
Evolving and Packaging Reading Technologies

Victor R. Basili
Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD

Reading is a fundamental technology for achieving
quality software. This paper provides a motivation for
reading as a quality improvement technology, based
upon experiences in the Software Engineering Labora-
tory at NASA Goddard Space Flight Center, and shows
the evolution of our study of reading via a series of
experiments. The experiments range from early read-
ing vs. testing experiments to various Cleanroom ex-
periments that employed reading to the development
of new reading technologies currently under study.
0 1997 by Elsevier Science Inc.

1. INTRODUCTION

Reading is a fundamental technology for achieving
quality software. It is the only analysis technology we
can use throughout the entire life cycle of the soft-
ware development and maintenance processes. And
yet, very little attention has been paid to the tech-
nologies that underlie the reading of software docu-
ments. For example, where is software reading
taught? What technologies have been developed for
software reading? In fact, what is software reading?

During most of our lives, we learned to read
before we learned to write. Reading formed a model
for writing. This was true from our first learning of a
language (reading prectdes writing and provides
simple models for writing) to our study of the great
literature (reading provides us with models of how to
write well). Yet, in the software domain, we never
learned to read, e.g., we learn to write programs in a
programming language, but never how to read them.

We have not developed reading-based models for
writing. For example, we are not conscious of our
audience when we write a requirements document.
How will they read it? What is the difference be-
tween reading a requirements document and read-
ing a code document? We all know that one reads a
novel differently than one reads a text book. We

Address conqondence to victor R Basili, Department of Com-
puter Science /Institute for Advanced Computer Studies, Untie&y
of Maryland, AV WWams Building 115, College Pank, MD 20742

J. SYSTEMS SOFTWARE 1997; 38:3-12
0 1997 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

know that we review a technical paper differently
than we review a newspaper article. But how do we
read a requirements document, a code document, or
a test plan? There are many factors that affect the
way we read.

Let us define some terms so that we understand
what we mean by reading. We differentiate a tech-
nique from a method, from a life cycle model. A
technique is the most primitive. It is an algorithm, a
series of steps producing the desired effect, and
requires skill. A method is a management procedure
for applying techniques, organized by a set of rules
stating how and when to apply and when to stop
applying the technique (entry and exit criteria), when
the technique is appropriate, and how to evaluate it.
We will define a technology as a collection of tech-
niques and methods. A life cycle model is a set of
methods that covers the entire life cycle of a soft-
ware product.

For example, reading by step-wise abstraction
(Linger, et al. 1979) is a technique for assessing
code. Reading by step-wise abstraction requires the
development of personal skills; one gets better with
practice. A code inspection is a method that is
defined around a reading technique, which has a
well defined set of entry and exit criteria and a set of
management supports specifying how and when to
use the technique. Reading by stepwise abstraction
and code inspections together form a technology.
Inspections are embedded in a life cycle model, such
as the Cleanroom development approach, which is
highly dependent on reading techniques and meth-
ods. That is, reading technology is fundamental to
Cleanroom development.

In what follows, we will discuss the evolution and
packaging of reading as a technology in the Software
Engineering Laboratory (SEL) (Basili, et al. 1992;
Basili, et al. 1994) via a series of experiments from
some early reading vs. testing technique experi-
ments, to various Cleanroom experiments, to the
development of new reading techniques currently
under study.

0164-1212/97/$17.00
PII SO164-1212(97)00065-4

4 J. SYSTEMS SOFTWARE
1997; 38:3-12

In the SEL, we have been working with a set of
experimental learning approaches: the Quality Im-
provement Paradigm, the Goal Question Metric
Paradigm, the Experience Factory Organization, and
various experimental frameworks to evolve our
knowledge and the effectiveness of various life cycle
models, methods, techniques, and tools (Basili, 1985;
Basili and Weiss 1984; Basili and Rombach 1988;
Basili 1989). All of these approaches have been
applied to the series of experiments we’ve conducted
at the University of Maryland and at NASA to learn
about, evaluate, and evolve reading as a technology.

2. READING STUDIES

Figure 1 provides a characterization of various types
of experiments we have run in the SEL. They define
different scopes of evaluation representing different
levels of confidence in the results. They are charac-
terized by the number of teams replicating each
project and the number of different projects ana-
lyzed yielding four different experimental treat-
ments: blocked subject-project, replicated project,
multi-project variation, and single project case study.

The approaches vary in cost, level of confidence in
the results, insights gained, and the balance between
quantitative and qualitative research methods.
Clearly, an analysis of several replicated projects
costs more money but provides a better basis for
quantitative analysis and can generate stronger sta-
tistical confidence in the conclusions. Unfortunately,
since a blocked subject-project experiment is so ex-
pensive, the projects studied tend to be small. To
increase the size of the projects, keep the costs
reasonable, and allow us to better simulate the ef-
fects of the treatment variables in a realistic envi-
ronment, we can study very large single project case
studies and even multi-project studies if the right
environment can be found. These larger projects

V. R. Basili

tend to involve more qualitative analysis along with
some more primitive quantitative analysis.

Because of the desire for statistical confidence in
the results, the problems with scale up, and the need
to test in a realistic environment, one approach to
experimentation is to choose one of the multiple
team treatments (a controlled experiment) to
demonstrate feasibility (statistical significance) in the
small project, and then to try a case study or multi-
project variation to analyze whether the results scale
up in a realistic environment-a major problem in
studying the effects of techniques, methods and life
cycle models.

2.1 Reading by Step-wise Abstraction

In order to improve the quality of our software
products at NASA, we have studied various ap-
proaches. One area of interest was to understand
the relationship between reading and testing in our
environment. Early experiments showed very little
difference between reading and testing (Hetzel1972;
Myers 1978). But reading in these studies was simply
reading, without a technological base. Thus we at-
tempted to study the differences between various
specific technology based approaches. Our goal was
to analyze coa!e reading, functional testing and struc-
tural testing to evaluate and compare them with
respect to their effect on fault a!etection effectiveness,
fault detection cost and classes of faults detected from
the viewpoint of the researchers (Basili and Selby
1987). The study was conducted in the SEL, using
three different programs: a text formatter, a plotter,
and a small database. The programs were seeded
with software faults, (9,6, and 12 faults respectively),
and ranged in size from 145 to 365 LOC. The
experimental design was a blocked subject-project,
using a fractional factorial design. There were 32
subjects.

Scopes of Evaluation

t Projects

Figure 1. Classes of studies.

Evolving and Packaging Reading Technologies J. SYSTEMS SOFTWARE 5
1997; 38:3-12

Specific techniques were used for each of the
three approaches studied. Code reading was done by
step-wise abstraction, i.e., reading a sequence of
statements and abstracting the function they com-
pute and repeating the process until the function of
the entire program has been abstracted and can be
compared with the specification. Functional testing
was performed using boundary value, equivalence
partition testing, i.e., dividing the requirements into
valid and invalid equivalence classes and making up
tests that check the boundaries of the classes. Struc-
tural testing was performed to achieve 100% state-
ment coverage, i.e., making up a set of tests to
guarantee that 100% of the statements in the pro-
gram have been executed.

As a blocked subject-project study, each subject
used each technique and tested each program. The
results were that code reading found more faults
than functional testing, and functional testing found
more faults than structural testing. Also, code read-
ing found more faults per unit of time spent than
either of the other two techniques. Different tech-
niques seemed to be more effective for different
classes of faults. For example, code reading was
more effective for interface faults and functional
testing more effective for control flow faults.

A second set of conclusions, based upon the per-
ception of the readers and testers, was that code
readers were better able to assess the actual quality
of the code that they analyzed than the testers. And
in fact, the structural testers were better able to
assess the actual quality of the code they analyzed
than the functional testers. That is, the code readers
felt they only found about half the faults (and they
were right), where the functional testers felt that
had found about all the faults (and they were wrong).
Also, after the completion of the study, over 90% of
the participants thought functional testing worked
best. This was a case where perception or intuition
was clearly wrong.

Based upon this study, reading was implemented
as part of the SEL development process. How-
ever, much to our surprise, reading appeared to have
very little effect on reducing defects. It should be
noted that the SEL keeps baselines of defect rates
for project sets. This leads us to two possible hy-
potheses:

Hypothesis 1: People did not read as well as they
should have because they believed
that testing would make up for their
mistakes.

To test this frrst hypothesis, we ran an experiment
that showed that if a developer reads and cannot

test they do a more effective job of reading than if
they read and know they can test later. This sup-
ported hypothesis 1.

Hypothesis 2: There is a confusion between reading
as a technique and the method in
which it is embedded, e.g., inspec-
tions.

This addresses the concern that we often use a
reading method (e.g., inspections or walk-through)
but do not often have a reading technique (e.g.,
reading by step-wise abstraction) sufficiently defined
within the method. To some extent, this might ex-
plain the success of reading in this experiment (Basili
and Selby 1987) over the studies by Hetzel (Hetzel
1972) and Myers (Myers 1978).

Thus we derived the following conclusions from
the studies described thus far:

-Reading using a particular technique is more ef-
fective and more cost effective than specific test-
ing techniques, i.e., the reading technique is im-
portant. However, different approaches may be
effective for different types of defects.

-Readers need to be motivated to read better, i.e.,
the ability to read a document effectively seems
to be related to the readers’ belief that their
reading of the document is important.

-We may need to better support the reading pro-
cess, i.e., the reading technique may be different
from the reading method.

2.2 The Cleanroom Approach

The Cleanroom approach, as proposed by Harlan
Mills (Cur&, et al., 1986) addressed the above issues
by providing a particular reading technique (step-
wise abstraction) and a motivation for reading (the
developer cannot test). To study the effects of the
approach and reduce the risk of applying it in the
SEL, we ran a controlled experiment at the Univer-
sity of Maryland.

The goal of this study was to analyze the Cleun-
room process in order to evaluate and compare it to a
non-Cleanroom process with respect to the eficts
on the process, product and developers from the point
of view of the researchers (Selby, et al., 1987). This
study was conducted using upper division and gradu-
ate students at the University of Maryland. The
problem studied was an electronic message system
of about 1500 LOC. The experimental design was a
replicated project using 15 three-person teams (10
used Cleanroom). They were allowed 3 to 5 test
submissions to an independent tester. We collected

6 J. SYSTEMS SOFTWARE
1997; 38~3-12

data on the participants’ background, attitudes, on-
line activities, and testing results.

The major results were:

-With regard to process, the Cleanroom develop-
ers (11 felt they more effectively applied off-line
review techniques, while others focused on func-
tional testing, (2) spent less time on-line and used
fewer computer resources, and (3) tended to make
all their scheduled deliveries.

-With regard to the delivered product, the Clean-
room products tended to have the following static
properties: less dense complexity, higher percent-
age of assignment statements, more global data,
more comments; and the following operational
properties: the products more completely met the
requirements and a higher percentage of test
cases succeeded.

-With regard to the effect on the developers, most
Cleanroom developers missed program execution,
modified their development style, but said they
would use the Cleanroom approach again.

2.3 Cleanroom in the SEL

Based upon this success, we decided to try the
Cleanroom approach in the SEL (Basili and Green,
1994). The study goal was to analyze the Cleanroom
process in order to evaluate and compare it to the
standard SEL development process with respect to
the effects on the effort distribution, cost, and reliabil-
ity from the point of view of the SEL organization.
This was the basis for a single-project case study in
which Cleanroom was applied to a 40 KLOC ground

V. R. Basili

support system. To evaluate and integrate Clean-
room into the SEL, we used the Quality Improve-
ment Paradigm to set up our learning process. We
define the six steps of the QIP as they apply to the
introduction of Cleanroom into the SEL:

Characterize: Describe the product and its environ-
ment. For example, what are the relevant models,
baselines and measures, what are the existing
processes, what is the standard cost, relative effort
for activities, reliability, what are the high risk
areas? (See the sample measures and baselines in
Figure 2).

Set goak Define the goals to be achieved. For exam-
ple, what are the expectations, relative to the
baselines, what do we hope to learn or gain, how
will Cleanroom perform with respect to changing
requirements? (See the sample expectations in
Figure 2).

Choose process: Select the best mix of methods and
techniques to achieve the goals relative to the
environment. That is, how should the Cleanroom
process be modified and tailored relative to the
environment? For example, formal methods are
hard to apply and require skill; we may have
insufficient data to measure reliability; therefore,
we might allow back-out options for unit testing
certain modules.

Execute: Collect and analyze data based upon the
goals, making changes to the process in real time.

Analyze: Try to characterize and understand what
happened relative to the goals; write lessons
learned.

-we
Measures

sample
BaselitW

Sample
EXjlWWi0I-l

Incroaaod Mgn K duo

PROCESS
w Pr*

tooqh8bonPew
mviow Pmoou

7 erron mu KDLOC
Doommed ofror rm*

I Errorooum I I

Figure 2. Sample measures, baselines, and expectations.

Evolving and Packaging Reading Technologies

Package: Modify the process for future use.

There were many lessons learned during this first
application of the Cleanroom approach in the SEL.
However, the most relevant to reading were that the
failure rate during test was reduced by 25% and
productivity increased by about 30%, mostly due to
fact that there was a reduction in the rework effort,
i.e., 95% as opposed to 58% of the faults took less
than 1 hour to fix. About 50% of code time was
spent reading, as opposed to the normal 10%. All
code was read by 2 developers. However, even though
the developers were taught reading by step-wise
abstraction for coding reading, only 26% of the
faults were found by both readers. This implied to us
that the reading technique was not applied as effec-
tively as it should have been, as we expected a more
consistent reading result.

During this case study, problems, as specified by
the users, were recorded and the process was modi-
fied in real time. As well, notes were made as to how
to improve the process for its next application. For
example, better training and skill development was
needed for the methods and techniques, better
mechanisms were needed to upload the code to the
testers and testers needed to be able to add require-
ments to help them analyze output.

Based upon the success of the first Cleanroom
case study, we began to define new studies with the
goal of applying the reading technique more effec-
tively. A second and third Cleanroom project were
initiated. Changes to the process involved better
training, a solution to the uploading problem, and
allowing testers to add requirements. The project
leaders for the first project became process modelers
for the next two and we began to generate the
evolved version of the SEL Cleanroom Process
Model. Thus, experimentally, we moved from a case
study to a multi-project analysis study.

J. SYSTEMS SOFTWARE 7
1997; 38:3-12

Figure 3 gives an overview of the projects studied
to date. Figure 4 gives the effects of Cleanroom on
error rate and productivity. Like the first Cleanroom
project, the second was done in-house at NASA, and
was successful with regard to reducing error rate but
was not as productive as the first. The third project
was done totally by the contractor. It appeared to be
less successful on both counts, partly because it was
our first experience with a project of that size (160
KLOC) and partly because it was done off site with
less access to support. Based upon these projects,
other modifications were made to the method, e.g.,
allowing a clean compile before reading.

A fourth Cleanroom project was recently com-
pleted. Again, like the third, it was large and totally
developed by the contractor. As can be seen in
Figure 4, the results here were very positive.

Cleanroom has been successful in the SEL. Al-
though there is still room for improvement in read-
ing and abstracting code formally, a more major
concern is the lack of techniques for reading docu-
ments other than code, e.g., requirements, design,
test plans.

This has generated a motivation for the continual
evolution of reading techniques in the SEL, both
inside and outside the Cleanroom life cycle model.
Specific emphasis is on improving reading technol-
ogy for requirements and design documents.

2.4 Scenario-Based Reading

The experiments described above convinced us that
reading is a key, if not the key technical activity for
verifying and validating software work products.
However, there has been little research focus on the
development of reading techniques, with the possi-
ble exception of reading by step-wise abstraction, as
developed by Harlan Mills.

Figure 3. Multi-project analysis study of cleanroom in the SEL.

8 J. SYSTEMS SOFTWARE
1997; 38:3-12

V. R. Basili

(per K DLOC)

Errors

(DLOC per day)

Productivity

q SEL Baseline q 1st Cleanroom q 2nd Cleanroom q 3rd Cleanroom q 4th Cleanroom

Figure 4. Effects of Cleanroom on error rate and productivity.

The ultimate goal here is to understand the best
way to read for a particular set of conditions. That
is, we are not only interested in how to develop
techniques for reading such documents as require-
ments documents, but under what conditions are
each of the techniques most effective and how might
they be combined in a method, such as inspections,
to provide a more effective reading technology for
the particular problem and environment.

The idea is to provide a flexible framework for
defining the reading technology so that the definer
of the technology for a particular project has the
appropriate information for selecting the right tech-
niques and method characteristics. Thus, the process
definition may change depending on the project
characteristics. For example, if a higher number of
omission faults are expected, we might emphasize a
traceability reading approach embedded in design
inspections; when embedding traceability reading in
design inspections, we might make sure a traceabil-
ity matrix exists.

As stated in the introduction, we believe there are
many factors that affect the way a person reads, e.g.,
the reviewer’s role, the reading goals, the work prod-
uct. Based upon these studies, we also believe that
techniques can be developed that will allow us to
better define how we should read, and that using
these techniques, effectively embedded in the appro-
priate methods, can improve the effects of reading.
For example, reading techniques for end-users read-
ing a software requirements document should be
different than the reading techniques for software
testers reading a requirements document; reading
techniques for developers reading for interface faults
should be different than reading techniques for de-
velopers reading for missing initialization. Also, if
we know that reading by step-wise refinement is

more effective for interface faults, and, based upon
past history, we anticipate a large number of inter-
face faults for a particular project, then we can
assign more than one reader to use step-wise ab-
straction reading in our inspection team.

Thus we need to improve the reading of all kinds
of documents from various points of view. To do
this, we need to more deeply understand the rela-
tionship between techniques and methods and the
dimensions of both. That is, what are the things we
can vary when dealing with a technique? For exam-
ple, consider the following dimensions of a reading
technique:

Input object: any document, e.g., requirements, de-
sign, code, test plan, etc.

Output object: a set of defects or anomalies

Technique: some specific procedure, e.g., sequential
reading, path analysis, step-wise abstraction, etc.

Formality: the degree of rigor, e.g., proof, correct-
ness demonstration, etc.

Goals: the purpose for reading, e.g., fault detection,
traceability, performance, understanding reuse,
etc.

Method: the method the technique is embedded in,
e.g., walk-through, inspections, reviews, etc.

Perspective: the role of the reader, e.g., user, de-
signer, tester, maintainer, etc.

Context: anticipated problems, application domain,
organization, etc.

Product qualities: correctness, reliability, efficiency,
portability, etc.

Process qualities: process conformance, integration
with other processes, etc.

When defining a technique, what are the values of
the various dimensions? We have been developing

Evolving and Packaging Reading Technologies J. SYSTEMS SOFTWARE 9
1997; 38:3-U

and studying reading techniques that take into ac-
count the various dimensions, as well as the histori-
cal data of the environment where the technique will
be applied. The goal is to define a set of reading
techniques that can be tailored to the document
being read and the goals of the organization for that
document, and that are usable in existing methods,
such as inspections or reviews.

To this end, we have been working on an ap-
proach to generating families of reading techniques,
based upon the values of different dimensional at-
tributes. At the top level, each family of techniques
is based upon combining two primary dimensions,
e.g., the goal and the perspective, to generate a
procedure, or operational scenario (Figure 5). The
operational scenario requires the reader to (1) cre-
ate an abstraction (based on a model building or
abstraction dimension) of the product, and (2) an-
swer questions (based on an analysis dimension)
while building that abstraction. Each reading tech-
nique in the family can be based upon a different
abstraction and question set.

Each family (and thus each technique) is tailored
based upon other dimensions as well, e.g., the input
dimension, the context dimension. So, based upon
the input dimension, a family of techniques can be
instantiated for a particular document (e.g., require-
ments, design) and notation (e.g., English text, a
formal notation) in which the document is written.
Based upon the context dimension, a family of tech-
niques can be tailored to react appropriately to the
project and environment characteristics. The choice
of primary, and secondary dimensions, as well as
abstractions and the types of questions asked de-
pend on the organization’s needs and concerns.

Thus each technique within the family is (1) tai-
lorable, based upon the values of various dimen-
sions, (2) detailed, in that it provides the reader a
well-defined set of steps to follow, (3) specific, in

Figure 5. Building focused tailored read-
ing techniques.

that the reader has a particular purpose or goal for
reading the document and the procedures support
that goal, (4) focused, in that it provides a particular
coverage of the document, and a combination of
techniques in the family provides coverage of the
entire document, (5) studied empirically to deter-
mine if and when it is most effective.

So far, two different families of reading tech-
niques have been defined for requirements docu-
ments: defect-based reading and perspective-based
reading.

Perspective-based reading focuses on different
product customer perspectives, e.g., reading from
the perspective of the software designer, the tester,
the end-user, the maintainer, the hardware engi-
neer, representing the perspective dimension. The
analysis questions were generated by focusing pre-
dominantly on various requirements type errors, e.g.,
incorrect fact, omission, ambiguity, and inconsis-
tency (Basili and Weiss 1980, representing the goal
dimension.

Defect-based reading focuses on a model of the
data and functions of the requirements in a form of
state machine notation. The different model views
were based upon focusing on a variation of the
defect classes given above: data type inconsistency,
incorrect functions, an ambiguity or missing infor-
mation, representing the goal dimension. The analy-
sis questions were generated by combining/abstract-
ing a set of questions that were used in checklists for
evaluating the correctness and reliability of require-
ments documents, representing an existing tech-
nique dimension.

To provide a little more detail into the approach
for generating reading techniques, consider the fol-
lowing example of the generation of test-based read-
ing, one member of the family of perspective-based
reading. The object is the requirements document,
the model-base is a testing technique, (e.g., equiva-

enalysle dimension model bulldlng dlmenslon

generates questions

ScedO

procedure for building
and endyzlng models

10 J. SYSTEMS SOFIWARE
1997; 38~3-12

lence partitioning, boundary-value testing), and the
analysis dimensions are the correctness, complete-
ness, consistency, and unambiguity of the require-
ments.

The operational scenario of reading procedure is
defined as follows: for each requirement, make up a
test or set of tests that will allow you to ensure that
the implementation satisfies the requirement. Use
equivalence partitioning, boundary-value testing cri-
teria to make up the test suite.

The second dimension is based upon defect classes,
specifically incorrect fact, omission, ambiguity, and
inconsistency. These generated the following ques-
tions, which the reader should ask while building the
test plan model:

(a)

O-9

(cl

Cd>

(e)

Do I have all the information necessary to divide
the requirement into a valid equivalence class
and invalid equivalence classes? Can I make up
reasonable test cases for each based upon the
criteria?
Can I be sure that the test I generated will yield
the correct.value in the correct units?
Does the requirement make sense from what I
know about the application and from what is
specified in the overview?
Are there other interpretations of this require-
ment that the implementor might make based
upon the way the requirement is defined?
Is there another requirement for which the
equivalence class is defined differently, i.e., in
which the test case you generate should give a
contradictory response for the other equivalence
class?

The model for developer-based reading might be
to perform a high level design using structured anal-
ysis or object oriented design. The model for the
use-based reading might be to develop a user’s man-
ual. Although in each case the questions are derived
from trying to identify omission, incorrect facts, etc.,
the opportunities for such discoveries, and thus the
questions, will vary, depending on the model used.

Specific members of each of the families have
been studied experimentally. In the defect-based
reading study, the goal was to analyze defect-based
reading, ad hoc reading and checklist-based reading in
order to evaluate and compare them with respect to
their eflect on fault detection efiectiveness in the con-
text of an inspection team from the viewpoint of the
researcher. The three defect-based reading tech-
niques stated above were applied. The study was
applied using graduate students at the University of
Maryland. The requirements documents were writ-
ten in the SCR notation (Henninger 1980). They

V. R. Basili

were a Water Level Monitoring System and a Cruise
Control System. The experimental design is a blocked
subject-project: Partial factorial design, replicated
twice with a total of 48 subjects (Porter, et al., 1995).

Major results were that (1) the defect-based read-
ers performed better than ad hoc and checklist
readers with an improvement in defect detection
rate of about 35%, (2) the defect-based reading
procedures helped reviewers focus on specific fault
classes but were no less effective at detecting other
faults, and (3) checklist reading was no more effec-
tive than ad hoc reading.

In the perspective-based reading study, the goal
was to analyze perspective-based reading and NASA’s
current reading technique in order to evaluate and
compare them with respect to their effect on fault
detection effectiveness in the context of an inspection
team from the viewpoint of the researcher and the
SEL. Three perspective-based reading techniques
(test-based, developer-based, and use-based reading)
were defined and studied. Studies have been per-
formed in the SEL environment using generic re-
quirements documents written in English (ATM ma-
chine, Parking Garage) and NASA type functional
specifications (two ground support AGSS sub-sys-
tems). The experimental design is again a blocked
subject-project using a partial factorial design. It has
been applied twice, with a total of 25 subjects (Basili,
et al., 1996).

Major results are that perspective-based reading
(1) is effective for generic documents both at the
individual and team level, i.e., taking each technique
in the family individually as compared with the stan-
dard approach, and combining the three perspec-
tives for full coverage against a team of standard
readers, (2) catches different types of defects de-
pending on the perspective, (3) is effective for the
NASA documents at the team level. It was felt that
the techniques could be better tailored for the NASA
style document to improve individual scores.

We will continue to evolve and study various
families and various techniques within the families.
The first series of experiments described above is
aimed at discovering if scenario-based reading is
more effective than current practices. Early results
are promising. A second series will be used to dis-
cover under which circumstances each of the various
scenario-based reading techniques, or families of
techniques, is most effective.

We hope to replicate these experiments in differ-
ent environments, replacing the NASA documents
with documents from other organizations. We also
hope to run a case study at NASA to better under-
stand how to tailor the techniques to the documents.

Evolving and Packaging Reading Technologies

Figure 6. Series of studies.

J. SYSTEMS SOFTWARE
1997; 38:3- 12

Scopes of Evaluation

We will continue to develop operational scenarios
for other document types, e.g., design document, and
test their effectiveness in experiments. We will even-
tually consider tool support for the techniques de-
veloped.

3. CONCLUSION

In our attempt to better understand the effects of
software reading techniques, we have run the experi-
mental gamut from blocked subject-project experi-
ments (reading vs. testing) to replicated projects
(University of Maryland Cleanroom study) to a case
study (the first SEL Cleanroom study) to multi-pro-
ject variation (the set of SEL Cleanroom projects)
and now back to blocked subject-project experi-
ments (for scenario-based reading). (See Figure 6).

As we learn, as we move through each cycle of the
Quality Improvement Paradigm, the level of sophis-
tication of our reading goals is maturing. Our ability
to understand things about reading is evolving. A
pattern of knowledge is being built from a series of
experiments.

Various groups at different sites are already repli-
cating some of the experiments. Most of these are
members of ISERN, the International Software En-
gineering Research Network, whose goal is specifi-
cally to perform and share the results of empirical
studies.

ACKNOWLEDGMENTS

I would like to thank Forrest Shull and Carolyn Seaman for
reviewing the drafts of this paper. This work was supported
in part by NASA grant NSG-5123, UMIACS, NSF grant
01-5-24845.

REFERENCES

Basili, V. R., Green, S., Laitenberger, 0. U., Lanubile, F.,
Shull, F. Sorumgaard, S. and Zelkowitz, The Empirical

Investigation of Perspective-Based Reading. Journal of
Empirical Software Engineering, Volume 1, Issue 2 (1996).

Basili, V. R. and Green, S., Software Process Evolution at
the SEL. IEEE Sofrware, pp. 58-66 (1994).

Basili, V. R., Zelkowitz, M. V., McGarry, F., Pajerski, R.,
Page, J., Waligora, S., SEL’S Software Process-Improve-
ment Program. IEEE Software, pp. 83-87 (1994).

Basili, V. R., Zelkowitz, M. V., McGarry, F., Pajerski, R.,
Page, J., Waligora, S., SEL’S Software Process-Improve-
ment Program. IEEE Software, pp. 83-87 (1994).

Basili, V. R., Caldiera, G., McGarry, F., Pajersky, R., Page,
G., Waligora, S., The Software Engineering Laboratory
-An Operational Software Experience Factory, 14th
International Conference on Software Engineering
(1992).

Basili, V. R., Software Development: A Paradigm for the
Future, COMPSAC ‘89, Orlando, Florida, pp. 471-485
(1989).

Basili, V. R., and Rombach, H. D., The TAME Project:
Towards Improvement-Oriented Software Environment.
IEEE Transactions on Sofbvare Engineering, vol. 14, no. 6
(1988).

Basili, V. R., and Selby, R., Comparing the Effectiveness
of Software Testing Strategies. IEEE Transactions on
Software Engineering, pp. 1278-1296 (1987).

Basili, V. R., Quantitative Evaluation of Software
Methodology, Keynote Address, First Pan Pacific Com-
puter Conference, Melbourne, Australia (1985).

Basili, V. R. and Weiss, D. M., A Methodology for Collect-
ing Valid Software Engineering Data. IEEE Transac-
tions on Software Engineering, pp. 728-738 (1984).

BasiIi, V. R., Weiss, D. M., Evaluation of a Software
Requirements Document by Analysis of Change Data,
Proceedings of the Fifth International Conference on
Software Engineering, pp. 314-323 (1981).

Currit, P. A., Dyer, M. and Mills, H. D., Certifying the
Reliability of Software. IEEE Transactions on Software
Engineering, vol. SE-12, pp. 3-11 (1986).

Henninger, K. L., Specifying Software Requirements for
Complex Systems: New Techniques and Their Applica-
tion. IEEE TSE, vol. SE-6, no. 1, pp. 2-13 (1980).

Linger, R. C., Mills, H. D. and Witt, B. L, Structured

12 J. SYSTEMS SOFTWARE
1997; 38:3-12

Programming: Theory and Practice. IEEE TSE, Read-
ing, MA: Addison-Wesley (1979).

Myers, G. J., A Controlled Experiment in Program Testing
and Code Walkthrough Inspections. Communications
ACM, pp. 760-768 (1978).

Hetzel, W. C. An Experimental Analysis of Program Veri-
fication Problem Solving Capabilities as They Relate to
Programmer Efficiency. Computer Personnel, vol. 3, pp.
lo-15 (1972).

V. R. Basili

Porter, A. A., Votta, L. G. and Basili, V. R., Comparing
Detection Methods for Sofhvare Requirements Inspec-
tions: A Replicated Bxperiment. IEEE Transactions on
Software Engineering, vol. 21, no. 6, pp. 563-575 (19951.

Selby, R., Basili, V. R. and Baker, T., Cleanroom Software
Development: An Empirical Evaluation. IEEE Transac-
tions on Sofrware Engineering, pp. 1027-1037 (1987).

