (_,c!); c!(f) | r
split (ReSdL,WtheL,ChrﬁodL, Ne\wL) as (Br.read, B .write, Br.chmod, B] .new);
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Read, Write, or Chmod the file. Next, it compares L with the relevant levels to check
access to the file. Finally, it calls the relevant method s for the file.

The types for the compiled request channels are sophisticated. First, they are poly-
morphic in the types of files that may be created or accessed by those channels. Next,
they carry type constraints that must be guaranteed when sending requests on those
channels. Conversely, these constraints can be assumed when typing the service of

those requests by the file system.

ef

|Req; Read| = (VY,Z,Y,,Y;, Y, X, Z'

(IAZHY (Y0, Yo) I, [X[ZTD) IL< Y, = Z < 7))
1L )t

|Req; Write| £ (VY,Z,Y,, Yy, Yo, Z'
(IY{Z3#Y, (Y, Yo) |, Z) L <Y, = Z' < Z)
1 E

|Req;.Chmod | = (VY,Z,Y,, Yy, Y, Y., Y,
(IAZHYo (Y0, Yo) I, (YL Y)) IL < Yo = Y] <Y, Y, < Yo)
1L )t

|Req; New| = (VX,Y,Z,Y;, Yo
(IX[Y{Z}HL(Y,, Yu)] ] | L < Y, U Yy,
1L<yYuYy,=2<1,1<YUY,=1<27)

1L )t

The compiled types respectively specify the following requirements:

e To read a file, if L may be a reader of the file, then the content type of that file
must be a subtype of the message type of the channel on which the content of

that file may be sent (cf. (PROC Read)).

e To write a file, if L may be a writer of the file, then the type of the sent content

must be a subtype of the content type of that file (cf. (PROC Write)).

e To chmod a file, if L is an owner of the file, then the sent access-control list must
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respect the bound on access-control lists of that file (cf. (PROC Chmod)).

e To create a new file, L must be the level of owners of the file, and the type of the

file must be well-formed (cf. (TYP FILE)).

We now assume that L = L. Some differences in the compilation strategy arise in

types, and in the manner of retrieving information from the system table (via sysRcv_L).

(vn: [Read™ : (L)L,
write® : (L)L,
Chmod™ : (L)L,
New' : (L)L ]7)
(vRead| : (...) ") (vWrite, : (...)T+) (vChmod | : (...)T4) (vNew, : (...)TH)
n +— Read |, Write |, Chmod |, New | |
Read = (y) let (f,c) = yin
split sysRev_L(f) as (L, vq, 0y, -, _); let (gr,_) = va(L) in
if L 3 g, thenletx = v,(_) insplitcas (., c!); c!(x),
B L&Y Write = (y) let (f,M') = yin
split sysIR;ch_<f> as (-, Va, -, Vw,-); let (L, gw) = va(L) in
if L 3 g then v, (M),
Chmod &= (y) let (f, (87, 8w)) = v in
split sysR’\ch<f> as (Vo, - - -, Uc); let g§o = vo (L) in
if L 3 go then 0c((g7, 81)),
New = (c) let f = newfile, | | | | in
splitcas (L c!); c{(f) | T
split (ReSdJ_,Wri\teJ_, Chmod |, Ne\\/\/J_) as (B .read, B, .write, f .chmod, B .new);

def

|Req .|| = L

Finally, we code the system table as a file-indexed list of records.
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sys€ =

(vi: [find™ : (1)
(VY/ Z/ YOI YYI Yw
<(Y{Z}#Y0(Yr’ Yw)’ (<J‘>(TYrZ/Yo/Yr/Yw ‘ CY,Z/YO/YrrYw))TT)>
)T,
findL*: (L)
(L, (LYEZYo, Y, Yo ) (TL 2y, v Y | €Lz o v v)) T 1))
1T,
sysRev™ 1 VY, Z,Y,, Yy, Yo
(Y{Z}#Y,(Y;, Yu))
(TYrZ/Yo;YrrYw) | CY/ZerYnYw )’
sysRev LT : (L)
(3Z, Y0, Ye, Yu) (TL,zv, Y | CL2,Y0 ) Yo )
sysSnd™ : VY, Z,Y,, Yy, Yy
((Y{Z}#YU(YV’ Yw)’ TY/ZerYrrYw) ‘ CYVZ/YOIYI’/YTU)
)
(vfind :...) (vfindL : ...) (vsysRev : ...) (vsysRev L :...) (vsysSnd : ...)
n +— find, find L, sysRev, sysRev L, sysSnd|
find= () (vm:...) m,
findl = (J)(vm:...) m,
sysRev = (f) let x = find() in
(ve: ((L)(Ty,zyvo v ve | Crz v, vve)) ')
x((f,e)) T 1),
sysRevl = (f) letx = find L () in
(ve: ((L)(3Z, Yo, Yo, Yo ) (T z v, v ve | CLzvo v v)) ™)
x(f,c) 7 &(1),
sysSnd = (z) split z as (f, ms);
let x = £ind() in
(vpr..)(vm:..)p— m[l = (z)splitzas (y,c);
(ify=fthen (vg:...)q— cl{ = ()ms]) T x((y,c))]
rfind= () m
r letx = find L () in
(vp:..)(vm:..)p— m[l= (z)splitzas (y,c);
(ify=fthen (vg:...)qg— c[l = ()ms]) T x((y,c))]
Ffindl = () m |1
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In the code, we use the following abbreviations in the types of records, and the associ-

ated type constraints.

Tyzxv,wve = (L)Y)Y, (L)(%, Ya))Y, (L)Z2)Y, ((Z) L), (Y, Ya)) L))

def

CY,Z,YG,Yr,Yw: Yo <Y, UYy LSYUY,=Z2< 1, LSYUY,=L1L<Z

The fields find and find L contain similar values that have different types. Specifi-
cally, the fields contain indirections to methods that search lists of records with files as
indices, and return the associated records at specified addresses. The methods sysRcv
and sysRcv ., which call those indirections, have the same behaviors but have differ-
ent types. The method sysSnd updates the fields find and find_L in parallel, to search
for new records.

We assume the type constraint Cy 7y, v, y, on the type Y{Z}#Y,(Y;, Y,) of any file
that has a record in the system table. The type of sysSnd specifies this assumption.
Conversely, we guarantee that type contraint on the type Ty 7 v, v, v, of the record asso-
ciated with such a file. The types of sysRcv and sysRcv_L specify this guarantee. This
guarantee is necessary to type the compiled code for the request channels Br..

Why do sysRcv and sysRcv_L have different types? Recall that the method sysRcv is
called by compiled code for request channels B; ., where L # L. The compiled types
for such channels are explicit about the types of the files that are passed to sysRcv; thus,
the type contraints guaranteed by sysRcv apply to those types. On the other hand, the
method sysRcv L is called by compiled code for request channels 8, .sc. The compiled
types for such channels are not explicit about the types of the files that are passed to
sysRcv_L—those types are assumed to be L. Thus, the type contraints guaranteed by
sysRcv_L apply to some unknown (existential) file types.

This difference in the required typing invariants for L # 1 and L = _L forces the
somewhat awkward dichotomy in the compilation strategies for L # 1 and L = L.
We should point out that this dichotomy can be eliminated if we allow a method to

have multiple types.

Finally, if a well-typed process P compiles under ~~ to the conc 7 program a, then
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we define the output of the compiler for P to be
net&| sys€| m[ a

where { L} is the security lattice.

C.2 Theorems

We prove the following theorems that, together with the soundness of the type sys-
tem for conc?, imply the soundness of the proposed type system in this section.

We begin with typability, which states that the compiled conc 7 program is well-
typed if the source process is well-typed.

Theorem C.2.1 (Typability). Suppose that net : L, By.sc: Reqy.2c = P ~~ a. Then
@ b net&[sysE [BLE [a]]]

Next, we prove simulatability, which states that the compiled conc 7 program can

simulate the behaviours of the source process.

Theorem C.2.2 (Simulatability). Suppose that net : L, Br.>c : Reqp.oc = P ~» aand P —*
(vy: L[T]) (_| nekly);-). Then

(vm? : ((L)IT]D"T)
(Vm' (LTpHHt)
(vat: ((L)L)+T)

_r let = nl{(m?,m!))in _

net&[sys€ [m [a]]] —~
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Appendix D

Proofs

In this appendix we provide proof details for various results that appear in this dis-
sertation. We begin with the correctness of query evaluation in EON. We then consider

the soundness of the type system for conc?.

D.1 Correctness of query evaluation in EON

Lemma D.1.1. If Reachable(c) € Z(|IP|,IDB), then the atomic state of ¢ in IDB is reach-
able. Conversely, if an atomic state is reachable, then there exists a database DB that contains

a constant ¢ with that atomic state, such that Reachable(c) € Z(|IP],IDB).

Proof. Note that there is a one-to-one correspondence between a derivation of
Reachable(c) using the Datalog program |IP|, and a transition sequence using the
EON program IP that results in a database with a constant with the same atomic state

as C. D |

Lemma D.1.2. If DB p !BadState then for every constant c, Reachable(c) €
I(|P|,DB)iffu(c) € Z(|P|,DB).

Proof. Note that the clause transformation augments the body of every clause for
Reachable(x) with the literal U(x). Hence, it trivially follows that Reachable(c) is

true only if U(c) is true. The transformed clause for BadState is as follows:

BadState :— U(x), 'Reachable(x).
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Thus, BadState is true if there exists some constant ¢ such that U(c) is true but
Reachable(c) is not. Consequently, in any database that satisfies !BadState, we have

that Reachable(c) is true iff U(c) is true. <
Lemma D.1.3. I[f DB Fp| |S] then DBy b p| [S].

Proof. Note that the body of every clause in |IP| contains a literal U(x) for every vari-
able x occurring in the clause. As a consequence, no derivation of |S| can use a con-

stant ¢ for which U(c) is false. <
Lemma D.14. I[f DB & p| [S] then DB|y is a reachable database.

Proof. 1t follows from Lemma D.1.3 that DB|y satisfies the transformed query | S| and,
hence, it satisfies !BadState as well. It follows from Lemma D.1.2 and the definition
of DB|y; that Reachable(c) is true for every constant ¢ in IDB|. Lemma D.1.1 implies
that all constants in IDB|; have a reachable atomic state. It follows from Lemma 3.2.2

that DB|y is a reachable database. <
Theorem D.1.5. If DB | |S], then the query S is true in the EON program IP.
Proof. Follows from Lemmas D.1.3 and D.1.4. <

Theorem D.1.6. If the query S is true in the EON program IP, then there exists a database
DB such that DB - p| [S].

Proof. Let DBy L . L DB,and So € T (I, DB,,) for some ground substi-

tution . We define the database DB to be the disjoint sum of the databases IDBB;
through IDB,,. Specifically, let each DB; = (Uj, I;). We define DB = (U, I), where
U={(ic)|1<i<m,celU},and I(B) ={(i,c) |1 <i<m,ce;(B)}forBeé&,
and I(U) = U. It can be shown that Reachable(u) is true for every u in U. Further, the
monotonicity of the query S guarantees that | S| is satisfiable in IDB. <

D.2 Soundness of the type system for conc?
Lemma D.2.1 (Subject congruence). Leta =bandT'=a: T. Then ' =b: T.
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Proof. By induction on =. We omit the cases for equivalence.
Case (Struct Res).

Case (vn)a = (vn)a. Trivial.

Case (vn)letx = EJa]inb =letx = E[(vn) a] in b.
ThenT - (vn)letx = Efa] inb: T
iffT,n:Ukletx =E&[a]inb: T
iffT,n:UFEJa):SandT,n:U,x:SkFb:T
iffT+ (vn) Ea] : Sand T,x: SFb: T
iff (by induction hypothesis) I' - E[(vn)a]] : Sand I, x: SFb: T
iffTHletx =E(vn)a]inb : T.

Case (vn)&fa]r b= E[(vn)a] T b.
ThenT F (vn) Efa] P b: T
iffT,n:UFEarb:T
iffC,n:UFEa]:SandT,n:UFD:T
iff T- (vn)Efa] : SandTHD: T
iff (by induction hypothesis) I' = E[[(vn)a] : Sand T Fb: T
iff T - E[(vn)a] 7 b:T.

Case (vn)ar E[b] =ar E(vn)b].
ThenT - (vn)ar E[b] : T
iffT,n:Ubkar Y] : T
iffT,n:UkFa:SandT,n:UFED]: T
iffTFa:Sand T+ (vn)E[a] : T
iff (by induction hypothesis) ' Fa:Sand T - E[(vn)a] : T
iffTHar E[(vn)b] : T.

Case (vn) (vm) E[a] = (vm) E[(vn) a].
ThenT & (vn) (vm) Efa] : T
iffC,n:UbF (vn)&fa]) : T
iffC,n:Um:SEE[a]: T
iffT,m:SkE (vn)Efa] : T
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iff (by induction hypothesis) I, m : St E[(vn)a] : T
iff T+ (vm) E[(vn)a] : T.

Case (Struct Par).

Case a" b=ar b. Trivial.

Case alletx =E[b]inb =letx =EJar b]inl'.
ThenT Farletx =E[b]ind' : T
iffTFa:Uand T letx = E[p]ind' : T
iffTFa:UandT FEb]: SandT,x:SHV : T
iffTFar E[b] : SandT,x:SFV : T
iff (by induction hypothesis) I' - E[ar b] : Sand T, x: SF V' : T
iffTHletx=EJar b]inb : T.

Case al (E[p]rb)=E[ar b] T V.
ThenT Far (E[p]rb'): T
iffTFa:UandTHEBr Y : T
iffTFa:UandTHE[b]: SandT V' : T
iffT-ar Eb] : SandT V' : T
iff (by induction hypothesis) I' = E[ar b] : Sand T =V : T
iffiff THEJarb]rv:T.

Case al (a' 7 E[b]) =a' 7 EJarT b].
ThenT Far (a'7 E[b]): T
iffTFa:UandTtHa' 7 E[D]: T
iffTFa:UandT Fa' :SandTFEb] : T
iffTFa :SandTFar EY]: T
iff (by induction hypothesis) T4’ : Sand T+ Ear b] : T
iffTHa' 7 Efar b]:T.

Case arl (vn) E[b] = (vn) EaT b].
ThenT Far (vn)Eb]: T
iffTFa:Uand T+ (vn) &[] : T
iffTFa:UandT,n:SEEL]: T
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iffT,n:SFa:Uand,n:SHE]: T

iffT,n:Skar &) : T

iff (by induction hypothesis) I',n : S E[ar b : T

iffT = (vn) Efar b)) : T. <

Lemma D.2.2 (Well-typed contexts). Suppose that I' = b : S whenever I' = a : S. Then
[,T"+ E[b] : T whenever I',T" = E[a] : T.

Proof. By induction on £.
Case I' -a: T. Trivial.

Case I'letx = Efa] inb’ : T.
ThusTH Ea): SandT,x: UV : T
thus (by induction hypothesis) I' - E[[b] : Sand T, x : SE V' : T
thusT Fletx = E[b] ind : T.

Case '+ E[a]rb' :T.
ThusT FE&a] : Sand T H V' : T
thus (by induction hypothesis) I' - E[b] : Sand T H V' : T
thusT'H Ep]rbv' :T.

Case I'a' 1 EJa] : T.
ThusT Fa':Sand T F EJa] : T
thus (by induction hypothesis) I' -4’ : Sand T - E[b] : T
thusT Ha'r EY] : T.

Case '+ (vn) Efa] : T.
ThusT,n:SkEE[a]: T
thus (by induction hypothesis) I',n : S = E[b] : T
thusT' - (vn) E[b] : T. <

Lemma D.2.3 (Substitution). I, x: T+ a:S. ThenT F a{n/x} : S whenever T - n : T.
Proof. By induction on I~ derivation. <
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Lemma D.2.4 (Polymorphic typing). Let T, X, @ : T + a : S, and dom(cr) = X. Then

T, % :ToF ao: So.
Proof. By induction on I~ derivation. |

Proposition 5.3.1 (Subject reduction). LetI'=a:T.Ifa — b, thenT = b : T.
Proof. By induction on —.

Case (Red Eval).
F'+letx=nina:T.
ThusT'Fn:SandT,x:Sta: T
thus (by Lemma D.2.3) T Fa{n/x} : T.

Case (Red Context).
I'-€&[a):TandT Fa:Sanda — b.
Thus (by induction hypothesis) I' = b : S
thus (by Lemma D.2.2) T - £[b] : T.

Case (Red Struct).
I'€&[a]:Tanda=a"anda’ — b’ and b’ = b.
Thus (by Lemma D.2.1)T a4’ : T
thus (by induction hypothesis) I' =" : T
thus (by Lemma D.2.1)T'=b: T.

Case (Red Call).
S
Letd = E)[gl = (yl)bz]

Case ' (pr—d)roj(u): T
and thusT'Fp—d: Land T Fo;(u) : T.
ThusT Fov; : (VY(S)T)¢,TFu:S,andT,),y;: S’ - bié? : T
for some ¢ such that S'c = Sand T'c = T.
Thus (by Lemma D.2.3) T +- bié?{u/yi} : T
thusTH (p—d)r bié?{u/yi} : T.
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Case T'F (pr—d)ro{u): L
and thusTFp—d: LandT F9;(u) : L.
ThusT'Fov;: L,T'Fu:1l,andT, y,yi:J_l—biéE):J_.
Thus(byLemmaDZf%)Tl—bé Hu/yi}: L
thusFF(pHd)ﬁbép Tu/y L

Case (Red Upd).

P T
Letd = E)[gl = (yl)b] d = v; [fk = (yk)bk]
and d” = F} o E)[gk = (yk)bk o 51’ = (yl)bl]
WehaveT'Fp—drp«—d:L
and thusTHp«d: LandTFp—d: L.

o—> T

ThusT F p: VX0 : VYi(S;)Ti|%, INVARIANCE( i, i, i ),

and INVARIANCE( , ] ,7).

Thus for some ¢ such that dom(c) = X

Vi.T F o (YYi(Sio) T;o)CC
i L vz (VYVi(Si0) T:0) %, Vi, yi = Sio b bioh &
L0 = — —
T,7, % : (YYVi(Si)\Ti0)%%, Vi s L, L < G; l—boéu :

o)
Vi, 8 = + = 1_|/ Zl 1 1 (VM( > ) l,yi,yi . Sl' [ bl\é ul : T
- r_> (Vy< > ) i/yi/yi:J—/J—SGikbiéi

7 I l 1

J

and for some ¢’ such that dom(¢’) = X:
Vi.T kot (VY;(Sjo’)Tjo") G-
(i TV S, Ty {7}
{il6=-}U{jIT,L<GYL<TIC{k}C{7}
T,7;, 7 (VYS! T )%, Vi g : Seo b b 4 5 2 Ty
Vkor=—={ ke{j}=
T,7;,7 : (VYS! )T, )%, Yy s L, L < G b b 4 5
T, 7, X, % (YYV(S)T) %, Vi y: S bbb 7+ T
Yk =+ ={ ke{j}=
T, 7, X, % (YYV(S)T)%, Vi ye: L, L < Gp b byt &

Foralli € {7} \ {7}, wehavel,);+ S;, T;, sothat S0’ = Sand To' = T.
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Thus for all i € {?} \ {7}, we have I' - v; : (V)i (S;0”)T;0")¢C

ThusVi.T - v; : (vy,'<si0'/>Ti0'/)GGi"'

Foralli € {?}\{7},wehave(5i =+andie€ {7} =TI, 1<GFLZT.
So

vig__ o ) DAE: 0)Ti0' )%, Yy Sio b biot T
T,7,% : (VYIS Tio')o%, Y,y L, L < G~|—b~aéul L
VN PRv=YerA

. F/ZIX/Zi (vy<S>T) yl/yl's }_b\éu .

Vi.dj =+ = N R ﬁ -

S

Thus T F p : VX[ : VVi(S;) ;)% and INVARIANCE( 7, 7, 1 ) for d”.
ThusT Fp+—d’: L
ThusTFp+—d'r L: L. <

D.3 Soundness of the type system for DFI on Windows Vista

In this section we outline proofs of the results in Section 6.4.

Proposition 6.4.2 (Adversary completeness). Let I' be any typing environment and e be

any C-adversary such that £v(e) C dom(T'). Then T -+ e : _ despite C.
Proof. We prove typability by induction on the structure of processes.

e ¢ = x where u is a variable.
Then x € dom(T).
By (TYP VALUE) I' Fc x : .

e ¢ =new(x#8).
By LH.T ¢ x: TE
ThensC CC 1 C E.
By (TYP NEW) I' ¢ new(x #8) : .

e ¢ =(0) w.
ByIH. T'Fcw: .
So by (TYP VALUE) w : 5 € T.
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Case *E and 7 is not of the form Obj(-).
By (TYP BOGUS STUCK-I) T F¢ (O) w : .

Case *E, 7 = Obj(5),and CC sUO.
By (TYP UN/PROTECT STUCK) I' ¢ (O) w : _.

Case *E, 7 = Obj(5),and L CSLUOC C= L.
Then s C O.
By (TYP VALUE) and (TYP UN/PROTECT) I ¢ (O) w : _.

Case E= 1.
By (TYP SUBSUMPTION L-II) T = Obj(_®) such that s C O.
By (TYP VALUE) and (TYP UN/PROTECT) I ¢ (O) w : _.

e = lw.
ByIH. T'Fcw: -
So by (TYP VALUE) w : TF € T.

Case *E and 7 is not of the form Obj(-).
By (TYP BOGUS STUCK-I) I' =¢ lw @ _.

Case *E and 7 = Obj(.).
By (TYP READ) I' ¢ lw : _.

Case E= 1.
By (TYP SUBSUMPTION _L-II) T = Obj(.).
By (TYP READ) I' ¢ lw : _.

e=w = X.
ByLH.TFcw: _andT k¢ x:tF.
So by (TYP VALUE) w : % € T.

Case *E and 7 is not of the form Obj(-).
By (TYP BOGUS STUCK-I) I' Fc w :=x: _.

Case *E, 7 = Obj(5),and CC s.
By (TYP WRITE STUCK) I' Fc w 1= x : _.
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Case *E, 7 = Obj(17),and L C ST C= L.
Thens C E'.
By (TYP VALUE) and (TYP WRITE) I' Fc w :=x : _.
Case E= 1.
By (TYP SUBSUMPTION _L-II) T = Obj(1}) such that S C E'.
By (TYP VALUE) and (TYP WRITE) I' Fc w 1= x : _.

e = pack(f).
By LH.T' ¢ f : T.
By (TYP PACK) I ¢ pack(f) : _.

e = exec w.

By LH.T ¢ w: _, so by (TYP VALUE) w : TF € T.

Case *E and 7 is not of the form Obj(_).
By (TYP BOGUS STUCK-I) I' ¢ exec w : _.
Case T = Obj(7}), *E, and Ty is not of the form V _. Bin(.).
By (TYP BOGUS STUCK-II) I ¢ execw : _.
Case T = Obj(7}), *E, and 7y = Vp. Bin(.).
ThenC= 1L C Prs.
By (TYP EXECUTE) I' ¢ exec w : _.
Case E= 1.
By (TYP SUBSUMPTION _L-II) T = Obj(t})
and 7 = Vp. Bin(_) suchthat C= L C Ps.
By (TYP EXECUTE) I ¢ exec w : _.
Case *E, T = Obj(17),and S = L.
By (TYP SUBSUMPTION L-I) 7 = Vp. Bin(_) suchthatC = 1L C Pr18S.

By (TYP EXECUTE) I' ¢ exec w : _.
e = [P] a.
If P 3 C then by (TYP ESCALATE) ' ¢ [P]a: _.

Otherwiseby IH. I' Fp a: _.
By (TYP LIMIT) T ¢ [P]a: _.
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e e=letx=ainb.
ByIlH.T'tca:TandT,x:Ttcb: T
By (TYP EVALUATE) ' Fc letx =ainb: _.

ec=aqarlb.
ByLH.I'Fca:_andT' ¢ b: T.
By (TYPFORK)I' Fcal b: _.

Proposition 6.4.3 (Monotonicity). The following typing rule is admissible.

T f:tf Of  PCP

Thp f:75P

Proof. We proceed by induction on the structure of derivations.

Suppose that P’ C P.
Case (Typ variable) By (TYP VALUE)T Fp x : T57F',
Here EMP' =EMNPMP.

Case (Typ new) By LH.T p x : 7677
ThenS C EMP.
By (TYP NEW) T p new(x #8) : Obj(75)P".
Here P = PP

Case (Typ fork) Let T = tF.
ByLH.Tkpia:_andT bp b : 757P,
By (TYP FORK) T Fpral b : TP,

Case (Typ store) By (TYP STORE) I Fpr w Sox: P
Here P’ = PP,

Case (Typ un/protect) By LH.T Fp w : Obj(73)E™
and if %P’ then %P, then *E, and then *(E M P’).
By (TYP UN/PROTECT) T Fp/ (O) w : Unit”.
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Case (Typ write) By LH.T p: w : Obj(75)F™™ and T Fps x : TE P
and if xL) then %P, then *E, and then x(E M P’)
and SMP' C E'NP.
IfSC P thensC E'MP.
By (TYP WRITE) T Fp/ w := x : Unit" .
Otherwise P’ C S, so that *S.
Because S C E’ C P, we have *P and thus x*E.
By (TYP VALUE) w : Obj(7%)¥ € Tand E C E".
Then *E”.
By (TYP WRITE STUCK) I Fp w := x : Stuck.
By (TYP SUBSUMPTION STUCK-II) T Fp w := x : Unit".

Case (Typ execute) P PC P"Ms
and if xL) then %P, and then *E.
By (TYP EXECUTE) T Fp exec w : TEP",
Here EEMP =E' MPMP.

Case (Typ read) If x(ST1P’) then %(SMP), and then *E.
By (TYP READ) T Fpr lw : 577",
Here SMP =SMPMP.

Case (Typ limit) Let T = tF.
Then E C P”.
If P” C P’ then
EMP =E.
By (TYP LIMIT) T Fps [P"] a : 7677,
Otherwise P’ C P”.
By (TYP ESCALATE STUCK) I' Fp/ [P”] a : Stuck.
By (TYP SUBSUMPTION STUCK-II) T Fp/ [P”] a : T87P
Case (Typ evaluate) Let T = tF.
ByLH.Tkpra:T"and T, x: T" bpi b : TE P
By (TYP EVALUATE) T Fp/ letx = ainb : 7677,
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Case (Typ substitute) Let T = tF.
By LH.T,x: T' Fp a: 7877,
By (TYP SUBSTITUTE) T'Fps (vx/pu@P') a : 577, <

Lemma D.3.1 (Bind). Suppose that a = a’{x/y}. Then T Fp a : _if and only if T Fp
(vx/y@P) a'.

Proof. By induction on the structure of a’. <
Theorem 6.4.4 (Type preservation). Suppose that ' -p cand I’ -p a : _. Then

1. Ifa=bthenT Fpb: _

2. Ifa XS bthenT Fpb: .

Proof of (1). Preservation under = by induction on the structure of derivations.
Case (Struct substitution)
Leto” = {x/u@L"} Uo.

o (vx/p@L")lety = E pnd | inl =lety = E o [(vx/u@L") a1 p in
and I'" | (vx/p@L")lety = Epra’ e inb - T.
By (TYP SUBSTITUTE) and (TYP EVALUATE)

T b T
and I, x : T" L E | - T
and I, x: T",y: T" F LV : T.
By (TYP SUBSTITUTE) and S.R.
"L (vx/p@L") ELgnla e = T
and I,y : T" F LV : T.
By LH.I" k| Eo[(vx/u@L") a'rp = T".
By (TYP EVALUATE)
I'FLlety = ELp[(vx/p@L") d'| e in : T.

[ (VX/]/l@LH) EL;O-II [[a’]],_/;vl ry = gL;g[[(VX/]l@L”) ﬂlﬂ L0’ rb
and I'" | (vx/p@L") E pna | TV = T.
By (TYP SUBSTITUTE) and (TYP FORK)
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T b T

and I, x : T" L E | - T

and IV, x: T' .V : T.
By (TYP SUBSTITUTE) and S.R.

"L (vx/p@L") Egnla e = T

and " V' : T.
By LH.I" b Eo[(vx/pu@L") a']rp = T".
By (TYP FORK)

'L Eel(vx/u@l”) a Ly P U 2 T

(vx/u@L"U' T E gna e =V T Ep[(va/p@L") a'] s,
and I | (vax/p@L") V' 7 ELgnla L« T.
By (TYP SUBSTITUTE) and (TYP FORK)
T b T
and I, x: T" L E pnd e : T
and ", x: T b : T".
By (TYP SUBSTITUTE) and S.R.
"L (vx/p@L") ELgna e = T
andI" b T,
By LH.I" | & o[ (vx/p@L") a']rp : T.
By (TYP FORK)
LY T Epl(vx/p@L") a |y o T.

(vx/ p@L") (vy/W'@L") Epgn[a e = (vy/W@L") Epg[(vx/ p@L") '
and I b (vx/p@L") (vy/p'@L") E pna Ly = T.
By (TYP SUBSTITUTE) and (TYP SUBSTITUTE)
b p: T
and TV, x: T Fpwo: T
and I, x: T,y : T" L ELgn[a ] = T.
By (TYP SUBSTITUTE) and S.R.
,y:T"Fou: T
and I" Fyw oy 2 T
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and I,y : T, x : T L ELpn[a’ ] = T.
By (TYP SUBSTITUTE)

Iy :T" L (vx/p@L") Epnla e = T.
By LH.I",y : T" L EL[(vx/p@L") a' |y - T.
By (TYP SUBSTITUTE)

'L (vy/p'@l”) E o [(vx/u@L" ) a L = T.

o (vx/p@L") [L"] Epmgr[Tuser = (L] Eumg[(vx/p@L") a1

and I'" b (vax/p@L") [L"'] Epmgna’] e = T.

By (TYP SUBSTITUTE) and (TYP LIMIT)
b T
and I, x : T" by Epmgn]a e = T.

By (TYP SUBSTITUTE)
"o (vx/p@L") Epmga’] g = T.

By LH.I" Fyw Epme[(va/p@L") a1y - T.

By (TYP LIMIT)
"o L Evme(vx/u@L" ) a g = T.

Case (Struct fork)

o ' Tletx =& [a]Linb =letx =& ,[a" T a] inb
and " L a’ P letx = Epa’] inb : T.
By (TYP FORK) and (TYP EVALUATE)
' a” T
and I" H| Epfa’]L : T
and I, x: T" H_ b : T.
By (TYP FORK)
I'FLa’ v égfa]: T
and I, x: T" b : T.
By LH.T' | & [a" T a]L: T".
By (TYP EVALUATE)
I'FLletx =& pfa’ 7 a]Linb : T.
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o d'"TE ALV =E Ja"Ta]Lr Y
and " L a" P Epla] 7V : T.
By (TYP FORK) and (TYP FORK)
I'bLa” . 1"
and I" F Epfa’]L : T
and " U : T.
By (TYP FORK)
U'FLa’ v égfa]: T
and "+ V' : T.
By LH. T b Ep[a” P a']L: T,
By (TYP FORK)
'L Epa’ 7 r b :T.

e d'TU T ELL=VT ELa"Ta L
and " a" b r &[] :T.
By (TYP FORK) and (TYP FORK)
' by a’: T
and " b T
and I | ELpla]L = T.
By (TYP FORK)
| I I A
and I" a7 ELpla]L: T.
By LH.I" b E a7 ad'L: T.
By (TYP FORK)
I'EL e Egla’ral]:T.

o a' 1 (vx/p@L") EL,[a']L = (vx/u@L") E o [a” T a']L
andI" F a”" 7 (vx/u@L’) Ep[a']L : T.
By (TYP FORK) and (TYP SUBSTITUTE)
I'bELa” . T
andI" ke T
and I, x : T" | Epa’]L: T.
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BySR.I",x: T" Fa" : T".
By (TYP FORK)
Uyx:T"bF a7 Ega: T.
By LH. I, x : T | ELpla” T a']L : T.
By (TYP SUBSTITUTE)
'L (vx/u@L') Epla” P a']L: T.

Case (Struct store) w - u P Lla =[] (w Eour a’)
and ' FLw S ur [U]a T
By (TYP FORK)
I' | w You:
andI" | [L']a: T.
By (TYP LIMIT)
' w You.
andI" . a' : T.
By (TYP FORK) I -/ w Yura T
By (Typ LIMIT) I F [L'] w Youra T

Case (Struct bind)
By Lemma D.3.1.

Proof of (2). Preservation under — by induction on the structure of derivations.

Case (Reduct evaluate) ' - letx = uina’ : T.
By (TYP EVALUATE)

T u:T"

and ,x: T a : T.
By (TYP SUBSTITUTE) I' - (vx/u@L)a’ : T.

Case (Reduct new) I' Fp new(x #S) : T.
By (TYP NEW)

Fl‘pX:TE,
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SCE,

and T = Obj(7%)P.
By (TYPSTORE) I, w : T Fp w Loxs
By (TYP FORK) I, w : Tl—pw»ixﬁw : T.
By (TYP SUBSTITUTE)

I'Fp (vw/new(x #S)@P) (w S w):T.

Case (Reduct read) T | w > x T 1w’ : TE.
By (TYP FORK)

' w 2, X
By (TYP STORE) I' | x @ _.
By(TYPFORK)FI—Lw»gxr’x:,.

Case (Reduct write) I' | w O x P w = x': Unit-,
By (TYP FORK)
' w Oy
and T F_ &' := x’ : Unit"
and O C L.
By (TYP STORE), (TYP WRITE), and I' -
w : Obj(1%)- €T,
SC O,
T w': Obj(T5)E,
Thx':7E,
and SC FE'.
By (TYP STORE) I | w O
By (TYP UNIT) T F w +> unit : Unit".
By (TYP FORK) T | w > x' P unit : Unit".

Case (Reduct execute) I' | w O x P execw ;.
By (TYP FORK)

FI—Lw»gx:,
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and T | execw' : _.
By (TYP STORE), (TYP EXECUTE), and I' - ¢
I Fpr pack(f) : Vp. Bin(T)P for some P/,
x:Vp.Bin(T)E €T,
w : Obj(Vp.Bin(T)%)- €T,
SC OTE,
andLC Pris.
By (TYP PACK) ' Fp f: _.
By (TYP SUBSUMPTION PROCESS LABEL) I' - f : _.
By (TYP FORK) T b w > x P f: _.

Case (Reduct un/protect) I' | w S oxr (L") &' : Unit".
By (TYP FORK)
' w Oy
and T F| (L) &' : Unit
OuUL' CL.
By (TYP STORE), (TYP UN/PROTECT), and I' - o,
w : Obj(t%)- €T,
SC O,
[ @' : Obj(T5)-,
andSC L'
By(TYPSTORE)FI—Lazigx:,.
By (TYP UNIT) T I unit : Unit".
By (TYP FORK) I - @ = x " unit : Unit"

Case (Reduct context)

. L; .
o letx = & [a]u in b =5 letx = Ep[a" ] in ¥,
p Lse
a —a’,
and T F letx = &, [a' e inb : T.
By (REDUCT CONTEXT) and (TYP EVALUATE)

SL;O[[QI]] L0’ i SL [[a,/]]L’;a’/
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T |_L é'L;(,ﬂa/]]L/;a/ . T//,
and,x:T'FH_ b : T.
By LH.T f—|_ gL;a[[a//]]L’;a’ 2T,
By (TYP EVALUATE)
I'kHLletx = gL,‘U’[[a//]]L/;O" inb :T.
ol 7V =5 ELgla I TV,
p Lsel
a —=a”,

and T F| E o [a ] T T.

By (REDUCT CONTEXT) and (TYP FORK)
Euola e =% Evola” I
Ty Eola e = T,
and T+ b : T.
By LH.T F Eo[a" i : T".
By (TYP FORK)
I Epla" e PV - T.
VP EelaTue =50 7 Eelad I,
ML ,
and T HL V' 7 Eplaue : T.
By (REDUCT CONTEXT) and (TYP FORK)
Eola i =5 Eola" I,
I Eeld e T,
and T b : T".
By LH.T F &L [a" e = T.
By (TYP FORK)
LY T Ea" e o T.
(vx/u@L") Eo[a|ue =5 (vx/u@L") Ep[a" L,
AL ,
and T F| (vx/u@L”) E o [a' e : T.
By (REDUCT CONTEXT) and (TYP SUBSTITUTE)
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Ea e 5 Eiola" I,

and T kv u: T,

and T, x : T | ELpla e = T.
By LH.T,x : T . Eoa" Lo : T.
By (TYP SUBSTITUTE)

I (vx/u@L”) ELpla" e : T.

o U] Evnpla e =5 (L) Evrpla T,

PO ,
and T F [L"] Evgla e« T.

By (REDUCT CONTEXT) and (TYP LIMIT)
Evrella e = Erela e
and T by Epngla e : T.

By LH.T v Epngla’ e o T.

By (TYP LIMIT)

r |—|_ [L”] EL//;U[[LZ/IH Lo - T.

Case (Reduct congruence) I' = a: T,
a=a,
r Loy
a —=b,
and V' = b.
By Theorem 6.4.4(1) T - a’: _.
ByLH.T b : ..

So by Theorem 6.4.4(1) ' = b : _. <

Theorem 6.4.7 (Enforcement of strong DFI). Let () be the set of objects whose contents are
trusted beyond L in I'. Suppose that I =1 a : _ despite C, where C T L. Then a protects ()
from L despite C.

Proof. Let e be any C-adversary [C]| ¢’
By Proposition 6.4.2T -+ e: _.
By (TYPFORK)'Frarle: ..

Suppose that w € ). We need to prove that there are no ¢ and x such thata " [C] ¢/ N
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*Er.glw = x] T,y and x ¥ L. Assume otherwise.

By Theorem 6.4.4 there exists I extending I such that
I'toand "'+ w = x: .

By (TYP STORE) w : Obj(7%)- € I such that S C E.

We proceed by induction on the derivation of x VL

Case P C L.
For some T and E, " Fp u : TF.
Then E C P and by (TYP VALUE) I -+ x : TF.
Then E C L.
Then S C L.

But by assumptions § T L (contradiction).

Case y =y for some y and y VL
By LH. T’ b+ y : TF for some E such that E C L.
Then s C L.

But by assumptions § T L (contradiction).

<

Theorem 6.4.8 (Redundancy of execution control). Suppose that I' =+ a : _ despite C and

P Erplw 11 exec w']lp. such that w Z W, andP T C. Then P C O.

Proof. The proof is by inspection of Case (Reduct execute) in the proof of Theorem

6.4.4. Recalling that case (where L is the process label): L C S C O.

<

D.4 Correctness of distributed access control implementations

We show that IIMIP is secure, safe, and fully abstract. Simulation relations for our

proofs are shown below. All these relations are closed under =. Here 77; and 77, rename

the public interfaces of NS? and IS? and 73 renames the private authentication keys

KAS and KAS-

mo = [ = ag, B By = 1, | € N\Z
2 = [“;}'_”X;?’IB;HIB;?’IYJ?H’YJ??’jGN\I]
13 = [a— K;|a€ {Kas,Kas}]
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These renamings map to names in A, a set of special names whose uses in well-

formed code are either disciplined or forbidden.
A é {OCZ'/ ,Bi/ Yi | i € I} U {Déj?/ ,B]'?/ r)/]'?/ “;?/ ﬁ??/ r)/}?? ‘ ] € ]N\I} U {KAS/KAS/ K7}

The names in {a;,, Bj,, 7}, o, B7. 7, | j € N\Z} U{K,} are invented to simplify
proofs below. In particular, the purpose of 771 and 77, is to rename some public channels
to fresh ones that can be hidden by restriction in ¢ and ¢. (A similar purpose is served
by quantification in logic.) Hiding those names strengthens Lemmas 7.4.1.1-2 while
not affecting their proofs; but more importantly, the restrictions are required to prove
Lemma 7.4.1.3. Further the purpose of 73 is to abstract terms that may be available to
contexts. Such terms must be of type Export (see below); intuitively, K 45 and K 45 may
appear only as authentication keys in capabilities issued to dishonest users.

A binary relation _, - ~+ _, _ (“leads-to”) is defined over the product of access policies

and clocks. Access policies may change at clock ticks (but not between).
F/,CIK' ~ F,Clk £ (CIK' < Clk) v (CIK' = CIk AF' = F)
Let F range over functions from clocks to access policies.

N=N'o {KAs,KAs,K?}ﬁfn(N/) =9
VL € rng(0). 3j € N\Z,op, CIK'.
op : 7 r,cik Export A (F(CIK"),CIk" ~ F,Clk) A L = cert(F(CIk'),j,op, CIK')

N 1F,E,Clk Export

We show that term abstraction preserves equivalence in the equational theory. This
lemma is required to show static equivalence in proofs of soundness for the relations

S, 7,U, and V below, which in turn lead to Lemmas 7.4.1 and 7.4.3.

Lemma D.4.1. Suppose that M :r p cix Export and N :z rci Export. Tthen M = N iff
n3(M) = 13(N).

Simulation relation for Lemma 7.4.1.1 _ < ¢[_]

fo(K, M)NA=2  F,CK ~ F,Clk
Req(x, M) SF“ DReq(x, M)"
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keN  fnlop, M)NA=@ F,CK ~ F,Clk
Req(cert(F,k,op, CIK'), M) S;F"™ Reqy(op, CIK', M)

fo(L,op M)NA =0 keN fn(adm, M) N A =o

EOK(L,0p, M) SFC EOK(L,op, M)  AReq(adm, M) S5 AReqy(adm, M)

jEN\Z fn(lop M)NA=02

CReqj(op, M) S (vm) a? (m); m(x); M{mac((j,0p, x),K2))

(FILE SYSTEMS)
vrel. P SFYQ,  fm(Ep)nA=0

F,Clk 2
NfSF,E,CIk,p ‘ e Pr ‘51 |f5p,5,c|k,p ‘ e Qr

(HONEST USERS)
dom(¢) = dom(¢’) = X
Vx. x € X = 3F,CK,i € Z,op. (F,CIK' ~~ F,Clk) A ¢'(x) = CIK
A T(x) = Cert(i,op) A o(x) = cert(F,i,op, CIK")

Co S;,F,Clk [Ch"a'/
ier P SIFIQ  T(x)=cert(iop)
(ve)(c(x); P | CReg;(op,c)) S5 (ve)(c(x); Q | TReq(c))

(TRUSTED CODE)
P S{“,Clk Q P/ Sg,P,Clk Q/ vreﬁ' Pr S3F,C|k Qr

(viezaiBiyi) (P | P [ ThepPr) SO (vierai B797)(Q | Q| TherQr)
(SYSTEM CODE)
p STk g wxN. 3. o= N4} | o) = Nigpcn Export

(v7)(vKasKas) (o | P) SF (v7) (vKo) (3(0) | (Viennza5,B5,77,) (Q | 1Rs))

Simulation relation for Lemma 7.4.1.2 _ < ¢[]

iel falop M)NA=2  F,CK ~ F,Clk
Req;(op, CIK', M) T{F Req(cert(F',k, op, CIK'), M)

jeEN\Z  fn(op, T M)NA=0

Req;(op, T, M) ;"™ (ve) @, (op, ¢); c(x); [msg(x).3 < 1] B, (K, M)

fn(Lop, M)NA =0
EOK(L,op, M) T;¥"“™ EOK(L, op, M)
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ke N fn(adm, M)NA =2
AReqy (adm, n) ’Tl’F’CIk AReqy (adm, n)N

jEN\Z fa(M)NA=0
TReq(M) T (ve) &7, (M, c); c(x); M(msg(x).3)

(FILE SYSTEMS)
Vre L. P ’Tl’F’CIk Qr fn(Ep)NA=0

EClk el
Ifsez,cikp | TlrecPr T NfsE's cip | TlrecQr

(HONEST USERS)
dom(¢) = dom(¢’) = X
Vx. x € X = 3IF,CK,i € Z,op. (F,CIK' ~ F,Clk) A o(x) = CIK
A T(x) = Cert(i,op) A o' (x) = cert(F',i,op, CIK')
(C~|r0' 7—2F,F,Clk CU/

ieZ P TLYYRKQ  T(x)=Cert(i,op)

(ve)(c(x); P | TReq(c)) 73 (ve)(c(x); Q | CReq;(op,c))
(TRUSTED CODE)
P t]'lp,clk Q P/ /]-2T,F,C|k Ql vre E- Pr 75’/ Qr

(Viezaf Bivi ) (P | P' [T Pr) T' (viezaiBivi) (vKasKas)(Q | Q' | TLesQr)
(SYSTEM CODE)

PT Q

W) (| P) T (v7T)(0 | (Vien\zj,B1,77,) (Q | 118))

Simulation relation for Lemma 7.4.1.3 ¢[¢[]] < -

fan(k, M)NA=2 jEN\Z  fanlop, M)NA=2  F,Clk' ~ F,Clk
DReq(x, M) U™ Req(x, M) B3, (op, CIK, M) U™ Req(cert(F', j,op, CIK'), M)

jeN\Z fn(op, M)NA=2  F,CIK ~ F,Clk
DReq;(op, CIK', M) #7214 Req(cert(F', j,op, CIK'), M)

jeN\Z fn(op, M)NA=2  F,CIK ~ F,Clk
(ve)(c(x); [msg(x).3 < CIK'] Bj, (x, M) | CReq;(op, c)) U™ Req(cert(F',j,op, CIK'), M)

jeEN\Z fan(lop, M)NA=o  F,CK'~F,Ck N =mac((jop, CIK'),K>)
(ve) (c(x); [msg(x).3 < CIK'] Bj, (x, M) | €(N)) Uy Req(cert(F', j,op, CIK'), M)
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jeEN\Z fn(op, M)NA=2  F,CIK ~ F,Clk
B}, (mac((j,op, CIK'), Kz), M) UF Req(cert(F, j,op, CIK'), M)

keN  fnlop, M)NA=2  F,CIK ~ F,Clk
Req(mac((k,op, CIK'), K7), M) U< Req(cert(F, k,op, CIK'), M)

fn(L,op, M)NA =2
EOK(L,op, M) Ui EOK(L,0p, M)

jEN\Z fa(op M)NA=g

(vm) rx;??<m>;m(x);M(mac(U,op,x},K?)) UjFcl CReq;(op, M)

jEN\Z  fon(opM)NA=2  F,ClIK' ~ F,Clk
(vm) (m(x); M(mac((j, op, x),K7)) | 71(CIK')) UF* M{cert(F,k,op, CIK'))

fn(adm, M) N A =@
AReqy (adim, M) UF™ AReqy (adm, M)

(FILE SYSTEMS)
vre L P UFQ,  m(Ep)nA=0

IS 72 | NS Ul F,Clk
TNs | T1s | Nfsp,alqk’p | e Py Ul NfSF,E,CIk,p | MyerQr

(HONEST USERS)
[Clr=C°
Vx. x € dom(c) = 3IF,CIK,i € Z,op. (F,CIK ~ F,Clk)
A T(x) = Cert(i,op) A o(x) = cert(F,i,op, CIK")

Co UMFCR ¢

ieT T(x)=cCert(iop) P U+ g
(v) (e(x); P | CReay(op, ) Us ™ (ve)(c(x); Q | CReq;(op,c))

(TRUSTED CODE)
Puf«q pPufqg wvrec pub g,

(viezwiBivi) (VKasKas) (P | P’ | TLe o Pr) UF* (viezaiBini) (Q | Q' | TLerQr)

(SYSTEM CODE)
PUtI 9 vy N. (3. o= {Ni}|0') = N:rpci Export

() (VK (13(0) | (vjennz 82,75 1,B1,77) P) U (vTT)(vKasKas) (@ | Q)
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We prove that the relations S, 7, and U are included in the simulation preorder.
Lemma 7.4.1 follows. So by Proposition 7.3.5, R is secure.

Some interesting points in those proofs are listed below.

e When an operation request is sent in IS? we wait after sending an appropriate

authorization request in NS (see 7); we continue only when that operation re-
quest in IS? is processed, when we obtain a capability in NS?, send an execution

request with that capability, and process the execution request.

Why wait? Suppose that the operation request in IS carries a time bound oo; now
if we obtain a capability in NS? before the operation request in IS? is processed,

we commit to a finite time bound, which breaks the simulation.

¢[y] forces a fresh capability to be acquired for every execution request by filter-
ing execution requests in NS through IS? and back. When an execution request
is sent in NS? under ¢[] we send an execution request with the same capability
in NS? (see U). But under ¢[y] a fresh capability is obtained and the execution
request is sent again with the fresh capability. If the capability in the original
request expires before the fresh capability, the simulation breaks. Fortunately op-
eration requests in Is* carry time bounds, so we can communicate this expiry
bound through IS?. In fact there seems to be no way around this problem unless

time bounds can be specified in operation requests in I5"!

Simulation relation for Lemma 7.4.3 ¢[¢[]] < -

jEN\Z fan(lop, T, M)NA=2  msg(x)3="1
(ve) aj, (op, c); c(x); [T < 7] Bj, (x, M) pyEClk Reqj(op, T, M)

jEN\Z fn(op,t, M)NA=92 N =mac((jop,x),K;) msg(x)3=1

(ve) (e(x); [7 < T) By, (e, M) | (vm) aZ (m);m(x);e(N)) VY Rea;(op, 7, M)

jEN\Z  fn(op, T, M)NA=92 N =mac({j,op,x),K;) msg(x)3=1
(ve) (e(); [7 < 7] By (e, M) | (vm) (m(x);e(N) | TReq(m))) V¥ Req;(op, T, M)

jeEN\Z fn(op,tT, M)NA=02

F,CIK' ~ F,Clk N =mac({j,op,CIK'),K;) L =permn(F,jop) msg(x)3="1

(ve) (e(x); [ < 7] B, (k, M) | (vm) (m(x);e(N) | 7(CIK'))) ViF< [Clk < 7] EOK(L, 0p, M)
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jeEN\Z  fn(op, T, M)NA=2  F,ClK' ~ F,Clk
L =pern(F,j,op) msg(x)3=1
(ve)(e(x); [T < 7] Bj, (k, M) | €(mac((j,op, CIK'), K7))) ViECK [Clk < ] EOK(L, op, M)

jEN\T  fn(op, M)NA=2  F,CK ~ F,Ck
N = mac((j,op, CIK'), K7) L = perm(F', j,0p)
B, (N, M) V% EOK(L, op, M)

JEN\Z  fa(op, M)NA=g2  F,CIK ~ F,Clk
N = mac({j,op,CIk'),K;) L = pern(F’,j,op)
DReq(N, M) % VIEC EQK(L, 0p, M)

jeN\Z fnlop M\)NA =2 F',Clk" ~~ F,Clk L= perm(F/,j,op)

B? (op, CIK', M) ViF EOK(L, op, M)

fn(op M)NA =0
EOK(L,op, M) Vi< EOK(L,op, M)

fn(adm, M)NA =@
AReqy (adm, M) ViFC® AReqy (adm, M)

jEN\Z fa(M)NA=0
(ve) @, (M, c); c(y); M(msg(y).3) V" TReq(M)

jEN\Z fa(M)NA=0

(ve) (c(y); M(msg(y).3) | (vm) a7, (m); m(x);c(mac((j, M, x), Kz))) VP TReq(M)

jEN\Z fa(M)NA=9
(ve) (c(y); M(msg(y).3) | (vm)(m(x);c(mac((j, M, x), K2)) | TRea(M))) Vi¥*“™ TReq(M)

jEN\Z fa(M)NA=2 CK <Ck
(ve) (c(y); M{msg(y).3) | (vm)(m(x);c(mac((j, M, x),K;)) | 7(CIK'))) V"< (CIK')

jEN\Z fa(M)NA=9
(ve)(e(y); M(msg(y).3) | c(mac((j, M, CIK'), K;))) ViF M(CIK')

(FILE SYSTEMS)
vrel P VP Q,  f(Ep)nA=0

NS71 | IS 1112 F,Clk
hs | TNs o | ThrerPr Vi Mspz i | ThrerQr

72
Ifsg = cik,
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(HONEST USERS)
Vx. x € dom(c) = 3JCIK,i € Z,0p. CIK' < Clk A T(x) = Cert(i,op) A o(x) = CIK

[Clroe VyF ¥ [Clre

iel I'(x) = Cert(i,op) P VZF,P,Qk 0
(ve)(e(x); P | TRea(c)) V3 (ve)(c(x);Q | TReq(c))

(SYSTEM CODE)
PV g P VISR g wrer B VPSR Q
P" = (vieza? B7 77 ) (VK) (P | P' [ TeePr) Q" = (vieza? Bivi)(Q 1 Q' [ Tl £Qr)
(W) | (Vg 82,70 5,B5,75,) ')V (vT)( | Q)

Further, we prove that the relation V is included in the simulation preorder. Lemma

7.4.3 follows. So by Lemmas 7.4.1.1-2 and Corollary 7.3.6, R is safe and fully abstract.
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