
Using the GQM Paradigm to Investigate Influential
Factors for Software Process Improvement

Yasuhiro Mashiko
Matsushita Communication Industrial Co., Ltd., Japan

Victor R. Basili
Institute for Advanced Computer Studies and Department of Computer Science, University of Maryland

In planning software process improvement activities,
it is essential to determine the factors that most influ-
ence the success of a software project. In this article,
we present an investigative and analytical framework
for evaluating software process factors based on the
Goal/Question/Metric (GQM) paradigm. We built de-
scriptive models of the software process, defects, and
cost. These models were used as a common basis of
quantitative analysis in the study. We also developed
evaluative models that clarify the relationship be-
tween the basic metrics, the analysis method, and the
goals of the analysis. We confirmed the usefulness of
our analytical framework, by applying it in an actual
development environment at Matsushita Communica-
tion Industrial Company in Japan, where we studied
four communications-software projects. This article
reports the patterns we noted in the data and sug-
gests process improvement activities based on those
findings.

1. INTRODUCTION

When planning improvements to the software pro-
cess, it is essential to understand what process fac-
tors and customer needs influence product quality.
Process improvement activities should be based on
an understanding of the relationship between pro-
cess characteristics, product characteristics, and cus-
tomer requirements. By building models of the rela-
tionships between these factors, we can improve our
understanding of the software process. Measure-
ment is central in recognizing these relationships
and in refining and validating them.

Address correspondence to Dr. Y Mashiko, Communication In-
dustrial Co., Ltd., Japan.

To improve a software process we must first spec-
ify our improvement goals and the criteria by which
we will evaluate success. The goal may be, for exam-
ple, an increase in customer satisfaction or a reduc-
tion in development cost. Specific goals depend on
the needs of the organization. After organizational
goals have been set and the corresponding criteria
for evaluation have been defined, we can examine
what factors influence those criteria. Based on the
importance of each evaluation criterion, we can set
priorities among the various possible improvement
actions aimed at altering specific influential factors.

In this article, we report on a study of four soft-
ware development projects at the Matsushita Com-
munication Industrial Company in Japan. We stud-
ied the factors that influence product characteristics
and business needs, and analyzed them, using the
Goal/Question/Metric (GQMI paradigm and sev-
eral other models (Basili and Weiss, 1981; Basili and
Weiss, 1984; Basili and Selby, 1984; Basili and
Rombach, 1988; Basili, 1992).

1.1. Purpose

In this study we analyzed the relationship between
process and product characteristics. Our goal was to
identity factors that influence customer satisfaction.
We looked at three aspects of the projects, the type
of defects, and relationship between defects and
cost, and the product architecture, to answer the
following questions.

Type of defect

l What types of defects are most observable to the
customer?

J. SYSTEMS SOFTWARE 1997; 36:17-32
0 1997 by Elsevier Science Inc.
6.55 Avenue of the Americas, New York, NY 10010

0x4-1212/97/$17.00
SSDI 0164-1212(95)00194-8

18 J. SYSTEMS SOFTWARE Y. Mashiko and V. R. Basili
1997; 3617-32

During which phase are most of them injected?

What kind of human error causes most of them?

In what product part can most of them be found?

Relationship between defect and cost

Which defects are the most costly to repair?

Product architecture

What product architecture provides good cus-
tomer satisfaction through initial product quality
and ease/economy of defect correction and main-
tenance?

. .2. Approach

We used a four-step measurement, modeling, and
analysis method, as outlined below.

1.

2.

3.

4.

Set a basis of quantitative analysis by building
models.

First, we built several descriptive and evalua-
tive models.’ Descriptive models explain various
aspects of the software product and development
environment, e.g., development process, defect,
cost, and product architecture. Evaluative models
define the criteria by which the product will be
evaluated. These models lay the foundation for
our analysis, and all evaluations, comparisons,
and conclusions in this study are based on these
models. We show these models in 2.1 and 2.2.
Define GQM models.

Second, we specified, the structure of the anal-
ysis by defining the goals, questions, and metrics
using the GQM paradigm. In this step we identi-
fied the metrics to be collected and how we would
interpret them. We show these models in 2.3.
Look for patterns in the data.

Third, we looked for patterns in the data, iden-
tifying patterns common to all projects and pat-
terns specific to individual projects. In this step
we determined which factors most influenced the
process and product, based on the evaluative
models defined in Step 1. We show the results of
the evaluation and the patterns found in the data
in 3.1 and 3.2, respectively.
Analyze how and where to improve the process
and product design (based on the patterns found
during Step 3).

‘Note that we use the word “model” in a rather broad sense. In
this text, it represents an abstraction of the relationship among a
set of variables; it does not necessarily imply predictive capability
or include causal relationships between elements, as is sometimes
the case.

Finally, by quantitatively analyzing the patterns
of product and process characteristics and the
factors influencing them, we were able to predict,
with varying levels of confidence, the effective-
ness of possible improvement actions suggested
by the patterns. We show them in 3.3.

1.3. Projects Studied

We studied four projects, referred to throughout the
article as projects, A, B, C, and D. All are develop-
ment projects for communications software having
functionality in data communication, data entry by
interactive human interface, and data output to pe-
ripheral devices. These products were developed as
deliverables for customer contracts.

Three different product architectures were ap-
plied on the four projects: projects A and D used a
control matrix model; project B used a transactions
switch model; and project C used a message-driven
model. Only project D had severe memory con-
straints.

In the control matrix architecture, the operation is
described as a finite state machine in the form of a
matrix. A product consists of a matrix control sub-
system and a resource management subsystem. The
matrix control subsystem manages the entire prod-
uct operation by referencing the matrix. The re-
source management subsystem provides the matrix
control subsystem with primitive functions to control
resources like the display, keyboard, file, and com-
munication device. In the transaction switch archi-
tecture, the operation is described as a set of trans-
actions. A product consists of transaction control
units and a resource management subsystem, similar
to the one used in the control matrix architecture.
Each transaction control unit provides its services by
means of primitive functions in the resource man-
agement subsystem. In the message driven architec-
ture, operation is described as message flow between
resource control units. A product consists of these
resource control units. No part of the product pro-
vides central operational control. Any of these three
different product architectures could have been cho-
sen for the four projects studied here. The product
model for each project was selected by the projects
themselves, based upon the decision of the engi-
neers involved in the projects.

There is a common, standard development pro-
cess model applied to all four projects. It consists of
seven phases: requirement analysis, specification
definition, software design, implementation, includ-
ing unit testing, integration testing, system testing,
and acceptance testing. For requirement analysis,

Influential Factors for Process Improvement J. SYSTEMS SOFIWARE 19
1997; 36~17-32

specification definition, and the design phase, the ’ the sections that follow and the set of goals, ques-
development method is not formally specified. How- tions, and metrics (GQMs) outlined in Section 2.3.
ever, the development teams were familiar with the
structured analysis and structured design technique
and applied it to analyze and design the software

2.1. Descriptive Models

products. The abstract process cycle model is shown We built descriptive models of process, defect, and

in 2.1.1. cost.

Each development team of the four projects had
more than three years experience of the application 2.1.1. Process model. Figure 1 shows the process

domain, the development process, and the develop- model we applied to all of the projects analyzed in

ment method. this study. In the model, project life-cycle activities
are divided into chronological phases categorized as

2. ANALYTICAL FRAMEWORK
either construction or testing phases. Construction
phases are those in which the product (including all

The analytical framework for the study is composed documents except test specification) is created or
of the descriptive and evaluative models described in changed. Testing phases are those in which the

Phase 1

Phase 1: Requirement (abbreviated as ‘RQ’)
-Analysis of the customer needsr
-Definition of the product with respect to function and
performance in a form familiar to the customer
Phase 2 : Specification (abbreviated as ‘SP)
-Specification of the p&uct with respect to function and performance
iu a form familiar to the developer but understandable by the customer
Phase 3 : Design (abbreviated as DS’)
-De&ions about the global structure of the product with respect to function,
data and control. usually the decomposition of the product into subsystems
-Decisions about the details of each subsystem, usually the decomposition of
each subsystem into program modules
Phase 4 : Implementation (abbreviated as ‘IP’)
-Coding of each module
-Unit testing of each module
Phase 5 : Integration Testing (abbreviated as ‘IT’)
-Integration of modules into subsystems
-Testing of each integrated subsystem
-Integration of subsystems into the product
Phase 6 : System Testing (abbreviated as ‘ST)
-Verification of the correctness of the product against its specification
Phase 7 : Acceptance Testing /Operation (abbreviated as ‘AT)
-Validation of the acceptability of the product against its requirement
XDperation of the customer organization with the developed product

Figure 1. Process model.

20 J. SYSTEMS SOFTWARE
1997; 3617-32

Y. Mashiko and V. R. Basili

product is verified or validated. In the process model,
phases l-4 (requirement, specification, design, im-
plementation) are construction phases, while phases
5-7 (integration testing, system testing, acceptance
testing/operation) are testing phases.

In Figure 1, thin arrows indicate defects found;
the origin of the arrow indicates the phase during
which a defect is detected, and its end indicates the
phase during which a defect was injected.

2.1.2. Defect Model

(1) Definition and Description of Defect

We define defect as a factor that requires changes to
be made to the software product, including docu-
ments as well as program code. We consider any
change to the product a defect until the product
becomes acceptable to the customer. According to
this definition, any change of requirement or speci-
fication by the customer is considered a defect. Our
definitions of defect, error, and fault conform to the
IEEE/ANSI standard (IEEE982.2).

In this study, we intended to analyze the devel-
oper’s capability to communicate with the customer
during requirement and specification phases. We
needed this kind of analysis because our goal was to
clarify those factors that most influence customer
satisfaction. From the viewpoint of customer satis-
faction, it is essential to take all changes into ac-
count and analyze how well the product meets the
real needs of the customer. For this purpose, we
classified all changes as shown in (2) in this section.

Here, we use the work “communication” in the
broad sense. In the requirement and specification
phases, the developer defines what the product
should do through a communication process with
the customer. If the communication capability of the
developer were perfect, the product would need no
change in its requirement and specification after
delivery unless the operational environment of the
product changes or the customer was mistaken with
respect to understanding of the original organiza-
tional needs. Various factors such as experience in
the application domain improve communication ca-
pability.

We use the following notation for defects

where D is defect; dl, d2, d3, and d4 are defect
parameters (defined below); Cd, Sd, and Md are
defect attributes (defined below); and n is a unique
identifying number.

Defect parameters.

dl Injection phase

This parameter denotes the phase during which the
defect was injected. The value of dl is either RQ
(Requirement), SP (Specification), DS (Design), or
IP (Implementation).

d2 Detection phase

This parameter denotes the phase during which the
defect was detected. The value of d2 is either RQ,
SP, DS, IP, IT (Integration Testing), ST (System
Testing), or AT (Acceptance Testing).

d3 Error type

This parameter denotes the type of human error
that caused the defect. We categorized errors into
those of omission and those of commission based on
basic properties of human misunderstandings. More-
over, we further categorized errors that caused de-
fects during the requirement and specification phases
into logic and communication errors.

l A logic error causes an apparent logical contradic-
tion or deficiency that can be detected by exami-
nation of documents without any knowledge of the
application domain or special features of the envi-
ronment in which the product is operated.

l A communication error is caused by poor commu-
nication between the customer and the developer;
it has no logical contradiction or deficiency that
can be detected by examination of documents but
causes some trouble in the actual operation of the
product by the customer. Defects caused by a
communication error can be detected only by
knowledge of the application domain and the envi-
ronment in which the product is operated.

This distinction between logic and communication
errors is applicable only in the requirement and
specification phases. All defects injected during de-
sign or implementation phases are considered logic
errors. The possible values for d3 are, for RQ and
SP phases:

LO logic omission
LC logic commission
CO communication omission
CC communication commission

For DS and IP phases:

Om omission
Cm commission

Influential Factors for Process Improvement .I. SYSTEMS SOFTWARE 21
1997; 36~17-32

Table 1. Fault Type

Fault type

Global structure
Data structure
Algorithm
Human interface
External interface
Internal interface
Initialization
Constant value

Abbreviation

Gstr
Dstr
Mgr
Hitr
Eitr
Iitr
Init
Cnst

Definition

Fault of relationships among subsystems
Fault of structure of tiles, tables or other data, including fault of data sire
Fault of algorithm inside program module
Fault of human interface
Fault of interface between the product and its external system
Fault of interface between modules
Omission or commission of initialization of data entry
Fault of definition of constant value

d4 Fault type Md Number of modules affected

According to the IEEE/ANSI standard, a fault is a
concrete manifestation of an error. Table 1 shows
the fault categories we used.

This parameter denotes the number of modules that
need to be corrected to fix a defect. Because a
defect detected during a construction phase does not
require correction of the source code, we define the
value of Md for a construction-phase defect as 0
(e.g., the value of Md is 0 for a defect injected
during specification and detected during design).

Defect attributes.

Cd Cost of defect

We define cost of defect as the direct expense to fix a
given defect completely. It includes the costs listed
below but does not include indirect costs such as
management, facilities, and installation of the cor-
rected program.

l Cost to correct documents and source code

l Cost to recreate new executable program from
corrected source code

l Cost to confirm the corrected function and to
regression test other portions of the product that
may have been affected by the correction

When a defect is not corrected properly in the first
attempt, subsequent iterations of the correct must
be done until the defect is eliminated. In this study,
we did not count iterations on the same defect as
new defects. Therefore, the cost of the original
defect includes all iterative attempts to fix it.

Sd Severity of defect

We categorized severity of defect into four levels and
assigned a value to each level, as shown in Table 2.

2) Classification of Defect

We classified defects as follows:

Developer-findable defect

Logic-based defects are detectable by any developer
without special capability, while communication-
based defects are detectable only with knowledge of
the application domain and the customer’s specific
needs (i.e., product’s operational environment).
Hence, we consider those two types separately when
we analyze software process and product. A devef-
oper-jindable defect satisfies the following conditions:

D,(dl, = RQ/SP, d2, = *, d3, = LO/LC,

d4, = *; Cd,,Sd,,Md,) or

D,,(dl, = DS/IP, d2, = *, d3, = * ,

d4, = *; Cd,,, Sd,, Md,).

An asterisk here means that any value is acceptable
for the attribute, i.e., it is not used for classification.

Table 2. Severity of Defect

Level Name Definition

4 Critical
3 Essential

Without tixing a defect at this level, delivery of the product to the client is impossible.
Without fixing a defect at this level, operation is possible by altering normal operational procedures

for the system. It must be fixed as soon as possible.
2 Important Without king a defect at this level, normal operation is impossible. However, the efficiency of system

operation is improved by fixing it.
1 Desired A defect at this level does not cause trouble in the efficiency of operation. However, it is desirable to

fix it from the point of view of the product’s impression on the user.

22 J. SYSTEMS SOFTWARE
1997; 36~17-32

Y. Mashiko and V. R. Basili
.

This is a defect detected before or after delivery that
may or may not be observed by the customer.

Customer-observable defect

A customer-observable defect satisfies the following
conditions

D,(dl, = *, d2, = AT, d3, = *, d4,, = *;

Cd,, Sd,, Md,)

Customer-observable defects are further divided into
developer-findable defect observed by customer or ad-
dition or change depending on whether the error is
logic- or communication-based.

Developer-jindable defect observed by customer

This class of defect satisfies the following conditions

D,(dl, = RQ/SP, d2, = AT, d3, = LO/LC,

d4, = *; Cd,,Sd,,Md,) or

D,(dl, = DS/IP, d2, = AT, d3, = *,

d4, = *; Cd,,, Sd,, Md,).

Addition or change

Sometimes during the acceptance testing phase, the
customer may require additions or changes to the
original requirement or specification. Although ide-
ally all such defects would have been detected and
corrected through effective communication between
the customer and the developer during the require-
ment and specification phases, this type of defect
does occur. An addition or change class defect satis-
fies the following conditions

D,(dl, = RQ/SP, d2, = AT, d3, = CO/CC,

d4, = *; Cd,, Sd,,Md,)

2.13. Cost model. We built a defect cost-to-fix
model based on the process model and defect defi-
nitions outlined in the previous sections. We use the
following notation to document cost

CD” Cost spent to fix defect D,
RE,(D,) Cost spent for reworking in phase i to fix

defect D,.

The value is 0 when the injection of D, is after
phase i or when the detection of D,, is before
phase i.

Using this notation, we generated the following
model. The cost of rework for defect D,, is the sum
of the costs for reworking individual phases neces-
sary to hx the defect.

Cost of rework for defect = CD” = ‘? RI&(0,).
i=dl,

We applied this cost model to measure the cost of
each defect.

2.2. Evaluative Models

We assessed customer satisfaction using the four
criteria defined below. The evaluative models are
based on product properties after delivery and
therefore are observable to the customer. We found
that intermediate product properties (before deliv-
ery) generally have little bearing on customer satis-
faction, and therefore, we did not include those
factors in our model.

2.2.1. Reliability. Reliability was evaluated on the
number of customer-observable defects in the deliv-
ered product and on the severity class of those
defects. Figure 2 illustrates our evaluative model of
reliability.

2.2.2. Reparability. Availability of the product is
an important factor in evaluating customer satisfac-
tion. Product availability depends on both mean
time between failure (MTBF) and mean time to
repair (MTTR). MTBF depends mainly on the num-
ber of customer-observable defects, while the MTTR
depends on the ease of repairing those defects.
Although we should consider availability alone, here
we considered only reparability because it is difficult
to predict the MTBF of a newly developed product.

Reparability of product was evaluated on the av-
erage cost of rework per defect. Figure 3 illustrates
our evaluative model of reparability. Cost of rework
was calculated using the cost model shown in Sec-
tion 2.1.3.

2.23. User-Friendliness. In our defect classifica-
tion, we divided customer-observable defects into
two categories: developer-findable defect observed
by customer and addition or change. In evaluating
user-friendliness, we considered addition or change
class defects separately to evaluate how well the

Figure 2. Evaluative models of reliability.

Influential Factors for Process Improvement

Figure 3. Evaluative model of reparability.

product conforms to the real needs of the customer.
The number of defects of this class is closely linked
with the degree to which the development organiza-
tion understands the application domain and the
customer’s needs. We built an evaluative model for
user-friendliness which considers both the number
and severity level of defects of this class in the
product. Figure 4 illustrates our evaluative model of
user-friendliness.

2.2.4. Maintainability. Once a product goes oper-
ational, it must be updated and changed in accor-
dance with changes in its operational environment.
On many projects, maintenance costs represent a
large part of the total cost spent throughout the
product’s lifetime. Hence, ease of maintenance is
one of the central concerns of the customer.

The long-term maintainability of the product can
be estimated by the average cost of rework for
addition or change class defects detected during
acceptance testing. This is because the number of
logic defects detected declines sharply shortly after
the beginning of operation for regularly managed
projects. We evaluated the product maintainability
by the average cost of rework for addition or change
class defects. Figure 5 illustrates our evaluative
model of product maintainability.

2.3. GQMs

We set the goals, questions, and metrics for this
analysis based on the GQM paradigm. Although we
set many questions and metrics, we show here only
those that relate to our discussion of our goals
stated in Section 1.1.

(1) Goal of Analysis

The goal of this analysis was to determine influential
factors on the software process and to identify pro-

Fii 4. Evaluative models of user-friendliness.

J. SYSTEMS SOFIWARE 23
1997; 3617-32

Figure 5. Evaluative model of maintainability.

cess improvement activities likely to affect those
factors. From this overall goal, we derived two sub-
goals, evaluation and characterization, as illustrated
in Figure 6.

(2) Questions of Interest

We devised questions relevant to our analysis goals
and grouped them into three categories: product-
related questions, process-related questions, and im-
provement-related questions. Figure 7 shows the
questions of interest for each category.

Product-related questions are for describing vari-
ous aspects of the product, e.g., logical/physical
attributes, context of operation, product model,
cost, defects, and validity of the data collected.

Process-related questions are for describing vari-
ous aspects of the process, e.g., process model,
method, technique, process conformance, domain
understanding, and validity of the data collected.

Improvement-related questions are for identifying
and analyzing the influential factors on process
improvement.

(3) Metrics of Interest

We selected metrics to answer our questions. Figure
8 shows the metrics of interest.

III. DATA AND RESULTS

Using the analytical framework and the models de-
scribed in Section 2, we examined the four projects
and obtained the following data and results.

24 J. SYSTEMS SOFTWARE
1997; 36~17-32

Y. Mashiko and V. R. Basili

Figure 7. Questions of interest.

3.1. Results of Evaluation

First we rated the projects using the evaluative mod-
els of reliability, reparability, user-friend-
liness, and maintainability. The number of each class
of defect was normalized by the project size-mea-
sured as the number of lines of source code in the
delivered product, not including comments.

In addition to examining the raw values of nor-
malized number of defects and average cost of re-
work, we rated each project on a five-grade scale
(where 1 is the minimum and 5 is the maximum) to
visualize general tendencies. The rating was done by
calculating the z score of each project using the
following formula

X-X
z=-

s

where s is the estimate of standard deviation and f
is the estimate of mean. Table 3 shows the rating
rule. When the distribution is the standard normal
distribution, each rating interval includes 20% of all
projects. Because these estimates were done for only
the four projects, and not for a large number of past
projects, we consider this evaluation only a compari-
son among the sample projects.

Table 3. Division of Interval of Z, and assignment of
rating value

range of 2 rating

- 0.84 2 2 5
-0.25 2 2 > -0.84 4
0.2srz> -0.25 3
0.84 r 2 > 0.25 2

z > 0.84 1

Table 4 summarizes the evaluation results. The
projects have diverse ratings across the evaluation
criteria. Except for project B, which rates very high
overall, no one project is simply good or bad in every
category.

ForprojectA from the point of view of the customer,
its reliability and user-friendliness are very poor,
while its reparability and maintainability are very
good. This implies that the product is likely to
keep up with various changes in the operational
environment although its initial quality seems
poor. Hence, it is reasonable to expect that the
product will satisfy the customer in the long run
despite its poor initial quality evaluation.

For project B, the results of evaluation are good on
the whole. Its reliability and user-friendliness
are evaluated best among the four projects. We
can expect that its good initial quality satisfies
the customer. Its reparability and maintainability
are also good, but not as good as project A. We
can expect that the product will satisfy the cus-
tomer both in the short term and in the long run
as well.

For project C, its reliability is poor and user-friendli-
ness is fair. Therefore, its initial quality may not
satisfy the customer. On the other hand, because
its reparability is good and maintainability is fair,
we can expect that the product will keep up
fairly well with changes required in the opera-
tional environment and may prove more satisfac-
tory in the long run.

For project D, its reliability is good, and user-frien-
dliness is not necessarily bad. The number of
additions or changes due to severe defects (N4)
is small. This indicates that perhaps most of the
additions and changes were made to enhance
the product, not to eliminate significant defects.
Hence, it is reasonable to conclude that project
D’s initial quality is good. Its reparability and
maintainability, however, are the worst among
the four projects, indicating that it will be dif-
ficult for the project to keep up with the changes
required in the operational environment. There-
fore, it is unlikely that the product will satisfy

Influential Factors for Process Improvement J. SYSTEMS SOFIWARB 25
1997; 36:17-32

Table 4. Summary of Evaluation

Evaluation criteria A

Reliability Nl/KLOC 1.40
(without regard Value of z 1.21

to severity) Rating 1
Reliability N2/KLOC 0.90

(severe defect) Value of 2 1.06
Rating 1

Reparability Cl 8.58
Value of 2 - 0.65

Rating 4

User friendliness N3/KLOC 0.48
(without regard Value of 2 0.31

to severity) Rating 2
User friendliness N4/KLOC 0.42
(severe defect) Value of z 1.26

Rating 1

Maintainability c2 10.65
Value of 2 -0.98

Rating 5

Project Estimate

B C D % SD

0.25 0.95 0.67 0.82 0.48
- 1.17 0.27 - 0.30

2 4 0.:5
0.74 0.17 0.49 0.39

- 0.88 0.96 -0.83
5 2 4 -

9.80 10.46 22.63 12.87 5.55
- 0.47 - 0.37 1.49 - -

4 4 1 - -

0.05 0.39 0.67 0.40 0.26
- 1.34 - 0.02 1.05

5 3 1
0.05 0.25 0.17 0.22 0.16

-1.11 0.20 - 0.36 - -
5 3 4 - -

14.00 15.06 22.63 15.59 5.06
-0.31 -0.10 1.39 - -

4 3 1 - -

the customer in the long run in spite of its initial
good quality. This is just the opposite of proj-
ect A.

We drew the following lessons from these find-
ings:

1) Importance of evaluating projects from various
viewpoints

We evaluated projects from various viewpoints based
on the GQM paradigm, with a wide range of results,
as illustrated in Table 4. This diversity indicates that
it is not only insufficient, but dangerous, to analyze a
project by a single criterion, such as number of
defects. For example, project D has good quality in
the context of the number of defects but poor main-
tainability, while project A has poor quality but good
maintainability.

To improve software processes efficiently and rapidly,
it is critical to accumulate experiences effectively
and to integrate them as a whole. Hence, we tried to
draw the maximum number of lessons, even from
projects that seem to be failures. In this study, by
closely analyzing the projects that seem to have poor
quality (projects A and C), we can see that these
projects may rate differently when evaluated on dif-
ferent criteria (e.g., quality and maintainability).

2) Relationship between product quality and prod-
uct maintainability

From Table 4, we cannot observe any pattern be-
tween quality (measured as the number of defects)
and maintainability (measured as least cost to fix).
At the beginning of operation of a newly developed

system, customers are apt to evaluate the product by
the number of initial customer-observable defects.
However, in the long run, another property, such as
maintainability, may become more important to the
customer.

3) Associated factors

Overall, product reliability and user-friendliness
seem to be affected mainly by human factors, such
as process conformance and domain understanding.
Product reparability and maintainability seem to be
affected more by other factors, such as methods,
techniques, memory constraints, and product archi-
tecture.

3.2. Influential Factors

After the initial evaluation of reliability, reparability,
user-friendliness, and maintainability, we sought to
identify factors that appeared to have influenced
each of these evaluation criteria. We classified in-
fluential factors in two groups: those common to all
projects and those specific to individual projects. In
the sections that follow, we discuss the common
factors and the project-specific factors as they affect
each of the evaluation criteria.

3.2.1. Common Factors. Influential factors com-
mon to many projects usually stem from general
properties of the development organization and the
application domain, e.g., level of personnel, manage-
ment strategy, process model characteristics, pecu-
liarities of the application domain. Hence, these
factors can be especially useful when identifying
activities to improve the overall project organization.

26 J. SYSTEMS SOFTWARE
1997; 36:17-32

A Reliability. We set the number of customer-
observable defects as the measure of reliability.
Questions 3.1 and 3.2 in Figure 7 identify the factors
that influence this number. Figures 9 and 10 summa-
rize the data for those questionss Figures 9.1-9.3
show, respectively, the distribution of defects by
injection phase, error type, and fault type. Figures
10.1-10.3 show, respectively, the percentage of se-
vere defects by injection phase, error type, and fault

type.
These patterns of interest were noted:

Injection phase

n ” 06 q C q D

Figure 9.1. Distribution of customer-observable defect by
injection phase.
n A, 0 B, 0 C n D

. ,...,
.; .

. j

n A q 6 HC q D

Figure 9.2. Distribution of customer-observable defect by
error type.

Fauil typa
n A q 8 q C q D

Figure 9.3. Distribution of customer-observable defect by
fault type.

Y. Mashiko and V. R. Basili

Figure 10.1. Distribution of proportion of severe cus-
tomer-observable defect by injection phase.

WA OB EC llllD

Figure 10.2. Distribution of proportion of severe cus-
tomer-observable defect by error type.

100 100

Gslr Eik lilr m end

Figure 10.3. Distribution of proportion of severe cus-
tomer-observable defect by fault type.

. Al: The fault type for more than 80% of the
defects is either algorithm, human interface, or
external interface (Figure 9.3). For project D, the
proportion of algorithm type faults is smaller than
the others. This is probably because review pro-
cesses during design and implementation were ef-
fective performed (Figure 9.11, and defects of
algorithm fault type in these two phases were
removed before the customer used the product.
For the other three projects, on the other hand,
more than half of customer observable defects
were injected during design and implementation.

Influential Factors for Process Improvement

Figure 11.1. Distribution of average cost of rework for
customer-observable defect by injection phase.

Error type

Figure 11.2. Distribution of average cost of rework for
customer-observable defect by error type.

.

J. SYSTEMS SOFIWARE 27
1997; 36:17-32

For all projects, most defects of fault type other
than algorithm, human interface and external in-
terface, are removed before the customer began to
use the project in this development environment.

A2r The highest proportion of severe defects is
among those caused by an external interface fault.
More than 90% of the external interface fault
defects for projects A, B, and C, are severe. For
project D, the proportion is 50%, but all of pro-
ject D’s severe defects were due to external inter-
face faults (Figure 10.3).

l A3: Errors of omission represent at least 40% of
the defects (Figure 9.2). Except for project D, they
are mostly categorized as severe (Figure 10.2).
Project D has a lower severe defect rate than the
others (Table 4).

B Reparability We set the average cost of rework
for a customer-observable defect as the measure of
reparability. Question 3.3 in Figure 7 identifies the
factors that influence this number. Figure 11 sum-
marizes the data for this question. Figure 11.1-11.3
show, respectively, the distribution of the average
cost of rework for this class of defect by injection
phase, error type, and fault type. Figure 11.4 shows

t-1
.,. .,. :

Figure 11.3. Distribution of average cost of rework for
customer-observable defect by fault type.

SP

Figure 11.4. Distribution of average cost of rework for
customer-observable defect by rework phase.

28 J. SYSTEMS SOFIWARE
1997; 3617-32

the distribution of average cost of rework for this
class of defect among rework phases. Based on the
cost model definition, the sum of average costs for
each rework phase is not necessarily equal to the
average cost of rework for a class of defect.

These patterns of interest were noted:

Bl: A defect injected during the requirement
phase costs at least 44% more to fix than an error
injected during any other phase (Figure 11.1).

B2: A defect caused by an omission error is more
costly to fix than a defect caused by a commission
error. The difference is from 5% to 13% for
projects A, B, and C, while it is more than 400%
for project D (Figure 11.2).

C User-Friendliness. We set the number of addi-
tion or change class defects as the measure of user-
friendliness. (It is possible in actual business envi-
ronments that requests for addition or change are
desirable but not practical because of their very high
costs. We should take this factor into account when
examining user-friendliness. For example, we may
consider a software product not user-friendly if it
has a small number of addition or change defects
throughout its lifetime because it requires too much
effort to make even small additions or changes.) In
our study, however, very few requests for addition or
change by the customer were impossible because of
high cost. Therefore, we consider the evaluative
model of Figure 4 as valid in this study. Questions
3.4 and 3.5 identify the factors that influence this
number. Figures 12.1-3 and 13.1-3 summarize the
data for these questions. Figures 12.1-12.3 show,
respectively, the distribution of additions or changes
by injection phase, error type, and fault type. Figures
13.1-13.3 show, respectively, the percentage of se-
vere defects for each division of addition or change
by injection phase, error type, and fault type.

These patterns of interest were noted:

Cl: More than 60% of addition or change class
defects are caused by omission errors (Figure 12.2).

C2: More than 80% of addition or change class
defects are due to human interface or external
inteflace faults (Figure 12.3).

D Maintainability. We set the average cost of re-
work for addition or change class defects as the
measure of maintainability. Question 3.6 in Figure 7
identifies the factors that influence this number.
Figures 14.1-4 summarize the data for this question.

Y. Mash&o and V. R. Basili

n * 08 q c aLID

Fire 12.1. Distribution of addition or change by injec-
tion phase.

Figure 12.2. Distribution of addition or change by error
type.

Figure 12.3. Distribution of addition or change by fault
type.

Figures 14.1-14.3 show, respectively, the distribution
of the average cost of rework for this class of defect
by injection phase, error type, and fault type. Figure
14.4 shows the distribution of average cost of rework
for this class of defect among rework phases. Again,
note that the sum of the average costs for each
rework phase is not necessarily equal to the average
cost of rework for a class of defect.

This pattern of interest was noted:

l Dl: An addition or change injected during the
requirement phase costs roughly twice as much (or
more) to fix than one injected during specification
(Figure 14.1).

Influential Factors for Process Improvement J. SYSTEMS SOFIWARE 29
1997: 36~17-32

Project A

PAl: The cost of rework on phases after the design
phase is at least 20% less for project A then for any
other project (Figures 11.4 and 14.4). We discuss the
reason in 3.3, (3).

Project B

PBl: There are no addition or change class defects
due to an external interface fault for project B
(Figure 12.3) b ecause the external interface was
same as an old system. Therefore, special design
consideration of external interface was not neces-
sary.

Project C

PCl: Cost of rework for addition or change class
defects caused by a commission error for project C
is at least double the average for any other project
(Figure 14.2). We surmise the reason is product
architecture. We discuss the reason in 3.3, (3).

Project D

PDl: Cost of rework for a defect caused by an
omission error for project D is approximately double
the average for any other project (Figures 11.2 and
14.2).

Figure 13.1. Distribution of proportion of severe addition
or change by injection phase.

w .,.................. x

M
70 _._.1.__

80

00

40
JO
20
10

0

rnA 08 q C q llD

Figure 13.2. Distribution of proportion of severe addition
or change by error type.

tmim
. ~ _......._.._.............,.............

” 11.1. _ i... j

Elb nk m &ml

Fault class

n +’ 06 q C UllD *:Ndhawa

Figure 13.3. Distribution of proportion of severe addition
or change by fault type.

3.2.2. Project-Specific Factors. By analyzing the
patterns particular to a given project, we can assess
the strength or weakness of various aspects of its
development environment, e.g., method, technique,
personnel, and management approach. This knowl-
edge can influence the processes that may be used
on future projects with similar characteristics. We
observed the following project-specif& patterns in
the four projects. the reasons for the resulting pat-
terns will be discussed in Section 3.3.

~. . .

w EIB EC anD

Figure 14.1. Distribution of average cost of rework for
addition or change by injection phase.

Figure 14.2. Distribution of average cost of rework for
addition or change by error type.

I. SYSTEMS SOFTWARE
1997; 36:17-32

Y. Mashiko and V. R. Basili

Fault lyp~

rnA 08 q C rnD

Figure 14.3. Distribution of average cost of rework for
addition or change by fault type.

Rawork phase

HA 08

Figure 14.4. Distribution of average cost of rework for
addition or change by rework phase.

PD2: Cost of rework after the implementation phase
is much higher for project D than the average for
other projects. For customer-observable defects, the
cost is approximately double the average for other
projects: for addition or change class defects, the
cost is at least 60% more than the average for other
projects (Figures 11.4 and 14.4).

We surmise the reason is memory constraint. We
discuss the reason is 3.3 (4).

3.3. Discussion and Recommendations

In this section, we suggest process and product de-
sign improvements based on our analysis of the
pattern observed. We recommend improvement ac-
tivities in the context of the three main study areas:
type of defect, relationship between defect and cost,
and the effect of product architecture.

1) Type of defect

The main cause of customer-observable defects is
algorithm, human interface, and external interface
faults (from Al). The main cause of addition or
change class defects is human interface and external
interface faults (from C2). Therefore, preventing

q C IllID

algorithm faults would improve reliability, and pre-
venting human interface and external interface faults
would improve both reliability and user-friendliness.
The prevention of external interface faults would be
especially effective in reducing severe defects (from
A2

These findings support the introduction of tech-
niques such as prototyping of human-machine inter-
face, code inspection, and the thorough review of
external interfaces. In the current development pro-
cess standard, engineers are not forced to apply
those techniques in the appropriate development
phases. This result shows adoption of those popular
techniques would be useful for improving the devel-
opment environment of this study. Without quanti-
tative analysis, however, we might choose popular
but not effective improvement actions in a given
environment. This study illustrates the efficiency of
analyzing type of defects when we try to plan im-
provement actions most suitable to individual envi-
ronments.

2) Relationship between defect and cost

The injection phase is an important factor influenc-
ing the cost of rework (from Bl and Dl). Defects
injected during the requirement phase are extremely

Influential Factors for Process Improvement J. SYSTEMS SOFlWARE 31
1997; 3617-32

expensive. Therefore, it is critical to prevent defect
injection during this phase. It is expected that the
introduction of such requirement analysis tech-
niques are prototyping would be effective in prevent-
ing requirement-phase errors.

This study also shows that customer-observable
defects caused by omission are more expensive than
those caused by commission. At first glance, our
results appear to contradict the results of Selby and
Basili (1991) with regard to the relative cost of
defects caused by omission errors versus those
caused by commission errors. In their study, errors
of omission were less expensive than errors of com-
mission when found during the review process. How-
ever, in this study, if we considered all logic defects
found during all phases, not just those that were
customer observable, we have supportive results; i.e.,
we find the cost of rework for commission defects to
be at least 10% higher than the cost for omission
errors across all four projects.

This combination of results may have an impor-
tant implication; defects of omission may be much
chapter when caught earlier in the life cycle.

3) Effect of product architecture

At the beginning of the study, we surmised that
product architecture influences the cost of rework.
Although we could not find definitive quantitative
evidence of this relationship, we suspect that pat-
terns PA1 and PC1 stem from characteristics of the
product architecture.

Project A has the lowest overall cost of rework of
the four projects (Table 4). The cost of rework after
the design phase is very low, while that cost during
the requirement and specification phase is the high-
est of the four (from PAl) (Figure 14.4). These low
rework costs after the design phase are the most
remarkable feature of project A. We suggest that
the product architecture used in project A influ-
enced this factor. In project A, specification was
described in the form of finite-state machines, and
the specification was transformed into code by previ-
ously determined procedures. Tests were planned
and performed based on the specification document.
Therefore, most product changes were made sing
semiautomated procedures.

Project C, on the other hand, has the highest cost
of rework of the three, excluding project D (Table
4). PC1 suggests the reason for this high rework cost
may be the fact that project C had several addition
or change class defects caused by commission errors,
which we determined are more costly than those
caused by omission errors. The five addition or
change class defects caused by commission errors in

project C required fixes to 1, 2, 3, 4, and 4 modules,
respectively. In project C, a modification to a re-
quirement and specification spread across several
modules, which perhaps indicates a weakness in the
product architecture.

4) Effect of memory constraint

We found that memory constraint causes high cost
of rework. In project D, which had a severe memory
constraint, we saw two patterns that support this.
We found that the addition of some functionality to
the product was extremely expensive (from PDl).
We found that the cost of rework on phases after
implementation was much higher than it was during
the phases prior to implementation (from PD2). We
attribute these two features of project D to its
severe memory constraint.

IV. CONCLUSION

We introduce a framework to measure and analyze
software processes. The framework consists of de-
scriptive models that abstract various aspects of pro-
cess and product, evaluative models that formalize
the analysis criteria, and a set of GQMs that clarify
the relationship between the metrics, the analysis,
and the goals.

In our evaluation, we discovered the importance
of analysis from different viewpoints, because pro-
jects may rate completely differently depending on
the criteria applied. In particular, we found that the
number of defects (representing reliability) does not
correlate to the cost of rework (representing main-
tainability).

In characterizing the projects, we found some
patterns among types of defect, relationship between
defect and cost, and effect of product architecture.
They provide a quantitative basis for recommending
certain process improvement activities with confi-
dence in their effectiveness. Some results suggest
that product architecture influences the software
process, especially in the area of maintainability,
although our analysis did not cover a large enough
sample to prove that relationship quantitatively.

We may have gained some new insight about the
cost of defects caused by omission versus commis-
sion depending upon the time when they are found
in the life cycle. When we considered all logic de-
fects, our results agreed with those of Selby and
Basili (1991). On the other hand, when we consid-
ered only customer-observable defects (which was
our initial measure), our results disagreed. This dif-
ference of approach/findings points out the impor-
tance of clarifying the definition and range of the

32 J. SYSTEMS SOFIWARE
1997; 36:17-32

Y. Mash&o and V. R. Basili

criteria used in any study or discussion of software
issues.

In looking for influential factors, we studied the
basic data using an intuitive pattern-searching tech-
nique. This method was fairly effective but does
allow the possibility of overlooking some important
patterns in the data. An automated pattem-recogui-
tion technique is needed, which would allow us to
find every statistically meaningful pattern in the
data.

ACKNOWLEDGMENTS

We thank Lionel Briand, Christopher Hetmanski for their
careful review and suggestions on an earlier version of this
paper and Jyrki Kontio for his review and suggestions on the
current version.

REFERENCES

Basili, V. R., Software Modeling and Measurement: The
Goal/Question/Metric Paradigm, University of Mary-
land Technical Report. UMIACS-TR-92-96,1992.

Basili, V. R., Katz, E. E., Panhlio-Yap, N. M., Loggia
Ramsey, C., and Chang, S., Characterization of an Ada
Software Development, IEEE Computer Magazine,
53-65 (September 1985).

Basili, V. R., and Perricone, B., Software Errors and
Complexity: An Empirical Investigation, ACM Commu-
nications, 27, No. 1,45-52 (1984).

Basili, V. R., and Rombach, H. D., The TAME Project:
Towards Improvement-Oriented Software Environ-
ments, IEEE Transactions on Software Engineering, SE-
14, No. 6, 758-773 (1988).

Basili, V. R., and Selby, R. W., Jr., Data Collection and
Analysis in Software Research and Management, in

Proceedings of the American Statistical Association and
Biomeasure Society Joint Statistical Meetings (1984).

Basih, V. R., and Weiss, D. M., Evaluation of a Software
Requirements Document by Analysis of Change Data,
in Proceedings of the Fifth International Conference on
Software Engineering, 314-323 (1981).

Basili, V. R., and Weiss, D. M., A Methodology for Col-
lecting Valid Software Engineering Data, IEEE Trans-
actions on Software Engineering, SE-lo, 728-738
(November 1984).

IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software, IEEE/ANSI
Standard 982.2-1988.

Selby, R. W., Jr., and Basili, V. R., Analyzing Error-Prone
System Software, nsactions on Software Engineering,
141-152 (February 1991).

Weiss, D. M., and Basili, V. R., Evaluating Software
Development by Analysis of Changes: Some Data from
the Software Engineering Laboratory, IEEE Tmnsac-
tions on Software Engineering, SE-11, No. 2, 157-168
(1985).

Briand, L. C., Basili, V. R., and Thomas, W. M., A Pattern
Recognition Approach for Software Engineering Data
Analysis, IEEE Transactions on Software Engineering,
SE-19,931-942 (November 1992).

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday,
M. J., Moebus, D. S., Ray, B. K., and Wong, M-Y.,
Orthogonal Defect Classification-A Concept for In-
process Measurement, IEEE Transactions on Software
Engineering, SE-18,943-956 (November 1992).

Ghezzi, C., Jazayeri, M., and Mandrioli, D., Fundamentals
of Software Engineering, Prentice-Hall, Englewood Cliffs,
NJ, 1991.

McGarry, F. E., Results of 15 years of measurement in the
SEL, in Proceedings of the Fifteenth Annual Software
Engineering Workshop, NASA/Goddard Space Flight
Center, November, 1990.

