
A Personal Perspective on the Evolution of
Empirical Software Engineering

Victor R. Basili

University of Maryland
Fraunhofer Center for Empirical Software Engineering
basili@cs.umd.edu

Abstract This paper offers a four-decade overview of the evolution of empirical
software engineering from a personal perspective. It represents what I saw as ma-
jor milestones in terms of the kind of thinking that affected the nature of the work.
I use examples from my own work as I feel that work followed the evolution of
the field and is representative of the thinking at various points in time. I try to say
where we fell short and where we need to go, in the end discussing the barriers we
still need to address.

1 Introduction

I presented an earlier version of this work in a keynote at ISESE 2006 and pub-
lished it in the Journal of the Brazilian Computer Society (JBCS) [1]. At the time I
had been asked to offer a 40-year perspective on the evolution of empirical soft-
ware engineering, from the past to the future. That was an arduous task. So I de-
cided to simplify the task by making it a personal perspective, as I have worked in
the field for 40 years. My hypothesis is that my work followed the evolution of the
field. So, I offer my own opinions on how the field has evolved using mostly ex-
amples from my own work to support those opinions. I have some thoughts on
how the field started, where we fell short, and where we need to go.

But first, I would like to discuss what makes Software Engineering uniquely
hard to research, i.e., to build a body of usable knowledge for the discipline of
software engineering [2]. Software engineering has several characteristics that dis-
tinguish it from other disciplines. Software is developed in the creative, intellectu-
al sense, rather than produced in the manufacturing sense, and so the processes we
need to study are development processes, not production processes. This unique
aspect of the discipline, that each product is created rather than replicated, is prob-
ably the most important one, and greatly affects how we build models, evolve, and
learn about the software discipline. It means that the context variables for different

2

software developments greatly affect how we develop software, i.e., there will al-
ways be variation in study results and we will never be able to control or maybe
even identify all the context variables. The discipline creates a need for continual
experimentation, as we explore how to modify and tailor processes for different
environments, i.e., different sets of context variables.

One consequence of this is that process is a variable, goals are variable, and
environment is a variable. That is, we need to select the right processes for the
right goals for the environment we are analyzing. So, before we decide how to
study a technique and its effects, we need to know something about the environ-
ment and the characteristics of the product we are about to build. The environment
specifies the collection of context variables.

A second distinguishing characteristic of the software engineering discipline is
software's intangibility, or one might say, the invisibility of its structure, compo-
nents, and forms of development. This is compounded by a third characteristic, the
field's immaturity, in the sense that we haven't developed sufficient models that al-
low us to reason about processes, products, and their relationships. These difficul-
ties intensify the need to learn from the application of ideas in different situations
and the requirement to abstract from what we see.

A final problem is that developing models of our experiences for future use
(that is, reuse) requires additional resources in the form of money, organizational
support, processes, people, etc. Building models, taking measurements, experi-
menting to find the most effective technologies, and feeding back information for
corporate learning cost both time and money. These activities are not a by-product
of software development. If these activities are not explicitly supported, independ-
ent of the product development, they will not occur and we will not make quality
improvements in the development process. This turns out to be a major burden in
the evolution of our understanding of the software engineering discipline. How is
the large expanse of knowledge being captured, evolving with each new applica-
tion, and being maintained in a form that is easy to integrate?

All this makes good experimentation difficult and expensive. Controlled exper-
iments are expensive and can be confirmatory only in the small. They do not deal
well with scale-up, the integration of one process with another, the understanding
of the effect of context variables, etc. It also makes it difficult to build on past
work and see where new work fits in the tapestry we are building of prob-
lem/solution bounds and limits.

So, let us discuss the evolution of empirical software engineering over the past
four decades. I will try to characterize the nature of the discipline in each decade
and map the changes across several key variables: the kinds of studies that were
being performed, the set of methods being used, the nature of publications, the
community of researchers, the status of replications and meta-analysis, and the
role of context variables.

This article is organized in sections, each section representing a phase, roughly
broken down into decades. Section 2 covers the early days (~ 1971 - 1979), run-
ning isolated studies for a particular purpose. Section 3 focuses on the building of

3

software process and technique knowledge in a single domain and environment, (~
1980-1989). Section 4 deals with expanding our observations across environments
by limiting the technologies being studied (~1990 – 1999). Section 5 focuses on
tying different types of studies together to create some form of replication by tak-
ing advantage of different study types (~2000 – 2009). In each section, I will try to
cover what I saw as the main changes in the approach that was introduced during
that decade, giving related personal experiences within that decade and summariz-
ing with a discussion of the key variables. Finally, Section 6 focuses on summariz-
ing where I think we are, what we have learned, and the problems with progress-
ing further.

2 Phase I: Isolated Studies (~ 1971 – 1979)

The very first software engineering experiment I was aware of was performed by
Gerry Weinberg [33]. It was the genesis of a series of controlled experiments on
the study of programmers. It was an interesting example of how people tried to
follow the goals set out for them, e.g., code readability, code efficiency, etc. And
when not given any advice, the self-imposed goal appeared to be performance.

These were the early days when researchers ran isolated independent studies
for a particular purpose, using case studies or controlled experiments as the means
to analyze a particular question of interest. It was a time when people were devel-
oping and using measures in general. The focus was on trying to identify an ap-
propriate set of metrics. Many of us were learning about running an experimental
study, and the need for baselines as a basis for evaluation. There were attempts to
run a small number of controlled experiments but they were done mostly in isola-
tion, not as part of a larger study.

Personal Examples: Two isolated studies I was involved in were the Iterative
Enhancement product evaluation [9] and a methodology evaluation [6]. The moti-
vations for the studies were specific to the work we had been doing. The former
was a case study with Joe Turner where we used quantitative observations over
time, measuring the product, and comparing the product with itself, using prior
versions as baselines. The object of study was a compiler we were building for a
family of languages [10]. This was a single isolated study aimed a demonstrating
that a software product was improving using a particular measurement-driven in-
cremental development approach. The latter was a controlled experiment analyz-
ing the effects of a collection of methods centered on chief programmer teams, in-
cluding structured design and structured coding. The experimental method applied
was a replicated study (controlled experiment) with three treatments: teams using
the methods, teams not using the methods, and single programmers, all performing
the same task. The study, performed with Robert Reiter, was a single painstaking-
ly designed study in a classroom environment using advanced software engineer-
ing students. The purpose was to identify an effective set of methods to use in our

4

software engineering class. These kinds of studies were rare but were typical of
the state of the art.

Summary: With respect to our key variables, the kinds of studies were mostly
in vitro controlled experiments analyzing the effects of a particular variable within
one environment, typically with students, or a report on some in vivo measure-
ment study of a project. The publications mostly consisted of project studies and
reviews were mixed. It was hard to get controlled experiments published. Alt-
hough I remember one published review of our controlled experiment which said
“I already knew that methodology was good so what was the point of running the
controlled experiment”, even though the study won the TSE best paper award for
that year. The community of researchers was very small with little or no interac-
tion and consisted of mostly model builders, product metric developers, and some
scattered set of individual experimentalists. The set of methods for experimental
studies was mostly quantitative analysis, using nonparametric statistics. The con-
text variables were taken as a given, not measured. There was no replication or
meta-analysis.

3	 Phase	 II: Multiple studies in ONE domain (~ 1980 – 1989)

This early work made it clear that experiments can be run in the software engi-
neering domain that provide empirical support for various beliefs, insights into
what and how to measure, evidence that we can use measurement to abstract what
is occurring in software development. It stimulated the realization that experimen-
tation and measurement were important aspects of software development and that
the design of experiments is an important part of improvement (something Dem-
ing had been preaching in manufacturing for many years [20]), that evaluation and
feedback are necessary for learning, and that we need to experiment with technol-
ogies to reduce risk, tailor the technique to the environment, and make improve-
ments.

The study of the software engineering discipline is exploratory and evolution-
ary; it is an application of the scientific method. Controlled experiments are not
always possible or useful in isolation, so we needed to focus more attention on in-
formal exploratory studies using pre-experimental and quasi-experimental studies,
i.e., experiments that lack the element of random assignment to treatment or con-
trol [19]. These less formal studies are more common in social science disciplines,
like education, and can provide useful insights into the effects of processes on
product characteristics in large projects. We should couple these informal, explor-
atory studies with more formal empirical studies such as controlled experiments,
when possible, to provide more evidence that what we are observing is valid. This
combination of methods takes advantage of what is possible to do given the nature
of the software development discipline. It became clear to me at least, that the
study of software engineering is a laboratory science requiring collaborating re-

5

search groups. Understanding the discipline requires exploratory study, confirma-
tory study if possible, identification and understanding of the effects of context
variables, replications of various forms, and meta-analysis creating an integrated
tapestry of information.

We need to take advantage of all opportunities we can find to explore various
ideas in practice, e.g., test their feasibility, find out if humans can apply them, un-
derstand what skills are required to apply them, and test their interactions with
other concepts. Based upon that knowledge, we need to refine and tailor each idea
to the application environment in which we are studying it so it can be easily
transferred into practice. We build and evolve models by trying out our ideas in
practice and changing based upon what we have learned. Since the nature of the
software engineering discipline is more exploratory than other disciplines, we are
more dependent on the empirical application of methods and techniques.

Personal Example: The break from the mold of isolated studies for me was the
development of the Software Engineering Laboratory (SEL) [13] at NASA God-
dard Space Flight Center. The goals were to understand ground support software
development for satellites and improve the process and product quality using ob-
servation, experimentation, learning, and model building [12].

In 1976, the idea of creating a laboratory environment to study software devel-
opment was perhaps unprecedented. But it provided an excellent learning envi-
ronment where potential solutions to problems were proposed, applied, and exam-
ined for their effectiveness evolving into more effective solutions. Characteristics
that made this setup a good place for empirical research included the limited do-
main of the application, the use of professional developers, firm support from the
local organization, the presence of a research team to interact closely with the
practical developers, and a mix of developers and managers with different goals,
personalities, and responsibilities. We created a consortium of the NASA dynam-
ics group of managers and developers, the contractor (CSC) group of managers
and developers, and the research group from the University of Maryland. Every-
one participated in all aspects of the laboratory, i.e., managers and developers
were part of the research team. The SEL was integrated into the overall activities
of the organization and supported by the project budget, not the research budget.
The balance created an environment with lots of feedback and collaboration. The
original team that remained mostly throughout the SEL’s existence were Frank
McGarry (NASA), Jerry Page (CSC), Marv Zelkowitz, and myself (UMD).

The SEL lasted for 25 years (1976 – 2001) during which time we built base-
lines of various project variables (defects, effort, and project metrics) to better un-
derstand the environment and identify where better methods might make a differ-
ence. The focus moved to in vivo studies, collecting data from live projects,
providing feedback from data collection and measures, and storing and analyzing
large amounts of data. The work involved multiple projects and multiple methods
in a single environment and domain, a strength at the time but a limit for develop-
ing broader knowledge across many context variables. The longevity of this work

6

allowed us to demonstrate order of magnitude improvements. Unfortunately, such
longitudinal studies are very rare [5].

We learned a great deal not just by experiments, but by trying to understand the
problems, applying potential solutions, and learning where they were successful
and where they fell short. We ran controlled experiments and performed case stud-
ies, but they were done in the context of the larger evolutionary learning process
[2].

We learned the importance of understanding the environment (recognizing
which context variables in that environment were important), the need to build our
own models to understand and characterize that environment (general models
were too hard to parameterize for our environment due to the lack of broader con-
text knowledge), the need to model the interactions among many variables (e.g.,
the environment, projects, processes, products), and that data collection has to be
goal driven and well defined [11].

The learning process was more evolutionary than revolutionary. With each
learning experience, we tried to package what we had learned into our models of
the processes, products, and organizational structure.

The SEL used the university to test high-risk ideas. We built models and tested
hypotheses. We developed technologies, methods, and theories as needed to solve
a problem, learned what worked and didn’t work, applied ideas that we read about
or developed on our own when applicable, and all along kept the business going.

The SEL also allowed us to help create an empirical research community.
Many students and visiting researchers spent years working in the laboratory, hon-
ing their empirical skills, contributing the knowledge and recognizing the need for
collaboration. People like David Weiss, David Hutchens, Richard Selby, Dieter
Rombach, Lionel Briand, Sandro Morasca, Carolyn Seaman, Filippo Lanubile,
William Thomas, Forrest Shull, Manoel Mendonça, Guilherme Travassos, Jyrki
Kontio, among others contributed greatly to the research activity.

The most important thing we learned was how to apply the scientific method to
the software domain, i.e., how to evolve the process of software development in a
particular environment by learning from informal feedback from the application of
the concepts, case studies, and controlled experiments [4]. The informal feedback
created the opportunity to understand where to focus our case studies and experi-
ments. Informal feedback also, perhaps surprisingly, provided the major insights,
i.e., interviews and informal discussion helped us discover important issues such
as why a process was difficult to apply.

This work stimulated the realization that we need to package and integrate our
experiences by building models and guidelines. Experience needs to be evaluated,
tailored, and packaged for reuse so software processes must be put in place to
support the reuse of experience. The SEL generated the concept of an experience
base of packaged usable experience from the environment that could be used as a
decision support system in the development of projects, but the experience pack-
ages defined were local to the SEL. The models could not necessarily be reused in

7

other environments but the mechanism for building and packaging the experiences
could.

The SEL ran a workshop every year presenting what we had learned that year
and requesting papers from others to present their work. This gave us a perspec-
tive on the state of the art and practice every year and allowed us all to share our
experiences. At its peak, the SEL Workshop had audiences of over 300 attendees.

Summary: With respect to our key variables, the kinds of studies being run in-
volved characterizing an environment via measurement (single environment, sin-
gle domain), performing evaluations, building predictive models, making im-
provements. The set of experimental methods included more nominal and ordinal
data and the use of pre-experimental, quasi-experimental studies and simply learn-
ing by the application of an idea. There were parametric models being built to cap-
ture and predict variables like cost and schedule [16]. The publications mostly
consisted of project studies and reviews were mixed. For example, if your study
should describe the limitation of some technique, the technique author was miffed,
rather than appreciating what could be improved. The community of researchers
was still small but beginning to grow. There was a metrics community of people
trying to define product metrics that would predict defects and assess quality. The
context variables began to be taken into account. There was no replication or me-
ta-analysis.

4 Phase III: Tying Studies Together (~1990 – 1999)

During this time there were attempts to tie studies together. Controlled experi-
ments, case studies, quasi-experiments, qualitative analysis were being used in
various combinations, each useful in its own right for varying purposes. Con-
trolled experiments were of value for identifying specific variable relationships
while case studies provided the opportunity to scale up. We learned that you could
reduce risk by running smaller experiments off-line using the mix of studies to
build confidence in a theory based upon multiple treatments. Qualitative analysis
began to play a major role in providing deeper insights into what was going on
[28]. The major focus was on measuring the relationship between process and
product. However, in our field, the kinds of studies performed and the topics stud-
ied were still dependent on the opportunities available.

For the 10th anniversary of TSE (1986), Rick Selby, Dave Hutchens, and I de-
fined a framework for experimentation in software engineering and wrote a state-
of-the-field paper recognizing that most of the papers in the literature dealt with
either experimental studies of programmers in the small doing controlled experi-
ments or data collection on projects in the large [7].

Personal Example: Harlan Mills [25] had defined a method for reading code
called reading by stepwise abstraction. Based upon our need to improve quality in
the SEL we decided to see if the technique would be effective. We made use of

8

the methodology template defined in [7] to study the effects of the approach using
different experimental methods. Because the technique was quite new for the SEL
environment, we first applied the approach in an advanced software engineering
class at the university. We ran a fractional factorial controlled experiment design
on 200 to 300 line code modules to check the effectiveness of the approach when
compared to testing. The results were promising in that they showed that for cer-
tain types of defects, e.g., interface defects, the approach was more effective in
uncovering those defects than functional testing. We found similar results on a
replicated experimental design again with students on a 1000 lines of code project.
This encouraged us to try the fractional factorial design with professional pro-
grammers on a set of 200 to 300 line modules. Here the results were even strong-
er, demonstrating the benefits of the approach. This allowed us to try it in a live
project of about 40KLOC using internal NASA developers. The scale-up provided
very positive results (e.g., significantly lower defect rates), encouraging us to test
the approach on three other projects. The second study was again an internal
NASA project of 22KLOC, with similar positive results. The third and fourth
studies were larger scale and with the contractor as developer. The 160KLOC pro-
ject did not show any improvement, so we modified the organizational communi-
cation on the fourth project of 140KLOC with positive results again [4]. The prob-
lem with the third study was that the contractor was to ask for help when they
were confused about applying the approach. In the fourth project, we established
bi-weekly meetings in which there was lots of discussion.

The mix of study approaches allowed us to gather information about the effects
of the method as well as the effects of context variables (internal vs. contractor)
and gain positive evidence about the effectiveness of the approach and how to im-
prove it for a different context. The mix of study types on the same technique al-
lowed us to build evidence that the technique could be effective across a set of
context variables (project size, in-house vs. contracted out) and learn how to modi-
fy the environment for improvement of the technique.

Summary: With respect to our key variables, all kinds of studies continued to
be performed on a variety of techniques and we began to see replications of some
earlier experiments. There was sufficient research activity to create the Journal of
Empirical Software Engineering (started in 1996) with the aim of publishing em-
pirical studies, including replications, which were not previously publishable. Em-
pirical research studies were still difficult to publish in a 10-page conference pa-
pers, as it was hard to cover all points in that limited page format. Reviewers were
looking for more than could possibly be reported in ten conference pages. There
was the realization that the evolution of the discipline required a community of re-
searchers and teams performing studies. ISERN (started in 1993) created an op-
portunity for the growing international community of researchers to meet every
year with the goal of supporting interaction and collaboration. Their goal was not
to defend the need to experiment but to figure out how to do it better. Dieter Rom-
bach created the Fraunhofer Institute for Experimental Software Engineering
(1997), which aimed at working with companies to improve the software engi-

9

neering discipline, allowing Fraunhofer research the opportunity to interact with
several different environments. The set of methods being used was broad, consist-
ing of a mix of quantitative and qualitative studies, case studies, controlled exper-
iments, and learning by application. Context variables were beginning to be taken
seriously but not fully recognized as the important set of influencing variables that
they are. Replication involved building some studies that varied the context,
threats to validity; building knowledge across studies about a particular technolo-
gy.

5 Phase IV: Expanding Studies across Domains and
Environments (~2000 – 2009)

This period began to see the expansion of studies across domains and environ-
ments and the rise in collaborations. The overall focus became understanding the
behavior of various processes in different contexts and environments, allowing for
the creation of a decision support system that would provide organizations with
support for selecting the right techniques for their particular context, domain, and
environment based upon their ability to characterize them. The focus needs to be
on specifying the effects of technologies, and experimentally identifying the ef-
fects, limits and bounds of techniques. So, technologists need to be more specific
about what their techniques do and do not do and we need to evolve empirical ev-
idence about various techniques, gaining new confidence over time by better un-
derstanding the effects of influencing variables. We need to concentrate on build-
ing a body of knowledge based upon empirical evidence.

This requires the gradual gathering of large amounts of information from dif-
ferent environments and the ability to identify the context variables that influence
the outcomes for different environments. Clearly this implies a long-term set of
studies, replications, and many collaborations, i.e., different groups need to col-
laborate to provide a sufficient range of domains and environments developing
knowledge about the usefulness of various techniques in context. The work should
contribute to an ‘experience base’ that accumulates the current state of our
knowledge over time. Because of the size of the problem, we need to break the
task into smaller parts, e.g., limiting the techniques studied or limiting the number
of environments and domains, etc. There were several examples of building
knowledge for a limited number of techniques in different environments and do-
mains, i.e., studying the effect of context on those specific techniques.

Personal Example: I was involved in three such collaborations. The first one
was the NSF-sponsored Center for Empirically Based Software Engineering (Ce-
BASE): a consortium of the University of Maryland (UMD), the University of
Southern California (USC), Fraunhofer CESE, Mississippi State (MSU), and the
University of Nebraska at Lincoln (UNL) [30]. The CeBASE project goal was to
enable a decision framework and experience base that would form the basis and

10

infrastructure needed to evaluate and choose among various software development
technologies appropriate for the environment. CeBASE concentrated on a limited
set of techniques, e.g., defect reduction techniques [16], such as reading, and
COTS-based development approaches [3]. It also began to look at agile tech-
niques. The research goal was to create and evolve an empirical research engine
for building the research methods that could provide empirical evidence as to what
works and under what conditions it works.

It was clear that there was a great deal of research required before we could
comfortably build an empirical research engine that could be applied universally
to evaluate and provide support for the appropriate use of evaluated methods. This
research engine proposed by CeBASE involved defining and improving methods
to
• Formulate evolving hypotheses regarding software development decisions
• Collect empirical data and experiences
• Record influencing variables (context)
• Build experience models in the form of lessons learned, heuristics/ patterns,

decision support frameworks, quantitative models and tools
• Integrate models into a framework
• Test hypotheses by application
• Package what has been learned so far so it can be used and evolved

The results of the work were published in papers and slide presentations. An expe-
rience base was built which consisted of our experience with and advice about the
use of various defect detection techniques and approaches to dealing with COTS
products, in different environments [27]. It also contained the results of e-
workshops where concepts were discussed and debated by experts in the areas of
interest.

The idea of studying various techniques and maturing them through application
to different environments to better understand the influencing context variables
was continued as part of the NASA-sponsored High Dependability Computing
Project (HDCP). Here the team again consisted of UMD, USC, and Fraunhofer
CESE for the empirical work and a variety of universities for the development of
the dependability techniques, e.g., Carnegie Mellon University CMU), University
of Washington (UW), Massachusetts Institute of Technology (MIT), University of
California Santa Barbara (UCSB).

Because the project was attempting to identify techniques to improve the de-
pendability of the product, we built test beds to study, compare, and mature the
techniques for practice. The test beds allowed us to minimize the risk of applying
the techniques to live systems. Test beds developed were a simplified MARS
Rover and a part of a tactical separation assisted flight environment. For example,
the latter test bed was used to identify limits to a method and allow for the method
developer to make improvements to the techniques based upon the empirical anal-
ysis [14]. The application of the techniques went from test beds to carefully moni-

11

tored projects to large-scale projects, allowing the techniques to evolve over use
and provide the necessary information for the experience base. These test beds be-
came part of the framework and needed to be maintained and evolved, an expen-
sive proposition.

A third example of this knowledge building process is the work performed by
the development time working group of the DARPA High Productivity Compu-
ting Systems (HPC) project where the domain is high-end computing [22]. The
practical focus was improving the time and cost of developing high-end compu-
ting (HEC) codes and empirically evaluating the set of competitors for developing
a new HPC machine. The research focus was on developing theories, hypotheses,
and guidelines that allowed us to characterize, evaluate, predict, and improve how
an HEC environment (hardware, software, human) affects the development of
high-end computing codes. There was a large research team consisting of MIT
Lincoln Labs, MIT, University of California San Diego (UCSD), UCSB, UMD,
USC, Fraunhofer CESE, University of Hawaii (UH), MSU, UNL, and the San Di-
ego Supercomputing Center (SDSC). Work proceeded by evolving a series of
studies with novices and professionals using controlled experiments (grad stu-
dents), observational studies (professionals, grad students), case studies (class pro-
jects, HPC projects in academia), surveys, and interviews (HPC experts).

Test beds varied from classroom assignments (Array Compaction, the Game of
Life, Parallel Sorting, LU Decomposition, …) to compact applications (Combina-
tions of Kernels, e.g., Embarrassingly Parallel, Coherence, Broadcast, Nearest
Neighbor) to full scientific applications (nuclear simulation, climate modeling, …)
being developed at California Institute of Technology (CalTech), Stanford Univer-
sity (SU), University of Chicago (UC), and University of Illinois (UIUC). As new
knowledge was discovered, the results were stored in a publically available expe-
rience base. The content of the experience base was the empirical evidence col-
lected in terms of the effects of various notations, e.g., MPI, Open MP, for differ-
ent applications, classifications of high-end computing defects, and test beds. The
contents also included experimental packages to support the running of experi-
ments, such as checklists for instructors and experts running studies, instrumenta-
tion downloads, and data collection and analysis packages. Results were published
in a variety of venues as well as stored in the experience base. But the experience
base remained unmaintained. Some of the test beds were used by others for differ-
ent purposes but they are becoming harder to find.

Each of the projects had a limited lifetime of only about three years. Why? Be-
cause a funding agency like NSF does not support long-term research endeavors;
it felt it needed to continually identify new theories, techniques, and technologies.
Unfortunately, there was not even follow-up funding to maintain the experience
base that was developed. The CeBASE concepts formed the basis for the HDCP
project, but the technique focus changed. Then NASA changed its focus from do-
ing dependability research and again there was no support for maintaining that ex-
perience base. DARPA leadership changed and the decision was made that the
companies would identify strengths and weaknesses of their own machines. The

12

wiki remains public http://hpcs.cs.umd.edu/ and http://hpcbugbase.org/ , but there
is no maintenance for it.

In each of the examples, a great deal was learned but there was no support for
maintaining the knowledge that was developed in a systematic, shareable, useable
form. The evolution of a discipline like software engineering requires an experi-
ence base of knowledge on what to use and when across many environments and
domains. There has not been sufficient support for maintaining the kind of deci-
sion support system that would help organizations build better software more effi-
ciently.

One excellent example of a decision support system was the Clearinghouse
project [32], whose goal was to capture experience for the DoD environment. A
user would enter the best set of variables that described their environment and pro-
ject and would be provided with whatever advice was available and the level of
evidential support for that information. The project, like my own experiences
above, died due to the time limit of the funding.

Summary: With respect to our variables, studies are being performed to evalu-
ate techniques in multiple contexts and define the relationship between user needs
and what’s available. Journal and conference publications have come to expect
some form of analysis from new methods, even if it is only a feasibility study. The
community of researchers continues to grow; experimentalists are replicating each
other’s studies. There are numerous repetitions of a few experiments. The set of
methods available became a rich palate of tools: a full mix of qualitative and quan-
titative methods, controlled and quasi-experiments, case studies, surveys, folklore
gathering, structured interviews and reviews, etc. Context variables are being
studied and characterized when possible. There are attempts to build knowledge
across studies. A good example of the latter is the work of the SNT laboratory at
the University of Luxembourg [18], where the focus is on model-based concepts
and tools dealing with the set of problems associated with software validation and
verification and on the improvement of software validation and verification activi-
ties in practice. The laboratory has several organizations as collaborators and a
long-term focus.

6 Phase V: Now and the Future

To recapitulate, we can look at the evolution of the research in terms of the inter-
play of methods, context, and domain. Early work characterized the effects of var-
ious methods, (all study variables fixed) in isolation to address a particular prob-
lem. The desire for understanding broadened and baselines of various project
variables (defects, effort, product and project metrics) were built within a single
domain and context, identifying where methods might make a difference (fixed
context and domain, varied techniques) e.g., SEL. Experimental work expanded to
applying various experimental designs to examine a specific technique over a lim-

13

ited set of domains and context variables trying to broaden knowledge about the
technique and minimize the threats to validity (fixed technique, varied context and
domain), e.g., reading technique studies. Then the research evolved to consider a
limited set of techniques across several contexts and domains (varied context to
study context, fixed technique set), e.g., CeBASE, and to quantitatively define the
effects of various techniques that could solve a particular problem (evaluate tech-
niques for achieving particular goals and studying the relationships between
both), e.g., HDCP, where we identified the appropriateness and effectiveness of
various methods to support the building of dependable systems under varying
conditions before transferring them into practice (introduced test beds (specific
contexts) to study techniques). Finally, there was work on building knowledge in a
particular domain, packaging that knowledge in an experience base so it can be
used by others, demonstrating the effectiveness of various approaches and learn-
ing in what contexts they are effective (fixed domain, studying techniques and
context variables) HPCS. We now return to a discussion of our key variables.

6.1 Kinds of Studies and Methods

With regard to the study of techniques, we see more papers, both conference and
journals, containing a new idea, showing some kind of application, even it is only
at the level of a feasibility study. This is in part due to journals and conferences
requiring some form of data; i.e., it is clear that no technique should be published
without trying it out first. This is a major change in the culture. But it should not
end there; the feedback from the application should be used to identify the bounds
and limits and open ideas for improvement. Unfortunately, the culture has not
changed this much. Techniques need to be experimentally tested to see where they
can be improved, even if we only ‘learn by applying’ as I like to call it [2]. We
need to evaluate the bounds and limits of each technique and see how techniques
can be integrated with others in the life cycle and what their integration buys you.
There are several pockets of this kind of work and they are expanding all the time.

The collection of methods has expanded, including their integration into any
particular study. There are many examples of building knowledge about the do-
main, identifying folklore and theories, doing ethnographic studies, interviews,
and observations, building models using grounded theory, case studies, quasi-
experiments, controlled experiments, and evolving models supported by evidence.
We can find work testing models and hypotheses via studies of all kinds. The door
is more open to this kind of research.

14

6.2 Community of Researchers

We have certainly evolved a community that talks and tries to work with each oth-
er. This year will be the 21st ISERN workshop and the number of members con-
tinues to grow; more importantly, ISERN keeps track of collaborations and there
are many involving the exchange of graduate students and visiting researchers.
But we need a more effective community collaboration and communication plan.
Most young researchers are primarily interested in establishing themselves and
their reputations. Getting a degree in an environment where there is already an es-
tablished community is a great opportunity for them. Senior (tenured) researchers
can afford to build the laboratory structure needed to do this type of work and to
build collaborative groups. We need support for a living experience base that rep-
resents our combined and integrated experience, evidence, and knowledge at any
point in time. This involves a well-defined collaborative research agenda.

I believe the discipline of software engineering will not move forward without
such a collaborative research agenda, a community-supported living experience
base, and a mature empirical study discipline.

6.3 Publications

The Empirical Software Engineering Journal (EMSE) is in its 18th year and its ISI
impact rating has steadily grown. It has achieved an ISI rating of 1.854, second
only by a tenth of a point to TSE, the top-rated SE journal. Papers are being sub-
mitted from a larger and larger collection of international researchers each year.
The ACM/IEEE Empirical Software Engineering and Measurement Symposium
ESEM (formally the International Symposium on Empirical Software Engineering
ISESE before it joined forces with the Metrics Conference) is in its twelfth year.
Journals like TSE welcome experimental work. So there are sufficient venues for
publishing empirical research. We have textbooks that specialize in experimenta-
tion in the software engineering discipline, most notably, the second edition of
‘Experimentation in Software Engineering’ [34].

With regard to publications, the guidelines that exist are well defined [24] but
are very long, especially for conference papers. So there is a need to supplement
reports on a study with technical reports and web-based material that deals with all
guideline issues. I believe journals are better than conferences as publication tar-
gets due to the feedback and dialog that is associated with the review process. The
community needs to identify conference guidelines as to what must be included in
the paper and what should be available in the technical report or on-line website.
And they must identify ways to use various related publication forms to create an
integrated whole.

15

Papers need to build on prior work. There is now a lot more literature around.
Partly due to the history of isolated studies, we do not have a good enough culture
of reading, referencing, and assimilating existing material. I admit to having been
guilty of not identifying all the related references and integrating my work into the
whole tapestry of results. For example, we have been criticized for a large number
of studies on “inspections” that do not seem to recognize, build on, or integrate
with the past work.

6.4 Context Variables

To me, covering context is the biggest problem and the reason why we need a very
large community of researchers. There are too many influencing variables and we
do not even know what they are or how to measure for them or the extent of their
influence. They represent multidimensional categories such as subject experience,
environment, domain, class of SE technologies applied. How many variables are
hidden in these? If we are to be successful at building knowledge, we probably
need to limit the scope of some of these categories for each research team, like fo-
cusing on specific domains, classes of technologies, or environments, expanding
out slowly, unifying across the differences when possible. Of course, the problem
then becomes integrating the limited scope studies of one group with the others in
such a way that we can identify bounds on the extent of influence of the context
variables so that a limited, useable set of models can be built.

6.5 Replications and Meta-Analysis

Building theories requires replication, varying the threats, varying the artifacts,
and varying the population. These studies require coordination, collaboration, and
independence. It takes a team to run an experiment; it is too hard to do it all alone.
It involves multiple groups, multiple disciplines, and requires feedback on the de-
sign and discussion of the results. Replications require a level of independence,
but I do not believe we are at a point where we can run a replication without some
form of discussion with the earlier experimenters. We are not yet able to present
all that needs to be covered in a conference paper or even a journal. The discus-
sions after the fact are important to understand why the results are different and
what that difference exposes about the subject or the study. This is where collabo-
ration and communication are important. A subgroup of the ISERN community is
collaborating on replications [23]. There is a workshop on replication (RESER)
and there have been several attempts to coordinate studies. One of the original
aims of EMSE was to publish replicated results and it has done so. This is real
progress.

16

7 Concluding Remarks

We have come a long way in evolving the discipline of empirical software engi-
neering, but we have a long way to go. Part of the reason for our slow progress has
been the lack of an empirical culture within most Computer Science departments.
They were mostly spawned by Mathematics departments and mathematics is not
an empirical science. So we did not inherit an empirical mind set. The building of
our research engine is at its infancy. It needs to be better understood not just by
empiricists but by software engineers in general. Theoretical physicists understand
and appreciate the work done by experimental physicists and use their results to
evolve their own theories. This is not yet true in software engineering. Less than a
decade ago, I paraphrased what a software engineer whose work I respect said to
me: I am a smart guy and I know my technique is good, so why do I need experi-
mental evidence? Software engineering requires an empirical research engine
that identifies the benefits, limits, and bounds of technologies.

We need to build a tapestry of models and guidelines that represent our
knowledge about the benefits, as well as the bounds and limits of techniques,
methods, and life cycle models as well as models representing product characteris-
tics of all kinds. The real question is: If I want a product to have certain character-
istics, e.g., schedule achievement, minimum cost, reliability, correctness, safety,
security, etc., what are the appropriate techniques, methods, and life-cycle models
to achieve those characteristics? Software engineering needs to codify the rela-
tionships between processes and products.

If we are to make more progress in the discipline of software engineering in
general, both in practice and research, that symbiotic relationship between practice
and research has to be nourished so both groups can gain and the discipline can
evolve. We need many applications of a process, taking place in different envi-
ronments, each application providing a better understanding of the concepts and
their interaction. Over time, all context variables need to be considered. Many of
them will not even pop up until we have seen applications of the approach in prac-
tice by different people at different sites. Empirical software engineering needs to
balance the symbiotic relationship between theory and practice.

Research teams need multiple forms of expertise, e.g., domain knowledge,
software engineering knowledge, a variety of experimentation capabilities. I am
always leery when reading a single-authored empirical paper. The team not only
provides different levels of expertise but provides checks and balances on the
study itself. Empirical studies in software engineering need multi-disciplinary
teams.

I believe that replication plays the key role in software engineering. In this
case, I do not mean the confirmation that a prior study’s results were true or not,
which is hard to do since it is hard to replicate the context of the prior study exact-
ly, but ‘replication’ is needed to expand the context set in which the results may or
may not be true and to understand why. This kind of replication requires close in-

17

teraction between the original study team and the replication team, because we
cannot always communicate the original context variables. In a collection of repli-
cations of reading studies we did with several groups in Brazil, we found that we
had a hard time capturing tacit knowledge in replicating experiments, even when
the teams are collaborating [31]. Replication in software engineering studies
should be expanding knowledge rather than confirming it.

The building of the tapestry of software engineering knowledge is too grand for
any one group to perform. Empirical software engineering requires groups who
share results in effective ways. They need a repository of evolving models and les-
sons learned that can be used, added to, and evolved by other researchers. For
each group, the focus can be bounded, limiting the context, the domain, the collec-
tion of techniques, methods, and life cycle models studied. For example, we can
build bodies of knowledge about specific domains. Then we can combine what
has been learned from these domains to build larger bodies of knowledge across
domains, understanding what is common and what is not. For each domain, this
involves folklore gathering, interviews, case studies, controlled experiments, expe-
rience bases, etc. Empirical software engineering needs to build collaborative,
communicating communities.

If we have begun to develop collaborative, communicating communities, what
is still missing? First, the need to share results in a truly effective way requires a
shared repository of evolving models and lessons learned that can be added to and
used by researchers. Second is the requirement for long-term support across or-
ganizations and countries of collaborators, not an easy task. Third is the reward
system for researchers. Academic researchers are rewarded for creating ideas and
sharing them in papers. Sharing and collaborating in the way I am suggesting here
takes lots of time, effort, energy, and financial support and may not always result
in papers, at least in the beginning. Most disciplines build on each other’s work by
integrating with the results of work found in journal papers. It is a model that
works for physics but I do not believe it works for software engineering. That is
because many results of empirical studies are small and evolutionary and can only
be truly evaluated based upon the comparison with how it affects the whole. The
eventual knowledge base of the discipline is an interconnected and tightly inte-
grated set of process and product characteristics that can only be built by collabo-
rating communities. The result of this can be used as a decision support system in-
tegrating process effects with product needs. Medicine has been more successful
in working toward this goal. Empirical software engineering needs to build a de-
cision support system / experience base that provides support of practice and an
experience base which represents what we know about the discipline. The internal
information is the same but the interfaces are different, geared to different popula-
tions.

We need to understand the different roles of theory and experimentation. Is
there one group that develops theory and another that does experimentation, like
physics? I do not think so. Their roles are too tightly intertwined in software engi-
neering. The feedback loop from theory to practice to theory is too intertwined and

18

requires rapid response times. There needs to be a desire on both sides to collabo-
rate and a mechanism that supports it.

So building a discipline of software engineering is big science, requiring many
collaborations with long-term goals and longitudinal studies, the development of a
framework for communicating, coordinating, and integrating experiential models
with long-term support that will exist and be available to capture all forms of evi-
dence, like physics. We need methods that support the exploratory nature of this
big science. The discipline cannot be understood only by analysis. We need to
learn from applying the discipline whether relationships hold, how they vary, and
what the limits of various technologies are, so we can know how to configure pro-
cesses to develop software better. Software engineering is big science.

Acknowledgments Most of the work used here as personal examples was developed by many
people collaborating as teams at the University of Maryland and its partner organizations. Mem-
bers of the team are too numerous to mention and have varied over time. But I have had the good
fortune to work with many exceptional people who should all be considered as co-authors of this
paper. I thank Madeline Diep and Lionel Briand for giving me several suggestions to improve
this paper.

References

1. V. Basili, The past, present, and future of experimental software engineering. J. Braz.
Comp. Soc. [online]. 2006, vol.12, n.3,pp. 7-12. ISSN 0104-6500.

2. V. Basili, “Learning through Applications: The Maturing of the QIP in the SEL”, in
Making Software, Andy Oram and Greg Wilson, eds., O’Reilly, 2011.

3 .V. Basili and B. Boehm, COTS-Based Systems Top 10 List, IEEE Computer, vol. 34(5):
91-93, May 2001.

4. V. Basili and S. Green, “Software Process Evolution at the SEL,” IEEE Software, vol.
11(4): 58-66, July 1994.

5. V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz, “Lessons Learned from 25 Years
of Process Improvement: The Rise and Fall of the NASA Software Engineering Labora-
tory,” Proceedings of the Twenty-Fourth International Conference on Software Engi-
neering (ICSE), Orlando, FL, May 2002.

6. V. Basili, R. Reiter, R. Jr., A Controlled Experiment Quantitatively Comparing Software
Development Approaches IEEE Transactions on Software Engineering, vol. 7(3): 299-
320 (IEEE Computer Society Outstanding Paper Award), May 1981.

7. V. Basili, R. Selby, D. Hutchens, Experimentation in Software Engineering, IEEE Trans-
actions on Software Engineering vol. 12(7): 733-743, July 1986.

8. V. Basili, R. Tesoriero, P. Costa, M. Lindvall, I. Rus, F. Shull, and M. Zelkowitz,
“Building an Experience Base for Software Engineering: A report on the first CeBASE
eWorkshop,” Proceedings of the Product Focused Software Process Improvement Con-
ference, Kaiserslautern, Germany, September 2001.

9. V. Basili, A. Turner, Iterative Enhancement: A Practical Technique for Software Devel-
opment, IEEE Transactions on Software Engineering, vol. 1(4), December 1975.

10. V. Basili and A. Turner, “A Transportable Extendible Compiler,” Software Practices &
Experiences, vol.5 (3): 297-298, July-September 1975.

19

11. V. Basili and D. Weiss, “A Methodology for Collecting Valid Software Engineering
Data,” IEEE Transactions on Software Engineering, vol.10(3): 728-738, November
1984.

12. V. Basili and M. Zelkowitz, Analyzing Medium Scale Software Development, in Pro-
ceedings of the Third International Conference on Software Engineering, May 1978.

13. V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R. Pajerski, “Special
Report: SEL’s Software Process-Improvement Program,” IEEE Software, vol. 12(6):
83-87, November 1995.

14. Betin-Can, A., Bultan, T., Lindvall, M., Lux, B., & Topp, S. (2007). Eliminating syn-
chronization faults in air traffic control software via design for verification with concur-
rency controllers. Automated Software Engineering, 14(2), 129-178.

15. B. Boehm and V. Basili, Software Defect Reduction Top 10 List, IEEE Computer, vol.
34(1): 135-137, January 2001.

16. B. Boehm and V. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer,
vol. 34(1): 135-137, January 2001.

17. B. Boehm, et al. Software Cost Estimation with COCOMO II, Prentice Hall, 2000.
18. Lionel C. Briand, "Embracing the Engineering Side of Software Engineering", IEEE

Software 29(4): 96 (2012)
19. William R. Shadish, Thomas D. Cook, Donald T. Campbell, Experimental and Quasi-

Experimental Designs for Generalized Causal Inference, Wadsworth Publishing, 2001.
20. W. Edwards Deming, Out of the Crisis (Cambridge, Massachusetts: MIT Press, Center

for Advanced Engineering Study, 1986).
21. P. Donzelli and V. Basili, “A Practical Framework for Eliciting and Modeling System

Dependability Requirements: Experience from the NASA High Dependability Compu-
ting Project,” Journal of Systems and Software, vol. 79(1): 107-119, January 2006.

22. L. Hochstein, T. Nakamura, V.R. Basili, S. Asgari, M.V. Zelkowitz, J.K. Hol-
lingsworth, F. Shull, J. Carver, M. Voelp, N. Zazworka, P. Johnson, Experiments to Un-
derstand HPC Time to Development, Cyberinfrastructure Technology Watch Quarterly,
vol.2(4A): 24-32, November 2006.

23. Natalia Juristo, Sira Vegas, “The Role of Non-Exact Replications in Software Engineer-
ing Experiments, Journal of Empirical Software Engineering 2011.

24. Barbara Kitchenham, et.al., Preliminary guidelines for empirical research in software
engineering, IEEE Transactions on Software Engineering (TSE), Volume 28 Issue 8,
August 2002, pages 721-734

25. Linger Mills and Witt, Structured Programming: Theory and Practice, Addison Wesley,
1979.

26. J. Maldonado, J. Carver, F. Shull, S. Fabbri, E.Dória, L.Martimiano, M. Mendonça, V.
Basili, Perspective-Based Reading: A Replicated Experiment Focused on Individual
Reviewer Effectiveness, Empirical Software Engineering: An International Journal, vol.
11(1): March 2006.

27. I. Rus, C. Seaman, M. Lindvall, V. Basili, and B. Boehm, “A Web Repository of Les-
sons Learned from COTS-Based Software Development,” Crosstalk, vol. 15(9): 25,
September 2002.

28. C. Seaman and V. Basili, “Communication and Organization: An Empirical Study of
Discussion in Inspection Meetings,” IEEE Transactions on Software Engineering, vol.
24(7): 559-572, July 1998.

29. William R. Shadish, Thomas D. Cook, Donald T. Campbell, Experimental and Quasi-
Experimental Designs for Generalized Causal Inference, Wadsworth Publishing; 2 edi-
tion, January, 2001.

30. F. Shull, V. Basili, B. Boehm, A.W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R.
Tesoriero, and M.Zelkowitz, “What We Have Learned About Fighting Defects,” Pro-

20

ceedings of the Eighth IEEE International Software Metrics Symposium, Ottawa, Cana-
da, June 2002.

31. F. Shull, V. Basili, J. Carver, J. Maldonado, G. Travassos, M. Mendonca, and S. Fabbri,
“Replicating Software Engineering Experiments: Addressing the Tacit Knowledge
Problem,” Proceedings of the First International Symposium on Empirical Software En-
gineering, Nara, Japan, October 2002.

32. Shull, F. and Turner, R., “An Empirical Approach to Best Practice Identification and
Selection: The US Department of Defense Acquisition Best Practices Clearinghouse,”
Proc. ACM/IEEE International Symposium on Empirical Software Engineering
(ISESE05), pp. 133-140. Noosa Heads, Australia, November 2005.

33. Weinberg, G. M. The psychology of Computer Programming, Van Nostrand Reinhold,
New York, 1971.

34. C. Wohlin, P. Runeson, M. Hoest, M. Ohlsson, B. Regnell, and A. Wesslen, ‘Experi-
mentation in Software Engineering,’ Springer, 2012.

