
��CTWatch Quarterly November 2006

observations about Software development for
High End Computing

Jeffrey C. Carver
Mississippi State University

Lorin M. Hochstein
University of Nebraska, Lincoln

Richard P. Kendall
Information Sciences Institute
University of Southern California

Taiga Nakamura
University of Maryland, College Park

Marvin V. Zelkowitz
University of Maryland, College Park
Fraunhofer Center for Experimental Software
Engineering

Victor R. Basili
University of Maryland, College Park
Fraunhofer Center for Experimental Software
Engineering

Douglass E. Post
DoD High Performance Computing
Modernization Office

1. introduction

Computational scientists and engineers face many challenges when writing codes for high-
end computing (HEC) systems. With the movement towards peta-scale machines and the
increasing focus on improving development productivity, writing a good code is even more
challenging. The DARPA High Productivity Computing Systems (HPCS)1 project is developing
new machine architectures, programming languages, and software tools to improve the produc-
tivity of scientists and engineers.2 Although the existence of these new technologies is important
for improving productivity, they will not achieve their stated goals if individual scientists and
engineers are not able to effectively use them to solve their problems. A necessary first step in
determining the usefulness of new architectures, languages and tools is to gain a better under-
standing of what the scientists and engineers do, how they do it, and what problems they face
in the current HEC development environment. Because the HEC community is very diverse,3 it
is necessary to sample different application domains to be able to draw any meaningful conclu-
sions about the commonalties and trends in software development in this community.

This article discusses some of the similarities and differences found in 10 projects taken
from different domains as understood by researchers in the HPCS project. We have undertaken
a series of case studies to gain deeper insight into the nature of software development for sci-
entific and engineering software. These studies have focused on two different types of projects,
(characterized in Table 1):

• ASC-Alliance projects, DOE-sponsored computational science centers based at University
of Illinois Urbana-Champaign, California Institute of Technology, University of Utah,
Stanford University, and University of Chicago. In the rest of this paper, the codes are
referred to as ASC Codes.

• Codes from DARPA HPCS mission partners (organizations that have a vested interest in
the outcome of and often financial sponsorship of the project), some of which are clas-
sified and would therefore be inaccessible to other researchers. Due to the sensitive nature
of many of these projects, they must remain anonymous in this paper. In the rest of this
paper, these codes are referred to as MP Codes.

ASC Codes MP Codes

of projects 5 5

Environment Academia (ASC-Alliance projects) Mission Partners (DoD, DOE, NASA)

Classified No Some

Code size 200-600 KLOC 80-760 KLOC

Type Coupled multi-physics applications Single physics to coupled multi-physics and
engineering

Table 1. Types of projects examined.

1 DARPA HPCS - http://www.highproductivity.org/
2 Hochstein, L., Carver, J., Shull, F., Asgari, S., Basili,
V., Hollingsworth, J.K., and Zelkowitz, M. “HPC
Programmer Productivity: A Case Study of Novice HPC
Programmers”. In Proceedings of SuperComputing,
2005, p. 35.
3 Post, D.E., Kendall, R.P., and Lucas, R.F., “The
Opportunities, Challenges, and Risks of High-
Performance Computing in Computational Science
and Engineering”, in Advances in Computers, p.
239-301.

CTWatch Quarterly November 2006

While these case studies are still ongoing, the results to date allow for some cross-project
analysis to provide a deeper understanding of the state of the practice.4 5 6 7 In this paper, we
discuss some observations gained from this analysis.

2. Goals & methodologies

While the ultimate goal for the case studies of the ASC codes and the MP codes is the same
(to improve the productivity of computational scientists and engineers), we have used a dif-
ferent approach for each type of code. The object of study in the ASC codes has been the indi-
vidual programmer (e.g., “Where does the computational scientist spend her time?”), while the
object of study in the MP studies has been the project (e.g., “Which factors determine project
success?”). Table 2 shows a comparison of the goals of the two types of case studies.

ASC Codes MP Codes

• Characterize which scientific programming activities are time-
consuming and problematic
• Characterize the impact of technologies on developer effort.
• Characterize the common problems encountered by programmers.

• Identify ways that successful projects manage risk
• Identify project success factors
• Identify productivity barriers that should be addressed by vendors
• Develop a reference body of case studies

Table 2. Case study goals.

Table 3 provides an overview of the methodology used for each type of case study. In
general, the approach for the MP codes was more comprehensive (longer questionnaire, on-site
interviews, multiple subjects interviewed independently), and the approach for the ASC codes
was more lightweight, which permitted quicker turnaround time when running the studies.
Furthermore, each type of study collected different types of information. The focus in the ASC
was lower level (i.e., more details about fewer things), while the focus in the MP codes was
higher level (i.e., less details about more things).

ASC Codes MP Codes

Type Ongoing Retrospective

Interviewees Technical leads Projects leads, project staff

Overview 1. Pre-interview questionnaire
2. Telephone interview
3. Generate summary document
4. Send summary document for approval/com-
ments
5. Generate synthesis report across all projects
6. Send synthesis report to all centers for
approval/ comments

1. Identify project and sponsors
2. Negotiate case study participation
3. Pre-interview questionnaire
4. On-site interview
5. Initial list of findings
6. Follow-up
7. Write report

Focus • Product: attributes, machine target, history
• Project organization: structure, staff,
configuration management
• Development activities: adding new
features, testing, tuning, debugging, porting,
effort distribution, bottlenecks, achieving
performance
• Programming models and productivity:
choice of model, adoption of language,
productivity measures

• Goals, requirements, deliverables
• Project characteristics, structure,
organization and risks
• Code Characteristics
• Staffing
• Workflow Management
• V&V, Testing
• Success Measures
• Lessons Learned

Table 3. Methodology.

4 Kendall, R.P., Carver, J., Mark, A., Post, D., Squires, S.,
and Shaffer, D. “Case Study of the Hawk Code Project,”
Technical Report, LA-UR-05-9011, Los Alamos National
Laboratories, 2005.
5 Kendall, R.P., Mark, A., Post, D., Squires, S., and
Halverson, C. “Case Study of the Condor Code Project,”
Technical Report, LA-UR-05-9291, Los Alamos National
Laboratories, 2005.
6 Kendall, R.P., Post, D., Squires, S., and Carver, J. “Case
Study of the Eagle Code Projec,” Technical Report,
LA-UR-06-1092, Los Alamos National Laboratories,
2006.
7 Post, D., Kendall, R.P., and Whitney, E. “Case study
of the Falcon Project”. In Proceedings of Second
International Workshop on Software Engineering for
High Performance Computing Systems Applications
(Held at ICSE 2005), St. Louis, USA, 2005, p. 22-26.

observations about Software development for High End Computing

��

3. observations

Using the different methodologies and the different foci described in Section 2, we per-
formed a cross-study analysis between the ASC codes and the MP codes to look for similar and
different observations that can lead to deeper insight into the software development process. In
this section, we present those observations along with the support (or lack of support) provided
by each type of code (ASC and MP) during independent case studies. To facilitate the discussion
of the observations, we have grouped them into high-level categories (each found in a subsection
below) with a list of specific observations.

3.1 Goals and Drivers of Code Development

Code performance is not the driving force for developers or users; the science and porta-
bility are of primary concern: All of the projects studied were parallel programming projects,
therefore code performance is clearly an important goal. But the primary interest of the users
and developers is the science, not fast, scalable code (except where fast, scalable code is required
to meet the scientific objective). As long as the overall project performance goals were met, the
science and portability are of greater concern than the last 10-20% of speedup. For example, a
member of one ASC Code team stated that metrics, like scalability, are recorded because the
sponsor requests them, while “scientifically useful results per calendar time” would be a more
appropriate productivity metric. Furthermore, the developers of the MP Codes indicated that
because the codes are often used for decades, they focus more effort on portability than on speed
and scalability for the current hardware platform. In fact, to the extent that an increase in per-
formance can be achieved through new hardware, these developers believe that the portability
of the software is far more important than the efficiency of the software.

Code success depends on customer satisfaction: For the MP Codes, success or failure
depends on whether the code developers keep their customers (not always their sponsor) sat-
isfied. Conversely, in the ASC Codes, the developers were their own customers, so they had no
external customers to please.

3.2 Actions and Characteristics of Code Developers

Most developers are domain scientists or engineers, not computer scientists: The majority
of the developers for the ASC Codes did not have any formal training in computer science
or software engineering. On some (but not all) ASC Codes, the chief software architect had a
background in computer science. The developers of the MP Codes found that it is easier to teach
domain scientists and engineers how to write code than it is for computer scientists to com-
prehend the deep scientific or engineering phenomena being captured by the code, especially
at the research level.

The distinction between developer and user is blurry: In the ASC Codes, there are no
“external” customers whose needs must be met. The primary users of the code are the devel-
opers themselves, who were adding functionality to advance their own research. In some cases,
there are external users of the code. But, because these codes may require additions or modifica-
tions to be useful, an external “user” may still need to do a certain degree of programming. The
MP Codes have more external users than the ASC Codes, but the developers still constitute an
important portion of the user-base.

CTWatch Quarterly November 2006

There is high turnover in the development team: Because the ASC Codes are developed in
academic environments, many project members (postdocs and grad students) are involved for
only a few years (e.g., in one project, the two technical leads had been involved for less than
four years). Most of the ASC Codes evolved from earlier codes that were written by scientists
who had long since left the organization. Conversely, most of the MP Codes had a core set of
developers that remained with the project for the duration, often for a decade or more.

3.3 Software Engineering Process and Development Workflow

There is minimal but consistent use of software engineering practices: All ASC Codes
exhibited the use of a subset of standard software engineering practices (i.e., the use of version
control systems, regression tests, and software architecture). However, the developers of these
codes did little defect tracking or documentation beyond user guides. Conversely, the MP
Codes did not show this type of consistency in the use of software engineering practices across
teams. Each team made use of a few recognized software engineering practices, but there was
no uniformity across projects.

Development is evolutionary at multiple levels: In both the ASC and MP Codes, the devel-
opers are working on “new science.” As a result, they do not always know the correct output
in advance, providing numerous challenges for verifying the code relative to the phenomenon
being simulated. The teams all use an iterative, agile approach, where new algorithms are
implemented and then evaluated to determine whether they are of sufficient quality for current
simulations. Even though the more rigid CMM approach may not be appropriate for many of
the MP Codes, many projects claim to follow this approach, possibly as a result of pressure from
sponsors.

Tuning for a specific system architecture is rarely done, if ever: None of the ASC Codes
optimize/tune their code for particular platforms. For example, they assume that they are devel-
oping for a “flat MPI” system, and so do not optimize for machines with SMP nodes. One
project member made a comment that was representative of all projects:

The amount of time it takes to tune to a particular architecture to get the last bit of juice, is
considerably higher than the time it takes to develop a new algorithm that improves per-
formance across all platforms. Our goal is to develop algorithms that will last across many
lifetimes. We are not really interested in getting that last little bit of performance.

The MP Codes did perform some tuning, but it was in conflict with their larger goal of
portability (see Observation 1 in Section 3.1).

There is little reuse of MPI frameworks: Several of the ASC and MP Codes built their own
frameworks to abstract away the low-level details of the MPI parallelism. However, these frame-
works are built from scratch each time, rather than being reused from another system. One
developer from an ASC Code explained this lack of reuse:

We have encountered other projects where people have said, ‘We’ll use class library X that
will hide array operations and other things’, but all sorts of issues arose. These frameworks
make assumptions about how the work will be done, and to go against the assumptions of
the framework requires getting into really deep details, which defeats the purpose of using
such a framework.

observations about Software development for High End Computing

��

Most development effort is focused on implementation rather than maintenance: In both
the ASC and the MP Codes, most of the effort was expended during implementation, rather
than maintenance. This distribution indicates that rather than being released and maintained
like traditional IT projects, these projects are under constant development.

3.4 Programming Languages

Once selected, the primary language does not change: Languages adopted by the MP Codes
do not change once they have been selected. The majority of the older codes were written in
FORTRAN77. Some newer codes and many of the ASC Codes are in FORTRAN90, C and C++.
C seems popular for handling I/O issues. Some of the ASC and MP Codes have also adopted
Python to drive the application. However, on one project the Python-based driver was later
abandoned because it increased debugging complexity and reduced the portability of the code.

Higher level languages (e.g., Matlab) are not widely adopted for the core of applications: The
MP teams have not adopted these higher level languages for use in their codes. The ASC teams
have restricted the use of these high level languages to prototyping numerical algorithms.

3.5 Verification and Validation

Verification and Validation are very difficult in this domain: While V&V is difficult in all
software domains, it was seen as especially difficult for both the MP and ASC Codes due to some
unique characteristics. It is difficult for developers to judge the correctness of code because they
often do not know the “right” answer. In addition, there are at least three places where defects
can enter the code, making it difficult to ultimately identify the source of the problem: 1) the
underlying science could be incorrect; 2) the translation of the domain model to an algorithm
could be incorrect; and 3) the translation of that algorithm into code could be incorrect.

Visualization is the most common tool for validation: All of the ASC Codes provide visu-
alization to allow the users to view the large amounts of outputs produced. For the experienced
user, this visualization provides a sanity check that the code is behaving reasonably.

3.6 Use of Support Tools during Code Development

Overall, tool use is lower than in other software development domains: Both the ASC
and the MP Codes tended to view integrated development environments (IDEs) as being too
restrictive. Instead, they liked the flexibility of UNIX-style command-line tools, such as make
and shell scripts, to use for building applications. A complicating factor for wide tool use is that
the target machines do not support the development tools that are available to programmers in
other domains. Conversely, developers from both ASC and MP Codes did make some use of
HPC-specific tools such as performance monitors and parallel debuggers.

Third party (externally developed) software and tools are viewed as a major risk factor:
Because the code developed by the MP Codes tend to take years to develop, they are not willing
to put their development at risk by relying on a software package or tool that may not be
supported in the future. Furthermore, the ASC teams were concerned with the portability of
libraries, which decreased their likelihood of use.

CTWatch Quarterly November 2006

4. Conclusions

In this paper, we have summarized our findings from a series of case studies conducted with
ten ASC and MP Codes as a series of observations. Due to different environments in which
each code is developed, some of the observations are consistent across code teams while others
vary across code teams. Overall, we found high consistency among the ASC Codes and the MP
Codes. Due to the different environments and foci of these projects, this result is both surprising
and positive. In addition, despite the fact that a large majority of the developers on these teams
have little or no formal training in software engineering, they have been able to make use of
some basic software engineering principles. Further education and motivation could increase
the use of these principles and further increase the quality of scientific and engineering software
that has already demonstrated its value.

Based on the positive results thus far, we have plans to conduct additional case studies to
gather more data in support of or in contradiction to the observations presented in this paper. In
future case studies, we will strive to investigate codes from additional domains, thereby allowing
broader, more inclusive conclusions to be drawn.

Acknowledgments
This research was supported in part by Department of Energy contract DE-FG02-04ER25633 and Air Force grant
FA8750-05-1-0100 to the University of Maryland.

observations about Software development for High End Computing

http://www.ctwatch.org/

Cyberinfrastructure Technology Watch

 VOLUME 2 NUMBER 4A NOVEMBER 2006

CTWatch
ISSN 1555-9874

GUEST EDITOR JEREMY KEPNER

High Productivity Computing Systems
and the Path Towards

Usable Petascale Computing

Making the Business Case for High
Performance Computing: A Bene�t-Cost
Analysis Methodology
Suzy Tichenor and Albert Reuther

Observations About Software Development for
High End Computing
Je�rey Carver, Lorin Hochstein, Richard Kendall, Taiga
Nakamura, Marvin Zelkowitz, Victor Basili,
and Douglass Post

What’s Working in HPC: Investigating HPC
User Behavior and Productivity
Nicole Wolter, Michael O. McCracken, Allan Snavely, Lorin
Hochstein, Taiga Nakamura, and Victor Basili

Application Software for High
Performance Computers: A Soft Spot for U.S.
Business Competitiveness
Suzy Tichenor

High Productivity Computing Systems and
the Path Towards Usable Petascale Computing
Jeremy Kepner

Design and Implementation of the HPC
Challenge Benchmark Suite
Piotr Luszczek, Jack J. Dongarra, and Jeremy Kepner

Analysis of Parallel Software Development
Using the Relative Development Time
Productivity Metric
Andrew Funk, Victor Basili, Lorin Hochstein, and Jeremy
Kepner

Experiments to Understand HPC Time to
Development
Lorin Hochstein, Taiga Nakamura, Victor R. Basili, Sima
Asgari, Marvin V. Zelkowitz, Je�rey K. Hollingsworth,
Forrest Shull, Je�rey Carver, Martin Voelp, Nico Zazworka,
and Philip Johnson

Available on-line at http://www.ctwatch.org/quarterly/

Software Productivity Research In High
Performance Computing
Susan Squires, Michael L. Van De Vanter, and
Lawrence G. Votta

2

9

1

18

24

33

39

46

52

SC2006
PRINT EDITION

INTRODUCTION

FEATURED ARTICLES

