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ABSTRACT 

Prediction of software engineering variables with high accuracy is still an open problem. The 

primary reason for the lack of high accuracy in prediction might be because most models are 

linear in the parameters and so are not sufficiently flexible and suffer from redundancy. In this 

chapter, we focus on improving regression models by decreasing their redundancy and 

increasing their parsimony, i.e., we turn the model into a model with fewer variables than the 

former. We present an empirical auto-associative neural network-based strategy for model 

improvement, which implements a reduction technique called Curvilinear component analysis. 

The contribution of this chapter is to show how multi-layer feedforward neural networks can be a 

useful and practical mechanism for improving software engineering estimation models.  

 

INTRODUCTION 

Prediction of software engineering variables such as project cost, fault proneness, and number of 

defects is a critical issue for software organizations. It is important to get the best estimate 

possible when planning a new project, activity, or task. For instance, we may have to predict the 

software cost, the effort in carrying out an activity (e.g. coding a module), or the expected 

number of defects arising from a module or sub-system. Improving the prediction capability of 

software organizations is one way of improving their competitive advantage. Better predictions 

can improve the development process in terms of planning resources, setting and achieving 

quality goals, and making more informed decisions about the schedule. The point is that, 

prediction is a major problem when trying to better manage resources, mitigate project risk, and 



deliver products on time, on budget and with the required features and functions (quality) 

(Boehm, 1981). 

Despite the fact that prediction of software variables with high accuracy is a very important 

issue for competing software organizations, it is still an unsolved problem (Shepperd, 2007). A 

large number of different prediction models have been proposed over the last three decades 

(Shepperd, 2007). There are predefined mathematical functions (e.g., FP-based functions, 

COCOMO-I, and COCOMO-II), calibrated functions (e.g., function based on a regression 

analysis on local data), machines learning (e.g., estimation by analogy, classification and 

regression trees, artificial neural networks), and human-based judgment models. There exist a 

large number of empirical studies aimed at predicting some software engineering variable 

(Myrtveit, 2005). Most often, the variable is software project cost, which we will use as the main 

exemplar of the approach described in this chapter. 

In this chapter, we present a computational intelligence technique to improve the accuracy of 

parametric estimation models based on regression functions. The improvement technique is 

defined, tested, and verified through software cost estimation data (Sarcia’, Cantone, & Basili, 

2008). In particular, this chapter offers a technique that is able to improve the accuracy of log-

linear regression models in the context of the COCOMO-81 projects (Boehm, 1981; Shirabad, & 

Menzies, 2005). From a mathematical point of view, even if we change the model variables, e.g., 

we predict effort instead of predicting the number of defects, or vice versa, the strategy to 

improve the estimation model does not change at all. This means that we can apply the 

improvement strategy to any set of variables in any kind of development context without change. 

Of course, it does not mean that the improvement technique will succeed in every context. 

It is important to note that, even if we were making predictions through human-based 

judgment, to increase estimation accuracy we would have to build parametric models calibrated 

to the local data and use them to estimate variables of interest for the specific context of the 

organization (McConnell, 2006). For instance, productivity (lines of code/time) may change 

according to the context of the organization (e.g., capability of analysts and developers, 

complexity of the software system, environment of the development process). The point is that, 

even experts should use regression functions for gathering suitable information from the context 

in which they are operating. Therefore, apart from the kind of estimation model used, when 

improving estimation accuracy, calibrating regression functions is a required activity. We believe 

that, enhancing accuracy of regression functions is the core of any estimation activity. That is 

why we focus upon improving regression functions and do not deal with other approaches. 

We begin with an introduction that provides the general perspective. Then, we provide some 

background notes, required terminology, and define the problem. We present, from a practical 

point of view, the main issues concerning parametric estimation models, multi-layer feed-

forward neural networks, and auto-associative neural networks. We illustrate the empirical 

strategy for dealing with the problem (the solution). We conclude with a discussion of the 

benefits and drawbacks of the methodology and provide some ideas on future research 

directions. 

 

 

 

 

 

 



PARAMETRIC ESTIMATION MODELS 

The estimation models that we refer to are based on parametric models as illustrated in Figure 1. 

 

Figure 1. Parametric estimation model (regression functions).  

 

 

 

Mathematically, the estimation model (EM) in Figure 1 can be represented by a regression 

function fR such that y = fR(x, ) + , where x is a set of independent variables, y is the dependent 

variable, and  = ( 0 … Q) is a set of parameters defining fR . The component  is the aleatory 

part of the model (i.e. the unknown part depending on the probability of future events) 

representing our uncertainty about the relationship between the independent and dependent 

variables, with E( ) = 0 and cov( ) = 2I (Weisberg, 1985). To calculate function fR, we need to 

know every point of the population. This almost never happens. Then, since we know only a 

finite sample from the population, we can only estimate  by finding a set of estimators B = (b0 

… bQ) such that they minimize an error function, e.g., the least squares error function. To 

estimate B, we use previous observations of both dependent (Y) and independent (X) variables 

(Figure 2). 

 

Figure 2. Least squares estimate 

 

 

 

We consider the relationship Y = fR(X, B), where Y is a set of observations of the dependent 

variable, X is the observation matrix including N observations of Q independent variables, and B 

is the vector of parameters estimating   (Figure 2). Note that, we use a lowercase letter (e.g., x) 

to refer to the variables and an uppercase letter (e.g., X) to refer to the data. Because of , the 

least squares estimate, i.e. B in Figure 2, are different from parameters . Thus, fR fed with X 

provides Yest = fR(X, B), not Y. Then, the difference e = Y  Yest is a vector of errors 

representing  (called residuals, with e  ). The most important part in modeling is to find the 

best estimates for . This activity is called parameter estimation, fitting, or calibration. Note that, 

the LS estimate in Figure 2 is based on finding the minimum of the sum of squares of the error. 



From a practical point of view, the minimum of the sum of squares of the error can be found by 

setting the gradient to zero, where the derivative is made with respect to each parameter. 

Therefore, minimizing the cost function means solving a system of equations of partial 

derivatives set to zero (McQuarrie & Tsai, 1998, Pedhazur, 1997). If the system of equations is 

composed of a linear combination of the sought parameters, the EM is linear in the parameters, 

and we have a closed solution (B in Figure 2). If the system of equations is composed of non-

linear equations of the sought parameters, the EM is non-linear in the parameters and the solution 

can be found iteratively (there is no closed solution). 

Note that, even a non-linear polynomial such as y = 0+ 1x1+ 2x2+ 3x1x2 + 4x1
2 + 5x2

2 is 

linear in the parameters. This can be obtained by transforming its variables as follows x1x2  = x3, 

x1
2 = x4, and  x2

2 = x5. Therefore, y = 0+ 1x1+ 2x2+ 3x3 + 4x4 + 5x5 , which is still a linear 

model where we can apply the least squares estimate in Figure 2. Another important 

transformation is about turning a geometric model into a linear model through logarithms. The 

resulting function is called log-linear regression function. For instance, y = x1
a

i=1..kci is a 

geometric model having a variable x1, a coefficient “a” as a power of x1, and k multiplicative 

coefficients. Taking the logarithm of both sides of y = x1
a

i=1..kci, we can break down the product 

into sums. Based on the logarithm properties, i.e. ln (pq) = ln(p) + ln(q) and ln(pq) = (q)ln(p), we 

can write ln(y) = 1ln(x1) + 2ln(c1)+… + k+1ln(ck), where we have used the letter  to indicate 

the model parameters (with a = 1). Then, we can set z = ln(y), h1 = ln(x1), h2 = ln(c1) … hk+1 = 

ln(ck) and add an intercept ( 0) so that the log-linear model becomes z = 0+ 1h1+ 2h2+ … + 

k+1hk+1, which is still a model linear in its parameters where we can use the least squares 

estimate in Figure 2. Note that, we use an intercept ( 0) because if the remaining monomials (i.e., 

ihi, with i = 1 to k+1) vanish (in case of non-correlation), the equation z = 0+ 1h1+ 2h2+ … + 

k+1hk+1 continues to be satisfied (z = 0). 

Note that, if we want to get the best linear unbiased estimators (BLUE) of  (Gauss-Markov 

theorem) and use the model for inference, LS requires some assumptions (Pedhazur, 1997): 

 Errors  are not x correlated. 

 The variance of the errors is constant (homoscedasticity), cov( ) = 2I. 

 Errors  are not auto-correlated. 

 The probability density of the error is Gaussian,   NID(0, 2I), i.e. there are no outliers, 

skewed/kurtotic distributions, and measurement error. 

Since the characteristic expressing the relationship between inputs and output is called model 

shape, the equation in Figure 1 has a linear shape and is linear in the parameters. For instance, a 

third degree polynomial has a cubic shape and is still linear in the parameters. Complexity of a 

model is another characteristic expressing the number of parameters composing the model. The 

more parameters the model has, the more flexible the model is. Models that are linear in the 

parameters have as many parameters as variables (i.e., one and only one parameter for each 

variable). Therefore, to increase the model flexibility (i.e. the number of parameters) of a linear-

in-the-parameter model we have to increase its variables (e.g., increasing the polynomial degree). 

Barron (1993) proves that the number of parameters required to execute an approximation with a 

fixed accuracy increases exponentially with the number of variables for models that are linear in 

the parameters, while it increases linearly with the number of variables for models that are non-

linear in the parameters. This means that, to take advantage fully of parsimony we should 

consider non-linear-in-the-parameter models instead of the linear ones. If we use models that are 

non-linear in their parameters such as multi-layer feed-forward neural networks, we can increase 



the model flexibility (i.e. increasing the number of parameters) without adding new variables. 

This is the real essence of the parsimony (Dreyfus, 2005, pp. 13-14). 

However, as mentioned above, non-linear models do not have a closed solution for estimating 

parameters B. Therefore, to overcome this problem, researchers and practitioners often prefer to 

use models that are linear in the parameters instead of using the non-linear ones. However, if we 

choose models that are linear in the parameters, finding the model shape that best fits the data is 

much more difficult than if we used models that are non-linear in the parameters (Dreyfus, 2005, 

pp. 136-138). Conversely, iterative procedures require a lot of experience to be effectively used 

in practical problems. For instance, iterative procedures may provide different parameter 

estimates depending on the initialization values (Bishop, 1995, pp. 140-148; Dreyfus, 2005, pp. 

118-119). Therefore, finding the right parameters may require many attempts as well as the use 

of optimization techniques to reduce the calibration time. 

 

Estimation Model Accuracy 

Prediction models may be evaluated in terms of Absolute Error (AE), i.e. AE = Actual – 

Estimated = Y – Yest. However, an absolute error measure makes no sense when dealing with 

estimation model accuracy for software engineering variables (e.g., effort, defects). In fact, an 

Absolute Error would increase with the size of what we we’re predicting. Let AE1 (= 0.30) and 

AE2 (= 0.25) be the absolute errors calculated by feeding the estimation model with data from 

two different objects (e.g. project 1 and 2). Then, we might argue that the model is less accurate 

for project 1 than for project 2 because AE1 expresses a lower accuracy than AE2 , i.e.,  AE1 > 

AE2. However, if Y1 (the actual value from which AE1 has been calculated) were much greater 

than Y2, i.e., Y1 >> Y2, and AE1  AE2 or even AE1 > AE2, then looking at the absolute error 

AE1, we would incorrectly judge that the estimation model accuracy on object 1 is worse than 

the accuracy on object 2. Actually, we should judge the accuracy on object 1 as better than the 

accuracy on object 2, i.e. the (absolute) error should be evaluated with respect to the magnitude 

of the predictions. For instance, it should be much more severe having a prediction error AE = 

0.30 for a project of 100 man/months than a prediction error AE = 0.30 for a project of 10,000 

man/months. This means that, an absolute measure should not be used for model comparison. 

When predicting software engineering variables, the right choice is to consider a relative error 

measure, i.e. a measure that takes into account the size of what we are predicting (Myrtveit, 

Stensrud, & Shepperd, 2005). For this reason, Boehm (1981) defined the performance of his 

software cost model (COnstructive COst MOdel, COCOMO) in terms of Relative Error (RE), 

Eqn. 1. 

 

RE = (Actual – Estimated)/Actual = (Y – Yest)/Y.  (1) 

 

Note that, currently the Boehm’s model has enhanced into the COCOMO-II (Boehm, Horowitz, 

Madachy, Reifer, Clark, Steece, Brown, Chulani, & Abts, 2000), but the accuracy evaluation 

principles have not changed. The evaluation procedure of the model accuracy is shown in Figure 

3. 

 

 

 

 

 



Figure 3. Evaluating estimation models 

 

 

 

We start with considering a data set of size N, which is split up into two subsets, a training set 

and a test set. The training set size is TR = (2/3)N and the test set size is TE = (1/3)N, thus N = 

TR + TE. We choose the splitting proportion 2/3-1/3 because it is a usual choice when dealing 

with hold-out methodologies (Chen, Mezies, Port, & Boehm, 2005; Kohavi & John, 1997). A 

further valid proportion is 80%-20% (Dreyfus, 2005, pp. 103-106). Based on the training set, we 

calibrate function fR, i.e., estimate parameters B by the least squares estimates (Figure 2). Note 

that, to avoid any confusion between the training set and the test set, we use an apostrophe to 

point out that the data belongs to the training set (i.e., X’ and Y’). Moreover, it is important 

noting that, differently from X’ (Figure 3), the test set X (Figure 3) does not have a vector of 1s 

in the first column. Once we have calculated the parameters B, we feed X into fR and obtain the 

estimated values Yest. Notice that, the size of Yest is TE, i.e. Yest = (Yest
(1)

 … Yest
(TE)). Then, 

accuracy is evaluated by calculating two summary statistics over the Relative Error sample as 

shown in Figure 3. In particular, Mean(RETE) = (1/TE) i =1..TE(REi) is a measure of the bias of fR 

and STD(RETE) = RTSQ{(1/N) i =1..TE([REi –Mean(RETE)]2)} is a measure of the spread of fR. 

Note that, a correct evaluation can be done through both statistics at the same time. For instance, 

if we find out that a model has a Mean(RETE) closer to zero with respect to another model, we 

can infer that the former is more accurate than the latter in terms of correctness. Moreover, if the 

former has a narrower STR(RETE) than the latter, we can infer that the former is more accurate in 

terms of reliability (stability). 

It is very important to note that, sometimes parametric models are evaluated in terms of 

Magnitude of Relative Error (MRE) (Conte, Dunsmore, & Shen, 1986; Shirabad & Mezies, 

2005), where MREi = abs(REi). The evaluation is performed by two summary statistics, as well. 

The first one is MMRE = (1/TE) i =1..TE(MREi) and the second one is PRED(H), Eqn. (2). 

 

PRED(K) = (100/TE) i =1..TE{ 
1  MREi  (K/100)  

(2) 
0  otherwise  

 



A PRED(25) = 80% means that 80% of the estimates have an error not greater than 0.25. Since 

when calculating the MMRE, differently from Mean(RETE), positive errors and negative errors 

do not cancel reciprocally, MMRE would seem a better statistic than Mean(RETE). However, 

Kitchenham et al. (2001) prove that MMRE and PRED(K) cannot be used for comparing 

estimation model accuracy because neither MMRE nor PRED(H) express bias or spread of the 

model. In particular, they show that MMRE and PRED(N) measure spread and kurtosis of the 

random variable Z = Estimated/Actual, respectively. Nevertheless, MMRE may be a useful 

measure when evaluating the goodness-of-fit of a model. 

 

THE PROBLEM 

The problem that we deal with in this chapter is to improve (parametric) models that are linear in 

the parameters. There are many ways of improving regression model accuracy. For instance, we 

can (1) choose a better function, e.g. the one that has a more suitable shape or (2) select input 

variables that are more relevant. In the former, the game is to select a function shape that best fits 

the data. In the latter, the real problem is that, once we have selected the complete input variable 

set, we need to remove redundancy that negatively affects the performance of the estimation 

model (e.g., by taking out irrelevant variables).  

As reported in the Section “Parametric Estimation Models”, however, practitioners and 

researchers prefer using models that are linear in the parameters because they have a closed 

solution to the problem of calculating the model parameters (Figure 2), while models that are 

non-linear in the parameters do not. Then, to support those practitioners and researchers in their 

practical problems the best that we can do is to improve regression models that they actually use, 

i.e. the linear-in-the-parameter ones. That is why, we focus on removing the redundancy of linear 

models, and we do not consider non-linear models as a way of improving estimation accuracy. 

Taking out redundancy is about finding a model that is more parsimonious (i.e., the one 

having fewer input variables). Such a model is preferable because it is able to provide better 

estimates with the same number of observations. Let N be this number. If we use a function 

having fewer variables, we can get further degrees of freedom to calibrate its parameters. Vice 

versa, since N is constant, if we consider functions having additional variables, the degrees of 

freedom in calibrating the model parameters decrease and the estimates will be less accurate 

(Barron, 1993; Dreyfus, 2005, p. 14). Therefore, parsimony can be considered as a power 

multiplier for regression functions. Intuitively, the rationale of this power enhancement is the 

same as the example of a plane calculation. We cannot define a plane using only two points 

because a plane has three parameters, i.e. we need at least three points to determine the equation 

of a plane. Therefore, since the data set size (N) stays constant, if we reduce the number of input 

variables (i.e., making the model more parsimonious), we can increase the accuracy of the 

model. 

To increase parsimony of a regression function we have substantially two options. We can (1) 

shrink the input set into an equivalent pattern or (2) remove irrelevant variables. The former is 

usually performed by applying Principal Component Analysis (PCA) (Jollife, 1986). The latter is 

based on methods where the least irrelevant variables are taken out stepwise (Chen, Mezies, Port, 

& Boehm, 2005; Kohavi & John, 1997). Actually, there would be another option to make the 

model more parsimonious, but it is generally inapplicable because of its too high computational 

cost. This technique is the exhaustive procedure. It consists of considering all the combinations 

that we can get with Q elements. For instance, if we have Q variables, we have to consider 2Q 

different combinations, i.e. 2Q models, each having different variables from each other. The basis 



of the power is 2 because an element can belong to the set or not (binary choice). For each 

model, the procedure goes on by calculating the error. Then, the model having the highest 

accuracy is selected. 

In this work, we present an empirical strategy to shrink the input set by applying an improved 

version of PCA called Curvilinear Component Analysis (CCA) or non-linear Principal 

Component Analysis (Sarcia’, Cantone, & Basili, 2008). We apply CCA instead of using PCA 

because CCA is able to overcome some drawbacks affecting PCA. For instance, PCA can just 

find linear redundancy, while CCA can find both linear and non-linear redundancy. Note that, to 

increase the model parsimony we focus on input reduction techniques instead of the stepwise 

ones because the former can be completely automated while the latter cannot. In fact, stepwise 

techniques require making a decision as to variables to be removed, i.e. the least relevant 

variables. If we do not know the relevance of each variable, stepwise techniques may be difficult 

to be correctly applied. 

 

CURVILINEAR COMPONENT ANALYSIS 

CCA is a procedure for feature reduction that consists of turning a training set into a more 

compact and equivalent representation. CCA is a compression technique that maps a set into 

another set having fewer variables, where the mapping is non-linear. We implement CCA 

through auto-associative multi-layer feed-forward neural networks (Bishop, 1995, pp. 314-319). 

Implementing CCA does not require being an expert in neural network (NN). A CCA 

implementation can be found in any mathematical application that is able to deal with NNs 

and/or matrices. CCA requires just a few lines of code. Even if one does not have the opportunity 

to use a mathematical suite, a CCA algorithm can be easily implemented through the same 

programming language used for estimating the LS parameters. Before delving into details of 

auto-associative neural networks, we provide some background on multi-layer feed-forward 

neural networks. 

 

Multi-layer Feed-forward Neural Networks 

A neuron is a function y =  (w0 + i = 1..Q wiXi), where  can be linear or non-linear (Figure 4). If 

 is linear (i.e., is the identity function), the neuron is called linear neuron and is the same as a 

polynomial of first degree. In other words, a linear polynomial is a particular case of a linear 

neuron. If  is non-linear, the neuron is called non-linear, e.g.,   can be a sigmoid function such 

as the logistic function or the hyperbolic tangent function (Dreyfus, 2005, pp. 2-3). 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4. Representation of a neuron 

 

 

 

A neuron (also called unit) calculates an output (y) by summing the products between a weight 

wi and an input Xi, with i = 1 to Q. Note that, weights are called parameters, as well. Function  

is called activation function. The input labeled “b=1” is called bias. It is an input that provides a 

constant value of 1. The bias unit plays the same role as the intercept in a polynomial. 

 

Figure 5. A multi-layer feed-forward neural network. 

 

 

 

A Multi-layer Feed-forward Neural Network (MFNN) is generally composed of non-linear 

neurons arranged on some layers (Figure 5). In a feed-forward network, data can only flow from 

the inputs toward the outputs. In recurrent networks, the data can flow backward, as well. In 

Figure 5, h may be different from . For instance, in regression problems, h is non-linear and  is 

linear (the identity function). In discrimination problems, both h and  are non-linear. In Figure 

5, units in the middle (labeled h) are called hidden because they are hidden from the outside. 

Note that, the hidden layer expresses the complexity of the model. The more hidden units, the 

more parameters the model has. For instance, an MFNN having two hidden units is more 

complex than an MFNN with just one hidden unit, just as a second order polynomial is more 

complex than a first-order polynomial. 

The problem is to calculate the model weights (wi) such that the input values are mapped to 

the output values. The weight calculation is also called model training. Since we force the model 

to learn the (observed) output values through the training procedure, the network training is 

called supervised. To estimate the model parameters, a cost function has to be minimized just 

like the LS procedure in Figure 2 (Bishop, 1995, pp.194-201). The difference is that, the closed 



solution of B in Figure 2 does not apply to MFNNs. We have to estimate the model parameters 

iteratively. The most effective iterative training technique is the Backpropagation (Rumelhart, 

Hilton, & Williams, 1986). This is a method based on calculating the gradient of the cost 

function step-by-step. For each step, the gradient is used to update the parameters found in the 

previous step. The algorithm stops when satisfactory conditions have been met. It is important to 

note that, the hidden neurons play a primary role here. In fact, their output can be considered as a 

representation of the input in mapping the output (Rumelhart, Hilton, & Williams, 1986). This 

property will be used for implementing Auto-Associative Neural Networks. 

 

Auto-associative Multi-layer Feed-forward Neural Networks 

An Auto-Associative Neural Network (AANN) is a particular kind of MFNN. Figure 6 shows an 

example of its topology. 

 

Figure 6. An auto-associative multi-layer feed-forward neural network for non-linear 

dimensionality reduction. 

 

 

 

The aim of this kind of neural network is to perform an input dimensionality reduction in a non-

linear way. The strategy is based on mapping Q input variables into Q output variables. The 

observed outputs used to train the network (targets) are just the observed inputs themselves (for 

this reason this network is called auto-associative). The AANN in Figure 6 maps each observed 

input into itself (Bishop, 1995, p. 314). This strategy can be effectively used for dimensionality 

reduction if the number of the neurons in the second hidden layer (i.e., M in Figure 6) is less than 

Q. So, the sub-network that we call Coder performs a compression of the Q inputs implementing 

the CCA. The sub-network that we call Decoder assures that the compression performed by the 

Coder is consistent with the input data. 

To perform a correct non-linear dimensionality reduction, both units in the second hidden 

layer and the output units must be linear (I = Identity function). Units in the first and third hidden 

layers must be non-linear (S = Sigmoidal function). The training of this kind of network is based 

on minimizing a cost function similar to the one used for MFNNs (Bishop, 1995, p. 314). 

Note that, the Coder projects the data from a Q-dimensional space into an M-dimensional 

space, while the Decoder performs the inverse mapping back to the Q-dimensional space. 

Curvilinear components are encapsulated in the Coder. This means that, once the AANN has 

been calibrated, the Coder can be used for transforming any input into an equivalent 

representation with respect to the original one exploiting fewer variables (from Q to M). In other 



words, the Coder can execute a non-linear dimensionality reduction (CCA). This important result 

is made possible because of the presence of non-linear functions in the first and third hidden 

layer (S). This kind of AANN is able to perform also a linear dimensionality reduction as a 

particular case of the non-linear one. 

 

THE EMPIRICAL STRATEGY FOR MODEL IMPROVEMENT 

The aim of the model improvement strategy is to find empirically the most accurate model. 

Consider two distinct models EM1 and EM2 being compared. As discussed in the Section 

“Estimation Model Accuracy”, we can argue that EM1 is more accurate (correct) than EM2 if two 

conditions are satisfied at the same time: (1) the bias of EM1 is closer to zero than the bias of 

EM2 and (2) the spread of EM1 is not worse than the spread of EM2. The problem is that, CCA 

can be applied with different reduction rates, i.e. with respect to Figure 6, the number of the units 

in the second hidden layer (M) may be set to M = Q through to 1, where M = Q means no 

reduction and M = 1 means that the shrunken input data is expressed by only one component. 

But, we do not know the best CCA reduction rate (M), i.e. the one that bears the most accurate 

estimation model. To find it, we use an empirical strategy reported below (Sarcia’, Cantone, & 

Basili, 2008). The authors show that the strategy together with CCA can significantly improve 

accuracy of log-linear regression models calibrated on the COCOMO 81 data set (Shirabad & 

Menzies, 2005). The strategy is the following: 

Precondition 

 Rely on a data set (DS) of past observations where each of them is expressed by Q 

independent variables x1, x2 … xQ and the DS size is N (i.e. DSQXN) with N (= TR + TE) 

statistically significant 

 Independent variables x1, x2 … xQ are relevant to predict the dependent variable y and 

constitute the complete input set (Dreyfus, 2005, pp. 95-96). 

Procedure 

1. Split up DSQxN into two subsets (training and test set) as explained in Figure 3, obtaining 

TRS = (X’, Y’) and TES = (X, Y) (Figure 7) 

 

Figure 7. Data management for the empirical strategy 

 

 

 

Note that, each dot in the array represents a data point (an observation belonging to DSQxN) 

2. Use TRS (i-th row in Figure 7) to train Q – 1 models (e.g. a log-linear regression function) by 

applying CCA as many times, where each time TRS is reduced by 1 component through 1 

starting from Q – 1 components, i.e. in the first CCA application M = Q – 1, in the second 

one M = Q – 2 and so on up to M = 1 

3. For each of the Q – 1 models in step 2, calculate the Mean(RETE) and STD(RETE) as 

explained in Figure 3, i.e. feed TES into each of the Q – 1 models 



4. Based on the Q – 1 models obtained in step 2, select the model having the best Mean(RETE) 

i.e., the closest to zero  

5. Use TRS to train a model without applying CCA (labeled NO-CCA hereafter), i.e. a model 

without reduction 

6. Calculate the Mean(RETE) and STD(RETE) feeding TES into the NO-CCA model (step 5) 

7. Repeat Steps 1 through 6 for a statistically sufficient number of times (e.g. 30) changing 

randomly the composition of TRS and TES (Figure 7) and get two samples (and so two 

distributions) for each considered summary statistic (Table 1), i.e., MnRECCA  

{MeanCCA(RETE
(1)) … MeanCCA(RETE

(30))}, STDRECCA  {STDCCA(RETE
(1)) … 

STDCCA(RETE
(30))}, and MnRENO-CCA  {MeanNO-CCA(RETE

(1)) … MeanNO-CCA(RETE
(30))}, 

STDRENO-CCA  {STDNO-CCA(RETE
(1)) … STDNO-CCA(RETE

(30))}, respectively 

 

Table 1. Samples of statistics obtained by randomization 

 

 

 

8. Based upon suitable statistical tests (i.e., parametric or non-parametric), evaluate the 

hypotheses whether (1) MnRECCA is significantly better than MnRENO-CCA and (2) 

STDRECCA is insignificantly different from STDRENO-CCA. If the statistical tests significantly 

confirm hypotheses (1) and (2) at the same time, then execute steps 9 and 10, otherwise stop 

this procedure because CCA cannot significantly improve the accuracy. In the latter case, we 

can conclude that the data set DSNxQ has no curvilinear redundancy hence any compression 

will make worse accuracy of the model 

9. Select the model corresponding to the best value in MnRECCA  {MeanCCA(RETE
 (1)) … 

MeanCCA(RETE
(30))}. If two models have the same bias choose the one having the smallest 

spread; if two models have both the same bias and spread, choose one of them randomly 

10. Use the chosen model for prediction. 

 

FUTURE RESEARCH DIRECTIONS 

The application of this strategy to the COCOMO 81 data set (Sarcia’, Cantone, & Basili, 

2008) was able to improve the accuracy of log-linear models by randomizing the COCOMO 81 

data set and applying two treatments, i.e., CCA and NO-CCA, and checked the results of both 

distributions using the Mann-Whitney and the Signed rank tests. We believe this successful 

application of the strategy is an encouraging step for the use of computational intelligence 

techniques. It offers a new direction for supporting traditional approaches in dealing with 

estimation problems. To increase the confidence of the software engineering community in the 

use of such emerging technologies, scholars, researchers, and practitioners should focus on 



replicating past experiments and performing new investigations based on different settings, e.g., 

by changing contexts and variables of interest. 

An important future area of research is to compare the proposed CCA strategy to stepwise 

feature selection techniques, as well as exploring the possibility of defining a new strategy that 

combines both techniques. 

 

CONCLUSION 

In this chapter, we have discussed some issues concerning parametric estimation models based 

on regression functions. We have shown that these functions are relevant for any kind of 

estimation methodology even for human-based judgment techniques (McConnell, 2006, pp. 105-

112). The problem of improving the performance of regression functions is a major issue for any 

software organization that aims at delivering their products on time, on budget, and with the 

required quality. To improve the performance of regression functions, we have presented an 

empirical strategy based on a shrinking technology called CCA and showed its implementation 

by auto-associative neural networks. We have discussed the reasons why CCA is able to increase 

accuracy (correctness) without worsening the spread (variability) of the model (Sarcia’, Cantone, 

& Basili, 2008). We have focused on the possibility of CCA to make models more parsimonious. 

Let us now consider the implications of the empirical strategy reported above. From a 

practical point of view, an advantage of applying CCA is that we do not need to know the 

relevance of each attribute being removed with respect to the considered context. This is an 

advantage because, if we do not know the relevance of the attributes being removed, as stepwise 

feature selection techniques do, we cannot improve the model making it more parsimonious 

(Chen, Mezies, Port, & Boehm, 2005; Kohavi & John, 1997). Moreover, CCA does not suffer 

from multicollinearity, which affects stepwise methods. Multicollinearity is a statistical effect 

based on the impossibility of separating the influence of two or more input variables on the 

output (Weisberg, 1985). CCA overcomes this problem by considering the simultaneous effect of 

every input variable by finding non-linear redundancy of input variables in predicting the output. 

A further advantage is that, CCA can be completely automated, i.e. it does not require any 

human interaction to be carried out. 

A real application of the presented strategy, is reported in (Sarcia’, Cantone, & Basili, 2008), 

where the authors provide some suggestions as to experimental setting, data management, and 

statistical tests. The authors find that, with respect to the COCOMO 81 data set, the proposed 

strategy increases correctness without worsening the reliability of log-linear regression models. 

Note that, the authors not only compared the medians, but also the standard deviations of the two 

distributions (i.e., CCA and NO-CCA).  As presented above, they applied two non-parametric 

tests (Mann-Whitney and Signed rank) because a preliminary normality test on both distributions 

showed that the distributions could not be considered as coming from a normal population. 

Further results were that, applying the proposed strategy reduces the occurrence of outliers. In 

other words, estimates obtained by models treated with CCA show fewer outliers than models 

treated without applying CCA. This means that, CCA can improve reliability in terms of outlier 

reduction even though correctness may not be improved. This is a valuable result for researchers 

and practitioners because they may just use the strategy to build models less prone to outliers. 

The strategy has some drawbacks. For instance, it has been built on the assumption of having 

enough data to split up the data set into two subsets (TRS and TES). Conversely, if we do not 

have enough data, CCA would not be applicable. CCA is based on building specific multi-layer 



neural networks, which require some optimization techniques to reduce the training time (Hagan 

& Menhaj, 1994).  
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