
© 2008 Fraunhofer Center Maryland

Fraunhofer USA
Center for Experimental
Software Engineering

Using Measures and Risk Indicators for
Early Insight Into Software Product

Characteristics such as Software Safety

Victor R. Basili
University of Maryland

and
Fraunhofer Center

for Experimental Software Engineering, Maryland

ISSRE 2008

© 2008 Fraunhofer Center Maryland
2

Fraunhofer USA
Center for Experimental
Software EngineeringOutline

• Problem

• Approach

• Safety Application
– Development
– Independent Test

• Benefits

• Future Work

© 2008 Fraunhofer Center Maryland
3

Fraunhofer USA
Center for Experimental
Software EngineeringThe Problem as Stated

• The problem posed was how can we aid the software safety assurance
engineer
– Monitor the quality of the software safety process
– Identify areas of risk where software safety is not being

appropriately addressed
– Provide support for mitigating these risks
– Be able to recommend potential solutions for improving the

software development

• Could we propose as set of measures that can be
– Integrated into the general measurement program
– Cost effective by leveraging data already collected

© 2008 Fraunhofer Center Maryland
4

Fraunhofer USA
Center for Experimental
Software EngineeringContext

• The number of complex system of systems has grown
– Bigger and more automated
– Distributed and network-connected, not stand alone
– Composed of hardware and software elements
– Uses many suppliers
– Structured in many layers of suppliers

• All subsystems need to be integrated and use different approaches for
dealing with safety

• Software has a much larger role in the system than ever before, e.g.,
the networking

© 2008 Fraunhofer Center Maryland
5

Fraunhofer USA
Center for Experimental
Software Engineering

The Problem in the Abstract

• We can define functional and non-functional requirements for a system
and there are processes, methods, and techniques we can use to achieve
these requirements with respect to the system, e.g. on-time delivery, cost,
quality

• Projects monitor development to see if they are achieving these
requirements by studying the current amount of the resource itself , e.g.,
time expended, and comparing it against some other some other
resource, e.g., amount of product created
– e.g., for on-time delivery they might check the % of code, classes, or

components developed according to some pre-defined schedule at
various milestones

© 2008 Fraunhofer Center Maryland
6

Fraunhofer USA
Center for Experimental
Software EngineeringThe Problem in the Abstract

• What happens if we cannot measure a resource expenditure? What do we
do if we cannot evaluate the requirement until the system is completed?

• For example, suppose we are considering trust requirements, such as
safety, security, reliability. What resources are these related to?

• If we cannot measure if a characteristic exists early on, can we at least
measure if there is a risk that the characteristic will not exist

• How can we recognize the potential risk during the development of a
system of not achieving the desired trust characteristic?

• How can we do this with minimum cost and overhead?

• Note, we may not be able to show the trust characteristic is there but we
can show it cannot be there

© 2008 Fraunhofer Center Maryland
7

Fraunhofer USA
Center for Experimental
Software Engineering

One Approach
• Assumption: There is a relationship between the processes used during

software development and the product's characteristics
– Characteristic (Product) = F (Process, People, …)

• Implication: A lack of process suggests there is a risk of not achieving the
proper product characteristics

• Opportunity: If we analyze the execution of the process, we can provide
insight into whether appropriate processes are being performed

• Approach Idea: Analysis of intermediate outputs during development can
help provide insight and help identify potential risks in achieving the
desired characteristics

© 2008 Fraunhofer Center Maryland
8

Fraunhofer USA
Center for Experimental
Software EngineeringVisibility Into System Risk

• Goal is to develop and implement a set of measures that provide
management visibility into the system (and software)

• For the purpose of asking the right questions, identifying risks and
monitoring the quality of the trust-related process

• What is happening?

– What kind of information can be gathered from development that will
make the lack of process visible and provide insights into the focus,
amount, and types of analysis needed?

– What are the high risk issues for this system with respect to the
anticipated characteristic?

© 2008 Fraunhofer Center Maryland
9

Fraunhofer USA
Center for Experimental
Software EngineeringVisibility Approach

• Measure process OUTPUTS, intermediate products generated during
development and test

• Is sufficient material there? Where are the potential risks based upon
missing information?
– This is a syntactic, quantitative analysis.
– Can be measured directly; can be automated

• Is the right material there?
– This is a semantic analysis
– Can generate statistical samples, based upon the lack of sufficient

materials, that can be manually inspected for quality attributes, e.g.,
correctness

© 2008 Fraunhofer Center Maryland
10

Fraunhofer USA
Center for Experimental
Software EngineeringVisibility Approach

• Apply a set of models and measures to objectively assist in identifying
risk areas where the characteristic may not have been properly
addressed

• Use available information to focus the analysis
– Understand what data is available and how we might interpret that

data
– Whenever possible, use existing data (don’t impose additional

costs, time burden)

• As an example, consider the trust requirement of safety with the
fundamental question:
– Is safety being dealt with appropriately?

© 2008 Fraunhofer Center Maryland
11

Fraunhofer USA
Center for Experimental
Software Engineering

Some Software Safety Terminology
• Hazard: Any real or potential condition that can cause injury, illness, or death to

personnel; damage to a system, equipment, property, or the environment

• Hazards recorded in a Hazard Tracking System HTS have the format:
(Identifier, Scenario (Description), {Causes, {Control, {Verification}}})

• Trouble Reports: Are recorded in failure/trouble-reporting system and are
assumed to be marked as safety-related

• Properties of software hazards:
– A hazard is a software hazard if it has at least one software cause
– A hazard is open if at least one of its causes is open
– A cause is open if at least one of its controls is open
– Hazards are retired (risk is reduced) but never leave the data base
– Closed hazards can become open hazards when a new cause is found

© 2008 Fraunhofer Center Maryland
12

Fraunhofer USA
Center for Experimental
Software EngineeringDefining Measures to Provide

Insights into Software Safety
1. Identify potential insight areas and intermediate outputs that

cover the important aspects of the safety process for the specific
environment

2. State the purpose of each insight area serves
3. Ask a set of Readiness Assessment questions that

– Provide initial insight into the areas of interest
– Allow a quick and easy status report of the area
– Identify whether it is possible to go deeper into the area

4. Define Software Safety Visibility Goals and Questions to
expose risks associated with outputs of the safety process

5. Develop Measures and Models to define what will be measured
and how it will be interpreted

6. Identify Responses to potential risks indicated by measures
outside the model thresholds and further actions to be taken

7. Apply the measures and interpret the results

© 2008 Fraunhofer Center Maryland
13

Fraunhofer USA
Center for Experimental
Software Engineering1. Identify Insight Areas

1. Identify potential insight areas and intermediate products that
sufficiently cover the important aspects of the process for the specific
environment.

• What is the level of detail of the process being applied to develop the
system with the safety requirement?

• What are the intermediate outputs of the process?
• What are the potential insights that can be gained from those outputs?

• Considerations for selecting areas depend on information and data
available, processes/ technologies used, life cycle being followed,
historical data pointing to specific problem types, contribution to
insights, cost and schedule, ..

© 2008 Fraunhofer Center Maryland
14

Fraunhofer USA
Center for Experimental
Software Engineering

• Based upon the considerations, we selected the following
insight areas (and intermediate outputs) to support program
management and the safety engineer

– Software Safety Analysis Process (Process Document,
Requirements Document,)

– Hazard and Mitigation Identification (HTS)
– Hazard Monitoring (HTS)
– Appropriate Level of Rigor for Software Safety (Process

Document)
– Safety Defects (TR)

Example: Hazard and Mitigation Identification
Look at the Hazard Tracking System to see if information is
put in it

1. Identify Insight Areas

© 2008 Fraunhofer Center Maryland
15

Fraunhofer USA
Center for Experimental
Software Engineering2. State Purpose

2. State the goals associated with each insight area (what is the insight
that the output provides)

• What are the goals for examining those intermediate products relative
to the insights they provide?

• Example: Software Safety Analysis Process
– Confirm that system and software requirements and development

practices are in compliance with safety processes

• Example: Hazard and Mitigation Identification
– Ensure that the program is adequately executing the safety

process by identifying and documenting the appropriate
information

© 2008 Fraunhofer Center Maryland
16

Fraunhofer USA
Center for Experimental
Software Engineering3. Ask Readiness Assessment

Questions
• The purpose of the Readiness Assessment questions is pragmatic

• Before delving into the effort of the developing models and measures
and collecting data we propose a set of questions that allow us to
– Gain some initial insight into the areas of interest
– Get a quick and easy status report of the area
– Identify whether it is possible to go deeper into the area

• It is possible that the some process aspect is so poorly applied or
misunderstood and the project needs to correct this as early as possible

• What is learned from these questions helps tailor the models, measures,
and responses applied at the deeper level

© 2008 Fraunhofer Center Maryland
17

Fraunhofer USA
Center for Experimental
Software Engineering3. Ask Readiness Assessment

Questions

• Example: Software Safety Analysis Process

Is there a documented software safety process that identifies
requirements as safety-related?

Are safety-related requirements marked as such in the requirements
repository?

© 2008 Fraunhofer Center Maryland
18

Fraunhofer USA
Center for Experimental
Software Engineering4. Software Visibility Goals

and Questions
• We now know the artifacts exist and can be analyzed.

• We are at the level of setting goals for what we expect to see from the
artifact we are examining

• Example: Software Safety Analysis Process

Goal: Make each sub-contractor and the integrator safety processes
visible by checking on the items it has identified

Question: Are there a reasonable number of software safety-related
requirements being identified?

© 2008 Fraunhofer Center Maryland
19

Fraunhofer USA
Center for Experimental
Software Engineering

5. Develop Measures and Models

• Here we use a measurement template to provide the best interpretation
possible depending on what other data or expertise is available

• We take the question posed and define a metric that captures the
concept addressed by the question

• The metric can be any basic measure or derived metric, as well as
evidence of some sort (e.g., existence of documents or processes)

• We then select a model that defines the expected mathematical
bounds on the metric and the interpretation of the values of the
metric(s), in order to answer the target question

© 2008 Fraunhofer Center Maryland
20

Fraunhofer USA
Center for Experimental
Software Engineering5. Develop Measures and Models

• For each model we make assumptions about how the metric values
should be interpreted. This involves the selection of an expected value
and a range for that expected value.

• We use several approaches for estimating the expected value:
– Historical data from past projects such as an average value of data

collected from past projects that are similar to this project
– Prior data from the current project such as the average for all

platforms on this project within the family that should have similar
responses.

– Proxy Estimate if the expected values of the current model behave
like some other variable or equations that can be measured.

– Expert estimate by using an estimated value selected by an expert or
group of experts

© 2008 Fraunhofer Center Maryland
21

Fraunhofer USA
Center for Experimental
Software Engineering5. Develop Measures and Models

• The range of the expected value is one of the following:
– Based upon a normal or other distribution such as some function of

the standard deviation from the mean.
– Based upon the distribution determined by the values used to make

the proxy estimate such as a running average over several points on
a curve.

– An expert estimate of the range.

• In general, if the calculated value is
– Less than the Estimate ± range, then there may be a development

problem
– Greater than the Estimate ± range then we may have planned wrong

and need to reconsider cost and schedule

• The estimate of any expected value or range should be improved over
time based upon new information.

© 2008 Fraunhofer Center Maryland
22

Fraunhofer USA
Center for Experimental
Software Engineering

5. Develop Measures and Models

• To this collection we add a scope of application of the metric, e.g., we
can assume these metrics are taken for certain suppliers or certain
types of systems

• And a suggested responses to the application of the model being
within or without bounds

• So the measurement template consists of:
– Question being addressed with the aid of the metric
– The metric definition
– The model/interpretation recommended
– The scope of application of the metric
– Suggested responses to the application of the model

© 2008 Fraunhofer Center Maryland
23

Fraunhofer USA
Center for Experimental
Software Engineering

5. Develop Models and Measures

Question: Are there a reasonable number of software safety-related
requirements being identified?

Measure: PSSR = # software safety requirements / # software
requirements

Model:
if |PSSR - EPSSR| < e
where

EPSSR is the estimated value of PSSR,
e is the acceptable threshold for deviation from the estimate
(EPSSR – e, EPSSR +e) is the acceptable range,

then a reasonable number of software safety requirements have
been identified

© 2008 Fraunhofer Center Maryland
24

Fraunhofer USA
Center for Experimental
Software Engineering

5. Develop Models and Measures

Question: Are there a reasonable number of software safety-related
requirements being identified?

Calculating the value and range of EPSSR
If we have historical data for similar systems, we can let
EPSSR = the average of the PSSRs for all similar systems
e = σ(EPSSR)
or
We can define a proxy, such as assuming the relationship is in
line with system safety in general, then
EPSSR = #system safety requirements / #system requirements ,
and guess at e based upon expert opinion, e.g.,
e = 20% of EPSSR

© 2008 Fraunhofer Center Maryland
25

Fraunhofer USA
Center for Experimental
Software Engineering

6. Identify Responses

Question: Are there a reasonable number of software safety-related
requirements being identified?

Measure: PSSR = # software safety requirements / # software
requirements

Response:
If PSSR is not within the range of EPSSR
then there is a need for a management action,

check if the safety analysis process is being applied right;
come up with a “get well” plan or investigate the reason why the

system under consideration has such a small (or large) number of
software safety requirements
If too large
then what are the cost and schedule implications?

© 2008 Fraunhofer Center Maryland
26

Fraunhofer USA
Center for Experimental
Software Engineering

Approach

1. Identify Insight Areas and intermediate outputs

2. State the Purpose

3. Ask the Readiness Assessment Questions

4. Define Software Safety Visibility Goals and Questions

5. Develop Measures and Models

6. Identify responses

7. Apply

© 2008 Fraunhofer Center Maryland
27

Fraunhofer USA
Center for Experimental
Software Engineering

Example Steps and Measures

• We have applied this approach to the development of a DoD safety
critical complex system of systems

– It provided insights into problems during development to program
management

– It was effective in pointing out a number of risk areas that were not
getting sufficient attention

© 2008 Fraunhofer Center Maryland
28

Fraunhofer USA
Center for Experimental
Software Engineering

Sample Problems Identified

• Problem identified with various suppliers:

– Software-related hazards not marked as such

– Hazard controls not identified as software related
–
– Hazards not fully traceable to the source of the hazard

– Hazard controls not traced to the requirement specifications.
.
– Verification data missing from in the HTS.

© 2008 Fraunhofer Center Maryland
29

Fraunhofer USA
Center for Experimental
Software Engineering

Sample Responses

• Reanalyze and update the data in the HTS to
– correctly identify hazards and causes as software related

• Add guidance to the HTS user guide to
– more clearly define a software hazard, i.e., a hazard is a

software hazard "if it has at least one software cause or one
software control" and communicate this guidance to the users

• Modify functionality of the HTS to
– allow tagging controls as software related appropriately.
– allow bi-directional tagging of controls to the requirements tool

© 2008 Fraunhofer Center Maryland
30

Fraunhofer USA
Center for Experimental
Software Engineering

The Second Problem
• There is a need to improve the safety analysis during independent

software test to gain more confidence in the safety of a system

• Independent safety evaluation of a system is traditionally done at the
end of the system’s development life cycle

Late visibility into problems, limited time to do analysis and test

• How do they maximize the opportunity of identifying potential safety risks
during independent test?

• How do we take advantage of risk identification information from
development in a cost effective way?

• How do we focus and evaluate safety activities during independent safety
test?

© 2008 Fraunhofer Center Maryland
31

Fraunhofer USA
Center for Experimental
Software EngineeringContext

Independent System Test

Field Test

During development, measures
are needed to monitor and track
safety activities from a program
management perspective

While in development, planning for
independent software test begins

A SAR isn’t done until the end, don’t
even know what is fragile until the end of
the development phase

SAR

System Development Phase

Independent Software Test

© 2008 Fraunhofer Center Maryland
32

Fraunhofer USA
Center for Experimental
Software Engineering

The Expanded Process Steps
for Independent Software Safety Test

A. Apply the approach during development and this information is available
to independent software test for planning purposes

• Provides program management with visibility into development

B. This data can be used for planning independent software test, by
creating new goals, measures, models, or responses

• Apply a modified approach, constrained by available data

• Permits planning a more efficient independent test

C. Apply the approach to the execution of independent software test
phase, identifying new areas of interest, goals, metrics, models, etc.

• Increases confidence in the safety of the released system

© 2008 Fraunhofer Center Maryland
33

Fraunhofer USA
Center for Experimental
Software EngineeringB. Software Safety Risk Reduction

for Independent Software Test Planning

1. Insight Areas: focused for independent software test planning
2. Insight Area Goals: may be same areas used during development

phase, but looked at them more from an independent safety
test/analysis perspective

3. Readiness Questions: Do we have sufficient data from development
to support each of these new goals?

4. Software Safety Visibility Goal/Questions: can very within limits
5. Measures and models: can very within limits
6. Responses: modified to focus on independent test actions
7. Apply

© 2008 Fraunhofer Center Maryland
34

Fraunhofer USA
Center for Experimental
Software EngineeringB6. Identify Responses

Development Response:
If PSSR is not within the range of EPSSR
then there is a need for a management action,

check the safety analysis process and whether it is being applied right;
come up with a “get well” plan …

Independent Test Response:
if PSSR is not within the range of EPSSR then :
if too small
then if safety requirements are not identified then

developer test cases may not be sufficiently robust
assess if requirements were correctly allocated to safety
explore developing more robust test cases in Independent Test

If too large
then likely independent test will have to be more comprehensive;

longer duration/more robust.

© 2008 Fraunhofer Center Maryland
35

Fraunhofer USA
Center for Experimental
Software EngineeringC. Software Safety

Risk Reduction For Deployment
1. Identify insight areas that cover the independent test activities
2. Focus the goals associated with each insight area on the evolving

product in independent test
3. Apply a set of Readiness Assessment questions that

• What data do I have from development to jump start my
analysis, e.g., estimated bounds and ranges?

4. Define/focus Software Safety Visibility goals and questions to
expose risks associated with outputs of the safety analysis process

5. Develop/enumerate measures and models
6. Identify responses to potential risks indicated by measures

outside the model thresholds and further actions to be taken
7. Apply the measures and interpret the results

© 2008 Fraunhofer Center Maryland
36

Fraunhofer USA
Center for Experimental
Software Engineering

Example insight areas and questions for
independent software test

Potential insight areas that support development and tailoring of
independent safety test

1) Review of Hazard Tracking System (HTS) Data
2) Analysis of Software Requirements
3) Analysis of Software Design

4) Review of Contractor Software Problem Reports (SPRs)

5) Analysis of Developer Software Test Planning and Execution

6) Review of Safety Assessment Report (SAR)

© 2008 Fraunhofer Center Maryland
37

Fraunhofer USA
Center for Experimental
Software Engineering

NASA Safety Metrics Project

• NASA has a set of robust software safety process guidelines
applicable across projects

• We are working with the Constellation Program to
– Create a set of measures tailored to those guidelines
– Save these measures an “Experience Base” that will

• support decision making by the software safety engineer
• provide visibility into the software safety process for

multiple stakeholders
• identify implementation practices (good and not as good)

for implementing the guidelines.

© 2008 Fraunhofer Center Maryland
38

Fraunhofer USA
Center for Experimental
Software Engineering

ISSUES

It is a critical assumption that there is a direct relationship between
process and product

Forces you to state up front what that relationship is

Forces you to predict what should happen

A lot can be learned if you are right (or wrong) in terms of building
knowledge – empirical study

Are we applying measureable processes for other trust characteristics,
e.g., safety, reliability, privacy, …

© 2008 Fraunhofer Center Maryland
39

Fraunhofer USA
Center for Experimental
Software Engineering

Benefits
• Using the relationship between process and product has many

advantages
• It creates early visibility into potential risks and provides management with

insights
• Is a low cost, high benefit approach
• Has been applied for safety successfully
• Offers an evaluation of the safety activities for the safety engineer

– Increases confidence in the safety of the released system
– Identifies risks resulting from the application of the safety hazard

analysis process (or lack there of) and assesses the potential for
achieving a safe system

Metrics will not tell us whether the system is safe, but they provide
indicators of potential problems and risks.

© 2008 Fraunhofer Center Maryland
40

Fraunhofer USA
Center for Experimental
Software Engineering

Future Work

• How do we expand this concept for other trust characteristics?

• The more we know about the process, the more we can identify
risks

– Does this make sense for safety, reliability

• It assumes we know something about the relationship between
process and product

• How do we incorporate this into the normal acquisition and
development processes?

• We have begun to look at insight areas for ordinary project
management

© 2008 Fraunhofer Center Maryland
41

Fraunhofer USA
Center for Experimental
Software Engineering

The Team

• Victor Basili, University of Maryland & Fraunhofer Center –
Maryland

• Frank Marotta, U. S. Army Aberdeen Test Center

• Kathleen Dangle, Fraunhofer Center – Maryland

• Linda Esker, Fraunhofer Center - Maryland

