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LTHOUGH reuse is assumed to be especially

valuable in building high-quality software,

as well as in OO development, limited

empirical evidence connects reuse with

productivity and quality gains. The

authors’ eight-system study begins to

define such benefits in an OO frame-

work, most notably in terms of

reduced defect density and rework, as

well as in increased productivity. 

HOWREUSE
INFLUENCES
PRODUCTIVITY
IN OBJECT-ORIENTED SYSTEMS

V i c t o r  R .  B a s i l i ,  L i o n e l  C .  B r i a n d ,  
a n d  W a l c é l i o  L .  M e l o

A



COMMUNICATIONS OF THE ACM October 1996/Vol. 39, No. 10 105

T
HIS article presents the results of a study conduct-
ed at the University of Maryland in which we
assessed the impact of reuse on quality and pro-
ductivity in object-oriented (OO) systems. Reuse
is assumed to be an effective strategy for building
high-quality software. However, there is currently

little empirical information about what to expect from
reuse in terms of productivity and quality gains.

The study is one step toward a better understanding
of the benefits of reuse in an OO framework in light of
currently available technology. Data was collected for
four months—September through December 1994—
on the development of eight small (less than 15,000
source lines of code [KSLOC]) systems with equivalent
functional requirements. All eight projects were devel-
oped using the Waterfall-style Software Engineering Life
Cycle Model, an OO design method, and the C++ pro-
gramming language. The study found significant bene-
fits from reuse in terms of reduced defect density and
rework as well as increased productivity. These results
can also help software organizations assess new reuse
technologies against a quantitative and objective base-
line of comparison. 

Software reuse can help produce quality software
more quickly. Software reuse is the process of using
existing software artifacts instead of building them
from scratch [18]. Broadly speaking, the reuse process
involves three steps: 

• Selecting a reusable artifact
• Adapting it to the purpose of the application
• Integrating it into the software product under

development

The major motivation for reusing software artifacts
is to decrease software development costs and cycle
time by reducing the time and human effort required
to build software products. Some research [3, 11, 21]
suggests that software quality can be improved by
reusing quality software artifacts. Some work has also
hypothesized that software reuse is an important fac-
tor in reducing maintenance costs because, when
reusing quality objects, the time and effort required to
maintain software products can be reduced [4, 19].
Thus, the reuse of software products, software process-
es, and other software artifacts is considered the tech-
nological key to enabling the software industry to
achieve required levels of productivity and quality [7].

This article assesses the impact of product reuse
on software quality and productivity in the context of
OO systems. OO approaches are assumed to make
reuse more efficient from both financial and techni-
cal perspectives. However, there is little empirical evi-
dence that high efficiency is actually achieved with
current technology. Therefore, what’s needed is a
better understanding of the potential benefits of OO
for reuse—as well as current OO limitations. We view

several quality attributes as dependent variables,
including rework effort and number/density of
defects found during the testing phases. 

Validating the Hypotheses
Participants in our empirical study were the students
of a graduate-level class offered by the Department of
Computer Science at the University of Maryland. The
class’s objective was to teach OO software analysis and
design. The students were not required to have pre-
vious experience or training in the application
domain or in OO methods. All students had some
experience with C or C++ programming and rela-
tional databases and therefore had the basic skills
needed for the study. 

To control for differences in skills and experience,
the students were randomly grouped into eight teams
of three students per team. To ensure the teams were
comparable with respect to the ability of their mem-
bers, the following two-step procedure (known as
blocking [17]) was used to assign students to teams:

• Each student’s level of experience was character-
ized. We used questionnaires and performed inter-
views. We asked the students about their previous
working experience, their student status (part-time
or full-time), their computer science degree (B.S.,
M.S., Ph.D.), their previous experiences with analy-
sis/design methods, and their skill in various pro-
gramming languages.

• Each of the eight most experienced students was
randomly assigned to a different  team. Students
considered most experienced were computer sci-
ence Ph.D. candidates who had already imple-
mented large (less than or equal to 10 KSLOC) C
or C++ programs and those with industrial experi-
ence of more than two years in C programming.
None of the students had experience in OO soft-
ware analysis and design methods. Similarly, each
of the eight next most experienced students was
randomly assigned to different groups; this ran-
dom assigning was repeated for the remaining
eight students.

Each team was asked to develop a management
information system supporting the rental/return
process of a hypothetical video rental business and the
maintenance of customer and video databases. Such an
application domain had the advantage of being easily
comprehensible; therefore, we could make sure that
system requirements could be easily interpreted by stu-
dents regardless of their educational background. 

The development process was performed accord-
ing to a sequential software engineering lifecycle
model derived from the Waterfall model and includ-
ing the following phases: analysis, design, implemen-
tation, testing, and repair. A document was delivered



at the end of each phase—analysis document, design
document, code, error report, and modified code.
Analysis and design documents were checked to veri-
fy they matched the system requirements. Errors
found in these first two phases were reported to the
students. This verification and error checking maxi-
mized the chances that implementation would begin
with a correct OO analysis/design. Acceptance test-
ing was performed by an independent group. During
the repair phase, the students were asked to correct
their system based on the errors found by the inde-
pendent test group.

The Object Modeling Technique (OMT), an OO
analysis and design method, was used during the
analysis and design phases [20]. The C++ program-
ming language, the GNU software development envi-
ronment, and OSF/MOTIF were used during
implementation. Sun Microsystems Sparc worksta-

tions were used as the implementation platform—a
development environment and technology represen-
tative of what is currently used in industry and acade-
mia. Our results are thus more likely to be
generalizable to other development environments. 

We provided the students with three libraries:

• MotifApp. This public-domain library includes C++
classes on top of OSF/MOTIF for manipulating
windows, dialogs, and menus [22]. The MotifApp
library provides a way to use the OSF/Motif wid-
gets in an OO programming/design style. 

• GNU library. This public-domain library is in the
GNU C++ programming environment and con-
tains functions for manipulation of strings, files,
lists, and more.

• C++ database library. This library gives a C++
implementation of multi-indexed B-Trees. 

We also provided a specific domain application
library to make our study more representative of
industrial conditions. This library implemented a
graphical user interface (GUI) for insertion and
removal of customer records and was implemented in
such a way that the main resources of the OSF/Motif
widgets and MotifApp library were used. Therefore,
the library contained a small part of the implementa-
tion required for developing the rental system.

No special training was provided to teach the stu-
dents how to use these libraries. However, the stu-

dents received a tutorial describing how to implement
OSF/Motif applications. In addition, a C++ program-
mer familiar with OSF/Motif applications was avail-
able to answer questions about the use of OSF/Motif
widgets and the libraries. A hundred small programs
exemplifying how to use OSF/Motif widgets were also
provided. In addition, the code sources and the com-
plete documentation of the libraries were provided.
Finally, it should be noted that the students were not
required to use the libraries and that, depending on
the particular design they adopted, different reuse
choices were expected. 

To define the metrics to be collected during the
experiment, we used the Goal/Question/Metric
(GQM) paradigm [5, 7]. The study’s goal was to ana-
lyze reuse in an OO software development process for
evaluation with respect to rework effort, defect densi-
ty, and productivity from an organizational point of
view. In other words, our objective was to assess the
following assumptions in the context of OO systems
developed under currently available technology:

• A high reuse rate results in a lower likelihood of defects.
• A high reuse rate results in lower rework effort,

that is, less effort to repair software products.
• A high reuse rate results in higher productivity.

According to the GQM paradigm, we had to define
a set of questions pertinent to the defined experi-
mental goal and a set of metrics allowing us to devise
answers to these questions. We do not present the
complete GQM here, only the metrics we derived.
However, the metrics described in the next section
were derived by following the GQM methodology [6].

Independent and Dependent Variables
Here we define the study’s independent variables
(e.g., size, amount of reuse) and dependent variables
(e.g., productivity, defect density). We intend to
make the underlying assumptions and models clear,
so a precise terminology is used in the rest of the arti-
cle. A thorough and formal discussion of these issues
can be found in [10]. 

The size of a system S is a function Size(S) charac-
terized by several properties, including the following: 

• Size cannot be negative (property Size.1).
• We expect size to be null when a system does not

contain any component (property Size.2). 
•More important, when components do not have

elements in common, we expect Size to be additive
(property Size.3). 

From these simple properties, other properties can
be derived, as discussed in [10].

Let us assume an operator called Components,
which, when applied to a system S, gives the distinct
components of S, so that: 

Components(S) = {C1, ..., Cn}, such that if Ci=Cj
then i=j, where i, j=1,...,n.
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easier to detect and correct. 
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The size of a system S is given by the following function:

Size(S) = ∑ Size(c)
c { Components(S)

where Size(c) can be defined as, for instance, the
number of source lines of code of the component c.
However, as discussed later, measuring size in the
context of reuse raises difficult measurement issues
related to such OO mechanisms as inheritance and
aggregation of classes [20].

T
HE amount of reused code in a system S is a
function Reuse(S), also characterized by the
properties Size.1–Size.3; that is, Reuse(S) is an
instance of a size metric. Therefore, Reuse can-
not be negative (property Size.1), and we
expect it to be null when a system does not con-

tain any reused element (property Size.2). When reused
components do not have reused elements in common,
we expect Reuse to be additive (property Size.3).

The way we define Reuse(S) must take into account
specific OO concepts, such as classes and inheritance.
For instance, consider a class C, which is included in
a system S. There are five cases:

1. Class C belongs to the library LC. In this case we
have verbatim reuse, that is, an existing class is
included in the system S without being modified.
Therefore: 

Reuse(C) = Size(C) 

As we are dealing with an OO language allowing
inheritance, all ancestors of C, as well as all classes
aggregated by C, also have to be included in S. As
all C ancestors and all classes aggregated by C also
belong to the library, including a library class may
trigger an apparent large amount of verbatim reuse.

2. Class C is a new class created by specializing,
through inheritance, a library class LC. This case is
a variation of the first case, that is, the class LC
and all its ancestors and subclasses (aggregated
classes) will be included in S and will be dealt with
in a way similar to verbatim reuse.

3. Class C is a new class that aggregates a library class
LC. This case is also a variation of the first case,
that is, the class LC and all its ancestors and sub-
classes will be included in S and will be considered
in a way similar to verbatim reuse.

4. Class C has been created by changing the existing
class EC. Reuse can be estimated as: 

Reuse(C) = (1 { %Change) 3 Size(C)

where %Change represents the percentage of C
added to or modified from EC.

However, the percentage of change is difficult to
obtain. As a simplification, we asked the developers to

tell us if more or less than 25% of a component had
been changed. In the former case, the class was
labeled as extensively modified; in the latter case, the
class was labeled as slightly modified. Therefore,
reuse rates were computed based on the following
approximations: 

• Extensively modified: Reuse(C) = 0
• Slightly modified: Reuse(C) = Size(C) 

We show later that slightly modified and verbatim
reused components are quite similar from the point
of view of defect density and rework. Thus, the
approximation appears to be reasonable.

5. Class C was created from scratch. In this case, the
amount of reuse of the class C is 0: 

Reuse(C) = 0

Now assume a function called Classes, which when
applied to a system S, yields all classes of the sys-
tem S, so that:

Classes(S) = {C1, ..., Cn}, such that if Ci=Cj, then
i=j, where i,j=1,...,n.

Reuse of a system S is given by the following function:

Reuse(S) = ∑ Reuse (c)
c { Classes(S)

We are also particularly interested in knowing the
reuse rate in a particular system. Reuse rate is mea-
sured by the following function:

ReuseRate(S) = Reuse(S)/Size(S) 

This metric has the property of being normalized: 0 ≤
ReuseRate(S) ≤ 1.

The first three cases show that the size measures of
systems can be artificially inflated. Only a more
detailed static analysis of the code would permit more
precise size measurement by distinguishing what is
actually used from what is inherited. This issue is
addressed when defining measures of productivity
and defect density.

Here we are interested in estimating the effort
breakdown for development phases and for error cor-
rection:

• Person-hours per development activity, including:
Analysis. The number of hours spent understanding
the concepts embedded in the system before any
actual design work, including requirements defini-
tion and requirements analysis, as well as analysis of
changes made to requirements or specifications,
regardless of where in the life cycle they occur.
Design. The number of hours spent performing
design activities, such as high-level partitioning of



the problem, drawing design diagrams, specifying
components, writing class definitions, and defining
object interactions. The time spent reviewing
design material, such as doing walk-throughs and
studying the current system design, was also taken
into account.
Implementation. The number of hours spent writ-
ing code and testing individual system compo-
nents, including: person-hours per error (referred
to as rework), such as number of hours spent iso-
lating an error and correcting it. We are also inter-
ested in rework efficiency, that is, how easily
modifiable a class or a system is. To measure such
an attribute, we normalize rework effort by the size
of classes and the number of faults, or changes,
respectively. 

Here we are interested in measuring the produc-
tivity of each team. The measure used was the
amount of code delivered by each project vs. the
effort to develop such code, so:

Productivity(S) = Size(S)/DE(S)

where, in the study:

• Size(S) is first operationally defined as the number
of lines of code delivered in the system S. Other
size measures, such as function points, could have
been used, but lines of code fulfilled our require-
ments and could be collected easily. More impor-
tant, we were looking at the relative sizes of
systems addressing similar requirements and there-
fore of similar functionality. However, because of
the effect of inheritance on size measurement, we
also measured size by excluding verbatim reused
classes. This exclusion is not fully satisfactory
because it underestimates the size of systems with a
large amount of verbatim reuse classes. Neverthe-
less, it provides an additional insight on productiv-
ity complementary to our first measure. In
addition, since all systems are supposed to be func-
tionally equivalent, we also measured productivity
by assuming that systems all have an equivalent
size; therefore, effort was assumed to be inversely
proportional to productivity. Again, this relation-
ship is an approximation and is another interest-
ing way to look at productivity. 

• DE(S) (development effort) is defined as the total
number of hours a group spent analyzing, design-
ing, implementing, and repairing the system S. 

Here we analyze the number and density of defects
for each system component. We use the term defect
generically to refer to either an error or a fault.
Errors and faults are two pertinent ways to count
defects, and both were considered in the study.
Errors are defects in the human thought process
made while trying to understand given information,
to solve problems, or to use methods and tools. Faults
are concrete manifestations of errors in the software.

One error may cause several faults, and various errors
may cause identical faults. Density is defined as: 

Density(S) = #Defects(S)/Size(S),

where #Defects(S) is defined as the total number of
defects detected in the system S during test phases.

I
N the study, an error is assumed to be repre-
sented by a single error report form filled out by
the independent tester group; a fault is repre-
sented by a physical change to a component,
that is, in this particular context, a C++ class.
Error density is first operationally defined as the

number of errors found in a system over the number
of KSLOC contained in the system. As for produc-
tivity, and for the same reasons, we also used a size
measure excluding verbatim reused classes. Again
we assumed that system sizes are roughly equivalent.
In this case, defect counts were assumed to capture
defect density. 

Now assume that, in order to correct error E1, two
classes—C1 and C2—have been modified, whereas,
in order to correct E2, only class C2 was modified. In
this case, the fault density of S is three faults per
KSLOC. 

To apportion errors to specific classes, we have to
account for the fact that one error could result in
changes to several classes. In this case, we follow a
procedure illustrated by the following example:
• The error weight affecting C1 will be equal to 0.5

because two classes were modified to correct E1.
• The error weight of C2 will be equal to 1.5 because

two classes were modified to correct E1, and only
C2 was modified to correct E2.

This procedure is formally represented as:

| ErrorWeight(Ci) | = ∑ | Classes_affected(Eij) |
Eij { {Eij ... Ein}

where:

• | ErrorWeight(Ci) | is the error weight associated
with the class Ci;

• {Eij ... Ein} is the set of errors in which the class Ci
was affected; and

• | Classes_affected(Eij) | is the number of classes
affected by the error Eij.

We used the approach in [5], which proposes
using forms for collecting data and gives guidelines
for checking the accuracy of the information gath-
ered. We used three different types of forms tailored
from those used by the Software Engineering Labo-
ratory [5]:

• Personnel Resource Form. This form is used to
gather information about the amount of time the
software engineers spent on each software develop-
ment phase. 
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• Component Origination Form. This form is used
to record information characterizing each compo-
nent in the project under development at the time
it gets into configuration management. This form
is also used to capture whether the component has
been developed from scratch or from a reused
component. In the latter case, we collected the
amount of modification—none, small, or large—
needed to meet the system requirements and
design, as well as the name of the reused compo-
nent. By small/large, we mean less/more than
25% of the original code has been modified. 

• Error Report Form. This form was used to gather
data about (1) the errors found during the testing
phase, (2) the components changed to correct
such errors, and (3) the effort expended in cor-
recting it. The last item includes:
– Determining precisely what change was needed
– Understanding the change or finding the cause
of the error
– Locating the point where the change was to be
made
– Determining that all effects of the change were
accounted for
– Implementing the correction, including design
changes, code modifications, and regression testing

Validity
The study’s validity can be analyzed from two per-
spectives: internal (What threats to the conclusions
can we draw from the study?) and external (How
generalizable are these results?) [17]. With respect
to internal validity, we can say that subjects were
classified according to their ability and assigned
randomly to form “equivalent” teams. Therefore,
we are less likely to obtain biased results due to dif-
ferences in ability across teams. However, perform-
ing a formal controlled experiment would have
required assignment of random levels of reuse to
projects and classes—not feasible in practice. And
because of this inability to assign random levels of
reuse, reuse rates might be associated with other
factors. 

Concerning external validity, we can say that even
though students are not industrial programmers, we
have trained them thoroughly and we used an appli-
cation domain intuitive enough to avoid misunder-
standings when interpreting the requirements. In
addition, we used a development environment repre-
sentative of what is available in industry for OO soft-
ware development. Another possible threat to
external validity is that our systems were relatively
small, so their conceptual complexity may be limited
when compared to large software development appli-
cations. However, the inherent limitation of such
empirical studies can’t be avoided. 

Software Product Reuse and Software Quality
We analyzed the impact of code reuse on software
quality, investigating two aspects of quality: defect den-
sity and rework. We present the results in two ways: 

• Assessing the differences in quality across reuse
categories—new, extensively modified, slightly
modified, verbatim

• Computing an approximate project reuse rate and
assessing its statistical association with project quality

In the first form of analysis, projects are considered as
separate entities; in the second, trends across projects
are analyzed in a way that assumes the projects are
comparable. In addition, the first type helps us justify
the definition of the reuse metric we used for the
study. 

Note that during the analysis we did not distin-
guish between “horizontal” and “vertical” reuse; that
is, the code reused from the generic libraries and the

code reused from the domain-specific libraries have
been combined. Even though comparing the benefits
of these two kinds of software product reuse would be
interesting, it is beyond the scope of this article.

Reuse Vs. Defect Density
The first analysis compared reused and newly created
code from the perspective of defect density. We
looked at defects according to two definitions: errors
and faults. At the class level, we used a simple mea-
sure of size—lines of code—but other size measures
could have been used for the same purpose. Howev-
er, since we were comparing systems developed based
on identical requirements and of similar functionali-
ties, we think this simple and convenient size measure
is at least precise as a relative measure between pro-
jects. At the system level, three different measures of
defect densities were investigated.

We first examined the relationship between classes
and defect density to see if reused classes are less
prone to defects. In addition, we used this analysis as
an opportunity to evaluate the value of our ordinal
reuse measure and assess its effect on defect density.

Table 1 shows the error and fault densities (errors and
faults per thousand lines of code) observed in each of the
four categories of class origin. Apparently, fewer defects
were found in reused code. For example, error density
was found to be only 0.125 in the code reused verbatim,
1.50 in the slightly modified code, 4.89 in the extensively
modified code, and 6.11 in the newly developed code. 

The study found significant

benefits from 

reuse in terms of reduced

defect density and 

rework as well as increased

productivity.



However, these differences should be assessed sta-
tistically; the significance of these trends should be
calculated. To perform this statistical analysis, defect
densities were computed for each project and each
reuse category; the results were combined to derive
defect densities for each project’s subset of classes

belonging to each reuse category. When comparing
reuse categories, we are in fact comparing sets of
defect density values, each corresponding to a given
project. Each observation in each reuse category
therefore matches one observation in each of the
other reuse categories, since they correspond to the
same system and have been developed by an identical
team. In addition, classes across reuse categories have
similar complexity and comparable functionalities.
Conceptually, it is almost like looking at the charac-
teristics of identical sets of classes developed with dif-
ferent reuse rates.

Considering that eight systems were developed for
the study, eight independent
observations are available at
the system level. The data set
is rather small; consequently,
we adopted a data analysis
strategy following several
steps: 

• First, we used a nonpara-
metric test (Wilcoxon
matched-pairs signed rank test or Wilcoxon T test
[12]) to determine whether significant differences
could be observed between reused, modified, and
newly developed classes. The rationale underlying
this test is straightforward. We are comparing a set
of pairs of scores (in this case, defect densities).
Suppose the score for the first member of the pair
is DD1, and the score for the second member of
the pair is DD2. For each pair, we calculate the
difference between the scores as DD2 { DD1. The
null hypothesis we wish to test is that there is no
difference between pairs of scores for the popula-
tion from which the sample of pairs is drawn; that
is, that there is no difference with respect to
defect density between reuse categories. If this is
true, we would expect similar numbers of negative
and positive differences and similar magnitudes of

differences. Therefore, the Wilcoxon T test takes
into account both the direction and the magni-
tude of differences between scores, or defect den-
sities, to determine whether the null hypothesis is
reasonable. Thus, by using this test, we can obtain
a statistical comparison of any project characteris-
tic, such as defect density, across class reuse cate-
gories. Such a test does not assume all projects are
comparable, does not require more than five
observations per reuse category, and is robust to
outliers, or extreme differences in scores between
pairs. All these properties are important in our
study.

• Once it has been determined that there is a sig-
nificant difference between reuse categories, our
goal is to quantify to the best extent possible the
impact of reuse on defect density. To do this, we
perform a linear least-squares regression between
reuse rate and defect density. It might be argued
that the number of data points we are working
with is too small to allow such an analysis. Howev-
er, there is common agreement that the number
of independent observations per explanatory vari-
able could be as low as five [14].

Another analysis strategy would have been to
work at the class level by, say, comparing defect den-
sities of classes across reuse categories, but this strat-
egy presented problems:

• Some of the projects included a large percentage
of all reused classes. Therefore, it would have

been difficult to determine whether the observed
trends could be attributed to skill differences
between teams or to reuse. 

• Our defect density and productivity measures can
be considered suitable at the system level but are
too rough at the class level. 

W
E first looked at fault densities. Fig-
ure 1 shows the distribution and
mean of project fault densities
across reuse categories. Each dia-
mond schematically represents the
mean for each class reuse category.

The line across each diamond represents the cate-
gory mean. The height of each diamond is propor-
tional to the 95% confidence interval for each
category, and its width is proportional to the cate-
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New
Extensively Modified
Slightly Modified
Reused Verbatim

All Classes

177
79
45
92

393

25,642
15,165
6,685

16,015

63,537

247
93
11
6

356

9.63
6.13
1.57
0.37

4.88

157
74
10
2

243

6.11
4.89
1.50
0.12

3.82

336.35
160.04

22.5
3

521.89

Class Origin No. of
Comp.

No. of
SLOC

No.
Faults

Fault
Density

No. of
Errors

Error
Density Rework

Table 1. Error/fault densities and rework in each
class origin category for all projects

The way we measure reuse

and size needs to be

refined to obtain 

more accurate measurement

of what is actually used by

the system as opposed to 

what is inherited. 
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gory sample size. Recall that we want to know
whether reuse reduces defect-proneness; in other
words, the null hypothesis is: Reused and nonreused
classes are, on average, of “similar defect-prone-
ness.” However, to gain confidence in the results, we
have to check that the internal structure of the
classes (in each reuse category) did not play a role
in the outcome. We ran an analysis using various
code metrics (e.g., cyclomatic complexity, nesting
level, and function calls) and determined that the
distributions across reuse categories were not statis-
tically different. (These measures were extracted

using the Amadeus tool [2].)
Table 2 shows the paired statistical comparisons of

fault densities between reuse categories. We assumed
significance at the 0.05 a-level; that is, if the p-value is
greater than 0.05, we assume there is no observable
difference. Recall that p-values are estimates of the
probabilities that differences between reuse cate-
gories (in this case, in terms of project fault densities)
are due to chance. According to these results, there is
no support for the fact that there is an observable dif-
ference between verbatim reuse and slightly modified
code, or between extensively modified and new code.
This means that from the perspective of fault density,
extensively modified code does not bring much bene-
fit and that slightly modified code is nearly as good as
code reused verbatim.

We used the same approach to obtain a statistical

comparison of class error density per class category.
Error density is more complicated to compute with
respect to reuse categories, as one error may trigger
changes in several classes from different categories.
We calculated the error weight per class; then, for
each class category, we computed the sum of the
classes’ error weights for each project and divided it
by the sum of the sizes of those classes.

This assumption is not so strong, since (1) in gen-
eral, each error generates only one fault, and (2) when
an error generates many faults, in most cases all class-
es affected belonged to the same reuse category.

Therefore, all errors were considered with equal
weight. The distributions are shown in Figure 2, and
the Wilcoxon T-test results are shown in Table 3.

Again there is no observable difference between
verbatim-reused and slightly modified classes (even
though the significance improved compared to fault
analysis results, it is still greater than 0.05) or between
extensively modified and newly created classes. This
lack of difference means that from the perspective of
error density, extensively modified code does not
bring much benefit and slightly modified code is as
good as code reused verbatim. These results confirm
the results we obtained using fault density as a quali-
ty measure. 

We also wanted to verify the hypothesis that the
higher the project reuse rate, the lower the number
of project errors. For the sake of simplification, only

Verbatim
Slight
Ext.

p-values Slight Ext. New

0.46 0.012
0.012

0.012
0.012
0.26

Verbatim
Slight
Ext.

p-values Slight Ext. New

0.08 0.012
0.0136

0.012
0.025
0.26

VerbatimSlightExt.New

17.5

15

12.5

10

7.5

5

2.5

0

Mean

Fault
Density

Reuse Categories

Table 2. Levels of significance (fault density 
per reuse category)

Table 3. Levels of significance (error density 
per reuse category)

Figure 1. Distribution and mean of project fault 
densities across reuse categories

VerbatimSlightExt.New

12.5
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Error
Density

Reuse Categories

0

10.0

7.5

5.0

2.5

0.0

Figure 2. Distribution and mean of project error 
density across reuse categories



verbatim-reused and slightly modified classes were
considered “reused classes” for computing the reuse
rate per project. This approximation was to some
extent justified by the results discussed earlier show-
ing extremely different trends for slightly and exten-
sively modified classes. We see this analysis as
complementary to the earlier analysis, since the
determination of the relationship between reuse rate
and error density allows us to quantify the impact of
reuse. However, the drawbacks of this new analysis
are that all projects were assumed to be comparable
and that the results could easily have been biased by
outliers. Table 4 provides an overview of the projects’
data, including number of lines of code delivered at
the end of the implementation phase, reuse rate per
project, error density (including and excluding ver-

batim reuse), and rework hours. 
The average rate of reuse is approximately 31%,

with a maximum of 64%. Based on Figure 3a, there
appears to be a strong linear relationship between
reuse rate and project error density when verbatim
reuse is included in system size. This relationship is
statistically significant (p-value = 0.0051 when per-
forming an F-test) and shows a high coefficient of
determination (R2= 0.755). The estimated intercept
and slope are 7.02 and {0.086, respectively. That
means that when there is no reuse, error density

should be expected to be around 7, and each addi-
tional 10 percentage points in the reuse rate decrease
this density by nearly 1 (the estimate is 0.86) within
the range covered by the data set (we limit ourselves
to interpolation). No outlier seems to be the cause of
a spurious correlation; therefore, this result should
be meaningful (see Figure 3a). 

Figures 3b and 3c show the relationships between
reuse rate and, respectively, error density without ver-
batim reused classes (R2= 0.54 and p-value = 0.04)
and number of errors (R2= 0.66 and p-value = 0.01).
In both cases, a significant negative relationship can
be observed, confirming our interpretation of the
relationship identified in Figure 3a. In other words,
we obtained consistent results using three different
measures of error density as a dependent variable.

Since these measures are based on very different
assumptions, we are pretty confident in saying that
reuse has a strong and positive impact on error-
proneness. 

These results support the assumption that reuse
in OO software development yields a lower defect
density. For example, the participants in Project 8
decided to implement everything from scratch;
reuse did not have an impact on error density in
their case. All the participants in the other projects
performed better, and their error densities appear
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Project No. of
SLOC

Reuse
Rate ReworkNo. of

Errors

Error Density
(with verbatim

reuse code)

Error Density
(without verbatim

reuse code)

1
2
3
4
5
6
7
8

13,981
5,068
9,735
8,543
8,173
6,368
6,571
5,068

24
33
42
33
26
25
15
44

47.29
2.23

31.44
18.08
40.05
48.67
64.01
0.00

1.72
6.51
4.31
3.86
3.18
3.93
2.28
8.68

3.48
6.60
5.42
3.86
4.78
6.15
2.96
9.36

51
71
92
72
59
51
31
93

Table 4. Overview of the projects' data

Figure 3a. Linear relationship between error density and reuse rate
Figure 3b. Linear relationship between error density without verbatim reuse code and reuse rate
Figure 3c. Linear relationship between a project’s number of errors and its reuse rate



COMMUNICATIONS OF THE ACM October 1996/Vol. 39, No. 10 113

to decrease linearly with the reuse rate. This is
strong evidence that reuse helped improve
quality across the covered reuse rate range,
that is, 0% to 64%. 

In [16], rework is identified as a major cost
factor in software development. Rework on
the average accounts for more than 50% of
the effort for large projects [16]. Reuse of
previously developed, reviewed, and tested
classes could result in easy-to-maintain classes
and consequently should decrease the rework
effort. Here, we first compare rework effort
on reused and newly created classes. We then

check whether the total amount of reuse per pro-
ject is related to a reduction in the project rework
effort.

Reuse Vs. Rework
We are interested in seeing whether the effort need-
ed to repair reused classes is lower than the effort
needed to repair classes created from scratch or
extensively modified. We looked at three different
measures to answer this question: 

1. Total amount of rework in each class reuse category
2. Rework normalized by the size of the classes

belonging to each reuse category
3. Rework normalized by the number of faults

detected in the class of each reuse category

Distributions and means are shown in Figures 4, 5,
and 6. 

These metrics allowed us to look at rework from
various perspectives: 

• Capturing the total cost of rework, expected to be
somewhat associated with the size of the classes
and the number of faults, or changes, in each
reuse category. 

• Allowing us to look at rework without considering
the relative amount of code in each reuse catego-
ry, which gives us a more accurate insight into the
relative cost of debugging and perfecting code in
each reuse category. 

• Allowing us to look at the expected difficulty of
repairing a single fault across the various reuse cat-
egories, which gives us a more accurate insight
into the modifiability of classes independent of
their fault-proneness.

Before any thorough statistical analysis, a look at the
distributions seems to indicate measures 1 and 2 are
significantly different across reuse categories. To test
the significance of this difference, we ran a Wilcoxon
T test [12]. Instead of using defect density per reuse
category as scores, we used total amount of rework
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Figure 6. Distribution and mean of project rework
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Figure 5. Distribution and mean of project rework
density per reuse category



per reuse category. The results for the first metric are
shown in Table 5. 

Based on Table 5, we can conclude that reuse
reduces the amount of rework, even when the code is
extensively modified. Again there is no observable dif-
ference between the verbatim-reused and slightly modi-
fied classes. These results show that from the perspective
of total rework, extensively modified code might still
bring benefits and, once again, slightly modified code is
nearly as good as code reused verbatim.

As for defect density and rework, we used the
Wilcoxon T test to analyze the variations of the sec-
ond metric, that is, rework normalized by the size of
the classes belonging to each reuse category
(referred to as rework density) across reuse cate-
gories. Results are presented in Table 6. 

Based on Table 6, we conclude that reuse reduces
rework density except when the code is extensively
modified. There is no observable difference between
the verbatim-reused and
slightly modified classes.
These results show that
from the perspective of
rework density, reuse
brings benefits and
slightly modified code is
nearly as good as code
reused verbatim.

Some projects had no
faults in their verbatim
or slightly reused class-
es. The number of data
points in these categories thus became too small for
applying a Wilcoxon T test to the third metric. In
such cases, we could look only at the difference
between new and extensively modified classes. No
significant difference could be observed in this case.
As a last attempt to look at change difficulty (the
third metric), we performed an analysis at the class
level, where rework effort per class was normalized
by the number of faults detected and corrected in
these classes. No significant differences in distribu-
tion could be observed across reuse categories. If
these results were confirmed by further studies, it
would mean that differences in rework effort across
reuse categories would be mainly due to differences
in fault-proneness and not to differences in ease of
modification. 

To conclude, rework seems to be lower in high-reuse
categories, but there is no statistically significant evi-
dence that faults are easier to detect and correct. 

T
O complement these results, we would like to
verify whether larger project reuse rate is asso-
ciated with lower project total rework effort.
Even though the number of data points avail-
able is small, we can observe a strong linear
relationship between rework and project reuse

rates that is statistically significant (p = 0.015 on F-test),
with a coefficient of determination R2 of 0.65. The esti-
mated intercept and slope are 88.52 and {0.748, respec-
tively. That means that, where there is no reuse, rework

effort should be expected to be around 88 person-
hours for each project and that for each additional 10
percentage points in reuse rate (within the reuse rate
interval covered by our data set) rework effort will
decrease by nearly 7.5 person-hours. These results are,
of course, specific to the system requirements imple-
mented in the study, but they could be generalized as

follows: Each additional 10 percentage points in reuse
rate, within the reuse rate interval covered by our data
set, decreases rework by nearly 8.5%. Again, no outlier
seems to be causing any spurious correlation (see Fig-
ure 7).

To better capture the concept of rework, it would
be better to look at rework normalized by the size of
the changes that occurred during the repair phase.
Unfortunately, we could not capture this information
accurately with the data collection procedures we had
in place. As a rough approximation, we looked at
rework normalized by the number of faults. However,
no significant differences were observed between
reuse categories. This result was confirmed when we
attempted to investigate rework normalized by the
number of faults at the class level. 

In conclusion, the results support the assumption
that reuse in OO software development results in
lower rework effort.
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Verbatim
Slight
Ext.

p-values Slight Ext. New

0.138 0.018
0.025

0.012
0.017
0.05

Table 5. Rework per reuse category

Verbatim
Slight
Ext.

p-values Slight Ext. New

0.144 0.043
0.028

0.043
0.042
0.16

Table 6. Rework/SLOC per reuse category

Project SLOC
Delivered

Productivity
(without verbatim

reused code)

1
2
3
4
5
6
7
8

14,222
5,105

11,687
10,390
8,173
8,216
9,736
5,255

6,611
113

3,061
1,545
3,273
3,099
4,206

0

46.48
  2.21
26.19
14.87
40.04
37.71
43.2
      0

155
280
365
303
159
264
140
264

91.75
18.23
32.01
34.3
51.4
31.12
69.54
19.9

47.55
17.70
18.28
23.10
30.82
12.38
16.89
19.20

Reused Reuse
Rate Effort Productivity

Table 7. Overview of the projects’ data collected
after the errors have been fixed
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Software Product Reuse and Software Productivity
Reuse has been advocated as a means of reducing
development cost. For example, in [9], reuse of class-
es is identified as one of the most attractive strategies
for improving productivity. As productivity is often
considered an exponential function of software size, a
reduction in the amount of software to be created
could provide a dramatic savings in development
costs [8]. The question now is, to what extent does
reuse improve productivity—despite change and inte-
gration costs?

Table 7 shows, for each project analyzed: 

• Number of lines of code delivered at the end of
the lifecycle

• Number of lines of code reused (verbatim reused
and slightly modified classes)

• Reuse rate
• Effort
• Productivity, including verbatim reused code
• Productivity, excluding verbatim reused code

Note that the data in the reuse rate and SLOC deliv-
ered column are different from the data in Table 4.
This difference stems from the fact that Table 8 pre-
sents the results at the end of the lifecycle, that is,
after the errors have been fixed, whereas Table 4 pre-
sents the data collected at the end of the implemen-
tation phase. 

B
ASED on data in Figure 8a, we can conclude
that there is also a strong linear relationship
(R2 = 0.666), which is statistically significant
(p-value = 0.013 ON an F-test) between pro-
ductivity (including verbatim reuse) and
reuse rate. The estimated intercept and

slope are 14.04 and 1.11, respectively. When there is
no reuse, productivity should be expected to be
around 14 SLOC per hour and each additional 10
percentage points in the reuse rate should increase
productivity by 11 SLOC per hour. Figures 8b and 8c
show the relationships between reuse rate and,
respectively, productivity without verbatim reused
classes (R2 = 0.45 and p-value= 0.067) and effort (R2
= 0.38 and p-value = 0.099). In Figure 8b, a weaker
positive relationship (significant at the a = 0.1 level)
can be observed, confirming our interpretation that

productivity has improved. Figure 8c shows a weak
negative trend (expected to be negative because the
dependent variable is effort), also supporting our
claim about productivity improvement. However, the
latter figure is graphically and statistically not as clear
as the other two figures, due to the third observation,
which is clearly an outlier.

To explain outliers on these scatterplots, we per-
formed some qualitative analysis of the process used,
the teams involved, and the design strategies adopted
in each project. For example, the team in Project 3
had no previous experience with respect to GUIs, and

learning the basics was perceived as a significant
effort. Similarly, Project 6 appears to have had lower
productivity than expected in Figures 8a, 8b, and 8c
when considering reuse rate. Lower productivity was
explained by the particularly sophisticated GUI this
group designed. In the context of the requirements
we provided to the students, the GUI could be con-
sidered gold-plating.

Conclusion
This article offers significant results showing the
strong impact of reuse on product productivity and,
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especially, on product quality, or defect density
and rework density, in the context of OO systems.
In addition, these results were obtained in a com-
mon and representative OO development environ-
ment using standard OO technology. Such results
can be used as rough estimates by managers and as
a baseline of comparison in future reuse studies
for the purpose of evaluating reuse processes and
technologies. 

This study can and must be replicated in indus-
try and academia. In industry, replicating this
study can, for example, help managers decide
whether it is worth investing in particular OO
technologies to improve software quality and pro-
ductivity. In academia, replicating this study can
help test OO methods or compare the advantages
of such methods against those of traditional devel-
opment methods. In any case, replication is neces-
sary to confirm the results we obtained and refine
the models we built. 

Future work includes refinement of the informa-
tion collected during the repair phase with regard
to the size and complexity of the changes. This
would allow us to better estimate the impact of reuse
on rework. However, it is likely to require better
automation of the change data and therefore the
design of tools for monitoring the changes to code
and design documents. In addition, the way we mea-
sure reuse and size needs to be refined to obtain
more accurate measurement of what is actually used
by the system as opposed to what is inherited. Thus,
we should be able to measure productivity and
defect density more precisely. 

We also intend, in future replications of this experi-
ment, to assess independently the impact of horizontal
(non-domain-specific) and vertical (domain-specific)
software reuse on software quality and productivity. We
will compare the advantages and drawbacks of using
these two types of software libraries. Finally, it would be
interesting to refine our comparison of the internal
class characteristics across reuse categories by using
more specific OO metrics [1]. We need to better char-
acterize the impact of reuse on system size, complexity,
coupling, and cohesion.
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