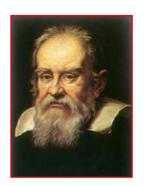
# Bridging the Gap between Business Strategy and Software Development

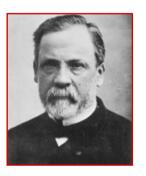
Victor R. Basili

University of Maryland and Fraunhofer Center - Maryland






# Why Measurement?


"What is not measurable make measurable"."

Galileo Galilei



"A science is as mature as its measurement tools."

Louise Pasteur





"If you can't measure it, you can't manage it."

Peter Drucker





# Why do Organizations Measure?

#### **Understanding the Business**

Baseline models and relationships

Critical factors affecting the business

#### Managing Software Projects Based on Quantitative Evidence

Planning and estimating

Tracking actual values versus estimates

**Decision-making** 

#### **Guiding Improvement**

Baselining

Prioritizing

Assessing

Packaging of Experience





# **Example Measurement Data**

#### Resource Data:

Effort by activity, phase, type of personnel

Calendar time

Total cost of ownership

#### **Change/Defect Data:**

Changes and defects by various classification schemes

#### **Process Data:**

Process definition and conformance

Domain understanding

#### **Product Data:**

**Product characteristics** 

logical, e.g., application domain, function physical, e.g., size, structure

Usage and context information, e.g., design method used





#### **Problems with Measurement**

#### **Problems**

Too much irrelevant data often collected
Data incomplete, redundant, low quality or invalid
More effort spent collecting data than analyzing data
Data is not analyzed in the right environment
(no context or influencing factors considered)

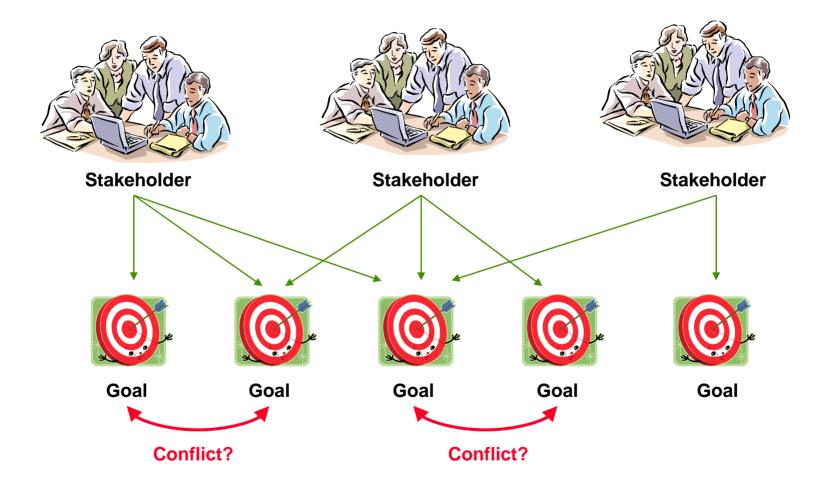
#### Consequences

Unnecessary effort

Wrong conclusions can be drawn

Discouraging for people collecting/analyzing data

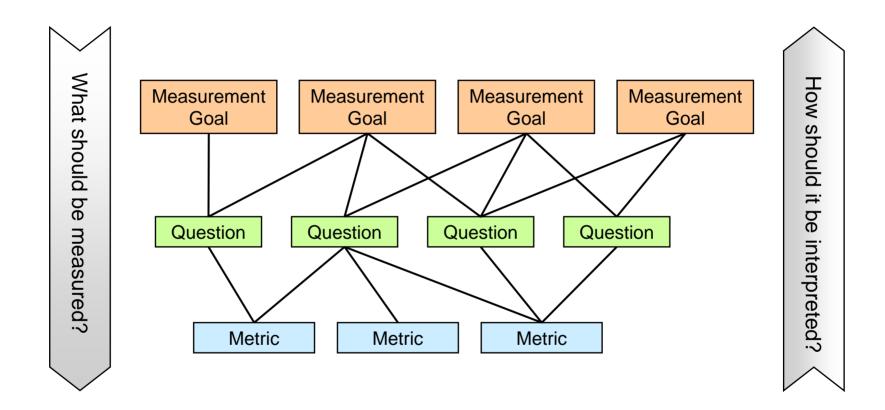
Not sufficient pay-off for the cost




**Goal-oriented Measurement** 



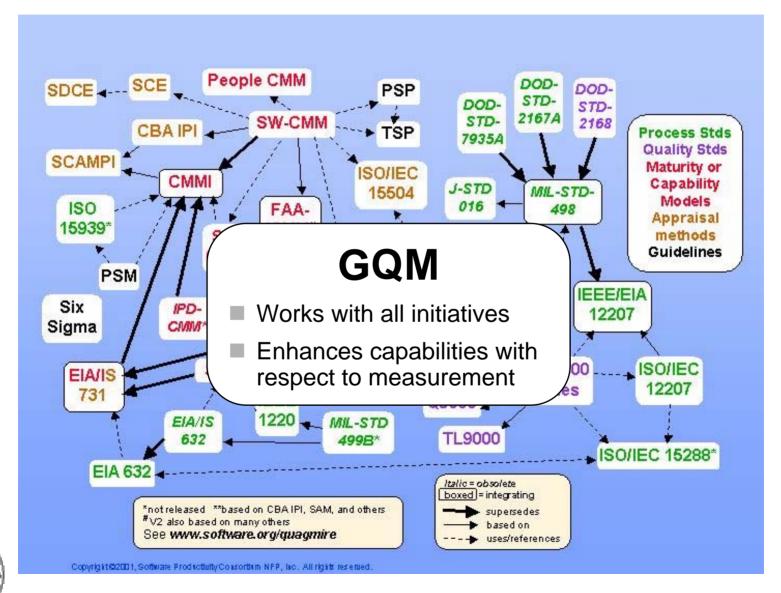



### Internal and External Stakeholders have Goals








### The GQM Structure







# **Measurement and other Quality Initiatives**







# **Generating a Measurement Goal**

Consider the following situation:

Organization's customers reporting too many failures and most of which should have been caught during system test (**Business Goal**)

It is considering adopting a new system test process (a risk and expense) and wants to try the new system test process on a pilot project to determine if it is doable and more effective than what it has been doing (Software Goal)

The organization has data on the number of faults identified by the system test process and the number released to the field for various products. It uses a waterfall type life cycle process, ... (**Context**)

To make an informed decision it must define the new test process, determine if it is being followed, characterize how well the process is identifying faults, and compare it to what they were doing before (Measurement Goal)



# **Template to Define GQM Goals and Example**

|           | Description                                                                 | Example                                                   |
|-----------|-----------------------------------------------------------------------------|-----------------------------------------------------------|
| Object    | Process, product, other experience model                                    | Analyze the system test process                           |
| Purpose   | Characterize, evaluate, predict, motivate, improve                          | for the purpose of evaluation                             |
| Focus     | cost, correctness, defect removal, changes, reliability, user friendliness, | with respect to defect slippage                           |
| Viewpoint | user, customer, manager, developer, corporation,                            | from the point of view of the corporation                 |
| Context   | Problem factors, people factors, resource factors, process factors,         | in the context of the specific organizational environment |

Measurement goals may be defined for any object, for a variety of reasons, with respect to various models of quality, from various points of view, relative to a particular environment





# Goal/Question/Metric Approach Defect Slippage Model

#### Goal:

Analyze the <u>system test process</u> for the purpose of <u>evaluation</u> with respect to <u>defect slippage</u> from the point of view of the <u>organization</u> ...

#### **Defect Slippage Model:**

Let **Fc** = the ratio of faults found in system test to the faults found after system test on this project.

Let **Fs** = the ratio of faults found in system test to the faults found after system test in the set of projects used as a basis for comparison.

Let QF = Fc/Fs = the relationship of system test on this project to faults as compared to the average the appropriate basis set.





# **Goal/Question/Metric Approach**Interpretation of Defect Slippage Model

if QF > 1 then method better than history check process conformance if process conformance poor improve process or process conformance check domain understanding if domain understanding poor improve object or domain training if QF = 1 then method equivalent to history if cost lower than normal then method cost effective check process conformance if QF < 1 then check process conformance if process conformance good check domain understanding if domain understanding good method poor for this class of project



# **Goal Derivation Concepts we have Discussed so far**

**Business Goals:** What the organization wishes to accomplish to maintain business success

**Software Goals:** What the software organization needs to accomplish to satisfy the organizational goals

Measurement Goals: Goals that can be measured and interpreted

**Interpretation Model:** A model that checks whether a measurement goal is achieved (and in consequence contributes to the achievement of related software and business goals

**Context Factors:** Environment variables that change the kind of models and data that can be used





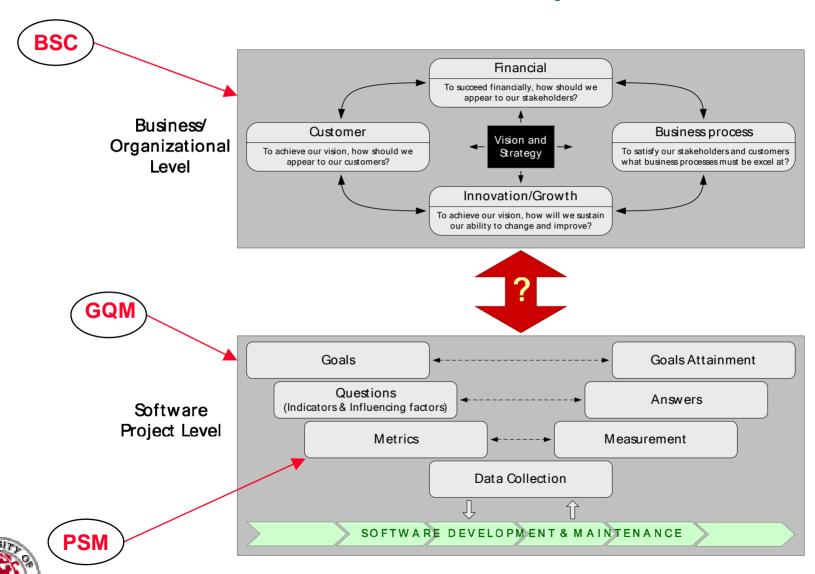
# **Problems Establishing a Software Measurement Program**

Building an Effective Software Measurement Program is difficult It requires support for

**Defining and integrating** the organization's top level corporate goals with its software goals

**Mapping** the software goals to data, maximizing use of existing data

**Evolving** the goals and data collected as the organization matures


**Storing and retrieving** goals, data, and interpretations in context from an experience base

It involves observation, experience facilitation, collaboration, decision making, analysis and synthesis about goals, contexts, and assumptions It assumes an organizational structure that sustains the process and learns Most organizations fall short of putting together a successful program





## **Measurement Gap**



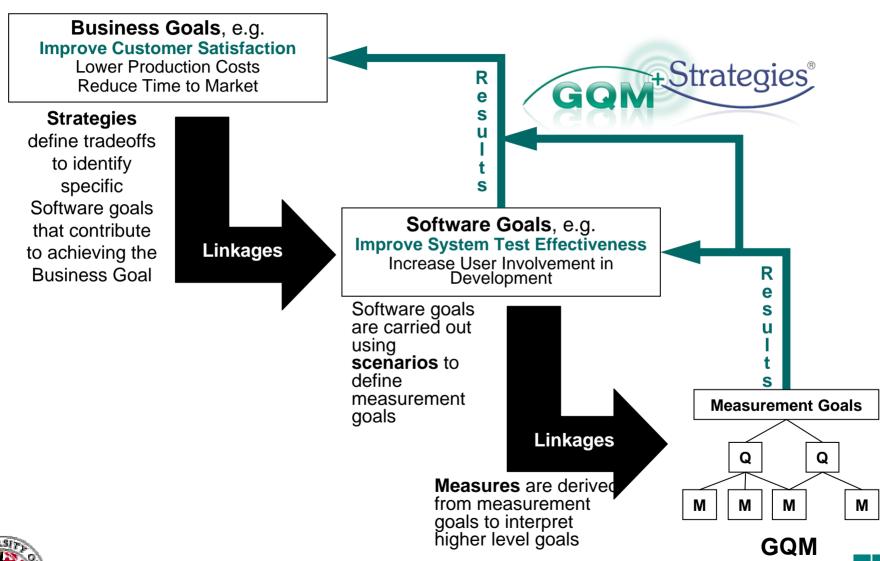


# Why do we want the connection?

#### **Because:**

Software development and measurement activities should be justified in terms of larger business objectives

Data from software **measurement must influence** higher-level decisions An **analysis rationale** is needed that is meaningful at all levels


#### In order to:

clarify and harmonize goals and strategies
communicate business goals throughout an organization
align software goals to a strategy
monitor the deployment strategy
obtain feedback about a strategy and business goals





# **Closing the Measurement Gap**







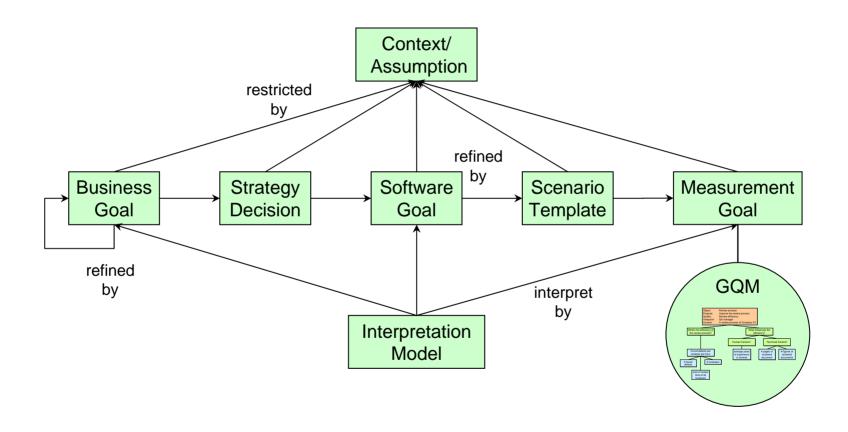
# **Basic Business Goal Types**

**Growth goals:** acquire new projects with current competencies areas; expand existing projects set; evolve existing competencies, build new competencies

**Success goals:** deliver good products to customers; control costs; shrink schedule; Increase profits; getting corporate visibility (awards etc.), building core competency

Maintain principle (internal) goals: transparency, employee satisfaction, controlled risk, learning environment

→ measure to assure no decrease


**Specific focus goals:** make helpdesk more efficient, predict if proposal effort has a good ROI







# **Defining The Right Goals Goal Derivation Concepts**





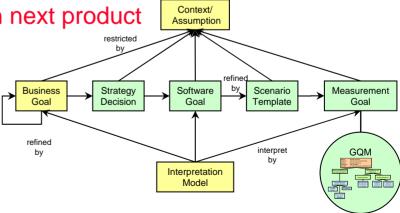




#### **Step 1: Select the right business goals**

#### Context

Highly competitive market for class of products


#### **Assumption**

Improving product will increase customer loyalty

#### **Business Goals**

Reduce next product time to market

Increase customer satisfaction on next product







# **Step 1: Formalize the Business Goals**

| Activity                   | Increase                                                  |
|----------------------------|-----------------------------------------------------------|
| Focus                      | Customer satisfaction                                     |
| Object                     | Product "Splash"                                          |
| Magnitude (degree)         | 10% reduction in number of customer complaints            |
| Timeframe                  | 12 weeks after release                                    |
| Scope (context)            | Web Products Division, Splash Project Manager             |
| Constraints (limitations)  | Splash price and functionality                            |
| Relations with other goals | Can conflict with development cost goals, schedule goals, |







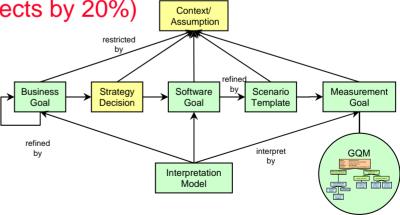
# Step 2: Select the right set of strategy decisions

#### **Context**

Little control over development process (too late)

There is limited budget for process improvement

#### **Assumptions**


Customer satisfaction can be measured by # of customer complaints

Can't make too many changes at once

#### Strategy Decisions

Build reliability in (e.g. implement fewer defects)

Test reliability in (e.g. remove defects by 20%)



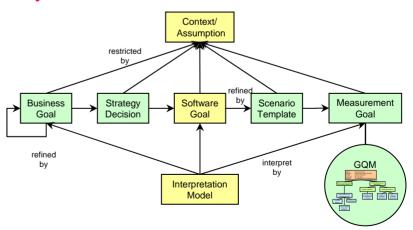






#### **Step 3: Select the right software goals**

#### **Context**


There is a system test process that seems appropriate for our context

#### **Assumption**

Can decrease # of customer complaints by 10% by reducing customer visible defects by 20%

#### Software Goals

Improve system test effectiveness by 20%







# **Step 3: Formalize the Software Goals**

| Activity                   | Decrease                                                  |
|----------------------------|-----------------------------------------------------------|
| Focus                      | Customer reported software defects                        |
| Object                     | System test process for Splash                            |
| Magnitude (degree)         | Decrease customer reported defects by 20%                 |
| Timeframe                  | 12 weeks after release (might check every week)           |
| Scope (context)            | Web Products Division, Splash Software Manager            |
| Constraints (limitations)  | Development cost and functionality                        |
| Relations with other goals | Can conflict with development cost goals, schedule goals, |

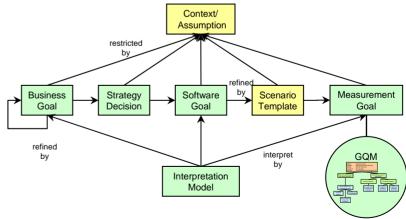






#### Step 4: Select the right scenario templates and steps Context

Baseline data exists on defect slippage


#### **Assumption**

The projects that form the baseline are relevant to the current situation Reducing defect slippage by during system test 20% will reduce customer reported defects by at least 20%.

#### Scenario Templates

Template A – based on historical data

Template B – based on hypotheses









#### **Example Scenario Templates**

**Template A** – based on historical data

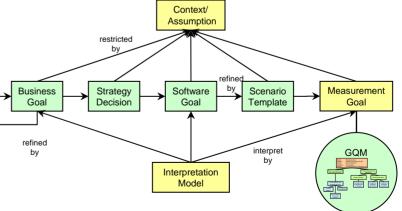
Build a defect slippage baseline from historical data

Apply (Test) the new system test process and compare the defect slippage to past projects to evaluate its effect

**Template B** – based on hypotheses (no historical data)

Propose explicit hypotheses about defect slippage baselines based upon available expertise

Apply (Test) the new system test process and compare the defect slippage to past projects to evaluate its effect








#### **Step 5: Select the right measurement goals**

- A.1: Analyze **representative projects** in order to **characterize** them (build a baseline) with respect to **defect slippage** from the point of view of **the organization**
- A.2: Analyze **pilot project using new system test process** in order to **characterize** it with respect to **defect slippage** from the point of view of **the organization**
- A.3: Analyze **system test process** in order to **evaluate** it with respect to a **20% improvement in defect slippage compared to past projects** from the point of view of **the organization**

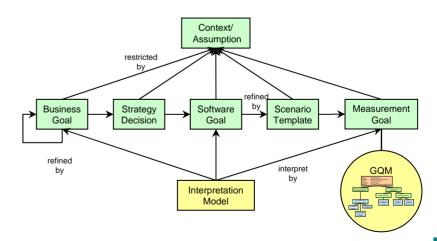






# **Step 5: Formalize Measurement Goals (A.3)**

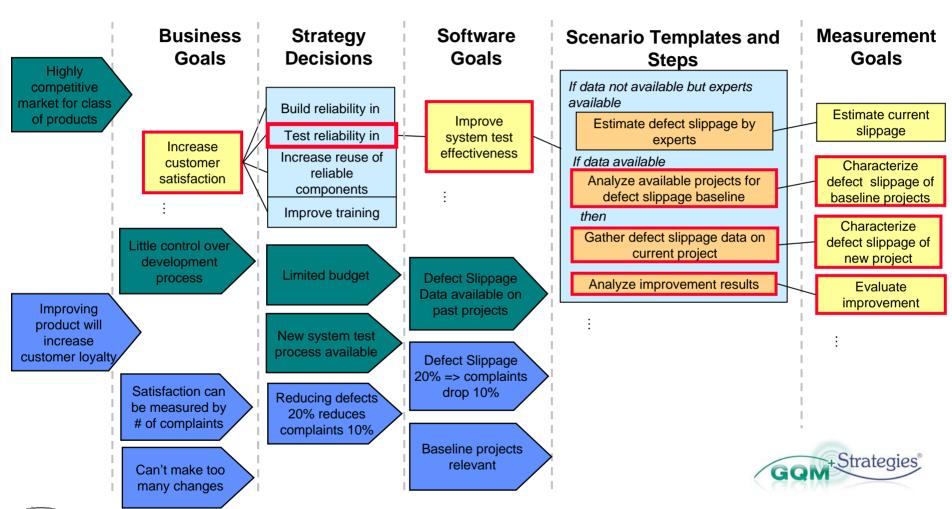
| Object        | System test process for Splash                 |
|---------------|------------------------------------------------|
| Purpose       | Evaluation                                     |
| Quality Focus | 20% defect slippage compared to prior projects |
| Viewpoint     | Quality management                             |
| Context       | Web Products Division                          |








#### Step 6: Derive questions and metrics using GQM and interpret results


Apply the standard GQM approach (seen earlier)
Leads to the interpretation model (seen earlier)
Add interpretation for software goal and business goal

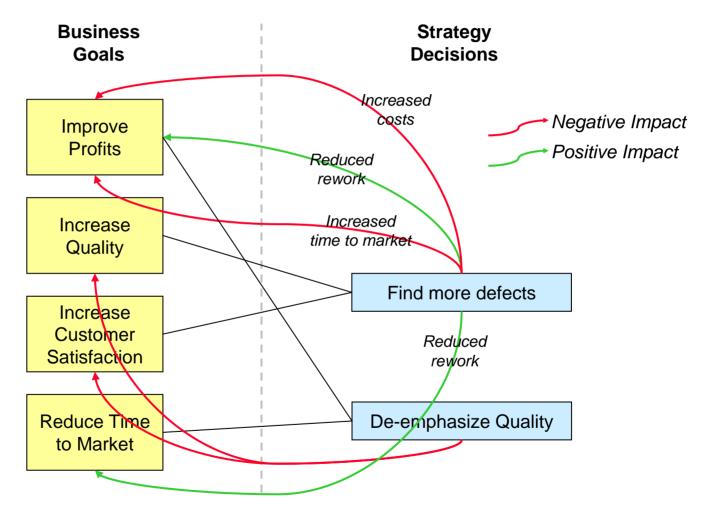






#### **Business Goals to Measurement Goals**












# Goals may conflict with each other







# Key Components to support the building of a software measurement program

An **experience base** of goals and scenarios that allow for the measurement program to be tailored to specific context variables and assumptions and is based upon experiences with various organizations

A method that takes into account the need for

a goal hierarchy that allows goal choices for the needs of a particular organization and stakeholders

dependency of goals on one another, e.g., temporal relationships

strategies and scenarios for identifying sets of goals, recognizing which combinations of goals are needed depending upon environmental constraints

mapping goals into existing data sets to maximize information while minimizing data collection

the inheritance of data across multiple goals, i.e., mapping the data required from one set of goals onto others

An **expert** to help set up the measurement program in a the particular organization, including the generation of the goals, measures, data, and analysis





## **Summary**

We've presented an approach to **linking** high-level business goals to operational level measurement goals that requires

Defining business goals

Choosing a **strategy** to achieve the business goal

Translating the strategy, where appropriate, into software goals

Choosing a **scenario** for achieving the software goal

Deriving measurement goals from the scenario

#### The payoff

Provides justification and accountability at all levels

Provides a clear plan of action

Provides guidance not just for planning, but also for analyzing and rolling up the resulting data to the people who need to make decisions

Produces reusable artifacts





#### This is the work of

Dr. Victor Basili,
Dr. Jürgen Münch,
Jens Heidrich,
Dr. Mikael Lindvall,
Myrna Regardie,
H. Dieter Rombach
Dr. Carolyn Seaman,
Adam Trendowicz



