
User Interface Evaluation and
Empirically-Based Evolution of a

Prototype Experience Management Tool
Carolyn B. Seaman, Manoel G. Mendonça, Victor R. Basili, Fellow, IEEE, and Yong-Mi Kim

Abstract—Experience management refers to the capture, structuring, analysis, synthesis, and reuse of an organization’s experience

in the form of documents, plans, templates, processes, data, etc. The problem of managing experience effectively is not unique to

software development, but the field of software engineering has had a high-level approach to this problem for some time. The

Experience Factory is an organizational infrastructure whose goal is to produce, store, and reuse experiences gained in a software

development organization [6], [7], [8]. This paper describes The Q-Labs Experience Management System (Q-Labs EMS), which is

based on the Experience Factory concept and was developed for use in a multinational software engineering consultancy [31]. A

critical aspect of the Q-Labs EMS project is its emphasis on empirical evaluation as a major driver of its development and evolution.

The initial prototype requirements were grounded in the organizational needs and vision of Q-Labs, as were the goals and evaluation

criteria later used to evaluate the prototype. However, the Q-Labs EMS architecture, data model, and user interface were designed to

evolve, based on evolving user needs. This paper describes this approach, including the evaluation that was conducted of the initial

prototype and its implications for the further development of systems to support software experience management.

Index Terms—Experience management, knowledge management, experience reuse, user interface evaluation, empirical study.

�

1 INTRODUCTION

SOFTWARE development organizations in general strive to
develop higher quality systems at a lower cost. Yet the

processes used to develop such software are still very
primitive in the sense that each new development team
has to relearn the mistakes of its predecessors. The reuse
of an organizations’ own products, processes, and
experience is a feasible solution to this problem. But,
implementation of the idea, in most cases, has not gone
beyond reuse of small-scale code components in very
specific, well-defined, situations. True learning within a
software development organization requires that organi-
zational experiences, both technological and social, be
captured, structured, searchable, analyzed, synthesized,
made accessible, and maintained, so that members of the
organization can learn from them and apply them to new

problems. In other words, experience must be managed.
This requires an experience management framework of
concepts, a scheme for structuring the experience, proce-
dures for the day-to-day management of the experience,
and tools to support all of this.

The goals of experience management include such
abstract notions as improving development processes and
making development work more productive and satisfying.
But, there are also a number of more practical and concrete
reasons for pursuing it. The problems of employee turnover
are not unique to software development, but most software
development organizations have experienced the painful
loss of a critical member, along with their valuable, usually
undocumented experience. The other side of that coin is the
frustratingly long time most new employees take to become
productive. Development organizations often also include a
number of experts on various programming languages,
platforms, or systems. Even if such experts remain in the
organization, they quickly become overwhelmed with
requests for advice and information (and helping new
employees come up to speed), in addition to their regular
work. Reinvention, too, is a huge waste of resources in most
organizations as employees spend hours re-creating some-
thing that already existed but was unknown or inaccessible.
Mistakes are also often unnecessarily reinvented.

An obvious area to search for solutions to this problem is
knowledge management. This area has made significant
contributions in terms of terminology and conceptual
frameworks with which to reason about experience man-
agement [28], [34], [44]. In addition, numerous systems have
been developed to support knowledge management in
organizations and these systems provide innovative ideas
about how organizations can leverage their knowledge
assets [14], [28], [29], [30].

838 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

. C.B. Seaman is with the Department of Information Systems, University of
Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250,
and is also with the Fraunhofer Center for Experimental Software
Engineering—Maryland, University of Maryland, 4321 Hartwick Rd.,
Suite 500, College Park, MD 20742-3290. E-mail: cseaman@umbc.edu.

. M.G. Mendonça is with the Computer Networks Research Group
(NUPERC), Salvador University (UNIFACS), Av. Cardeal da Silva 747,
Salvador, Ba, Brazil, 40220-141. E-mail: mgmn@unifacs.br.

. V. Basili is with the Department of Computer Science, University of
Maryland College Park, A.V. Williams Building, College Park, MD 20742,
and is also with the Fraunhofer Center for Experimental Software
Engineering—Maryland, University of Maryland, 4321 Hartwick Rd.,
Suite 500, College Park, MD 20742-3290. E-mail: basili@cs.umd.edu.

. Y.-M. Kim is with the School of Information, University of Michigan, 550
E. University Ave., Ann Arbor, MI 48109.
E-mail: kimym@si.umich.edu.

Manuscript received 20May 2002; revised 1 Apr. 2003; accepted 14May 2003.
Recommended for acceptance by M. Shepperd.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 116579.

0098-5589/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

Many of the questions we have encountered in our work
on experience management in the software industry,
however, must be explored experimentally. That is, the
answers to such questions in a given context are best found
by deploying well-grounded solutions, carefully monitor-
ing their effects, doing a thorough evaluation that takes into
account technical, organizational, and social factors, and
then evolving the system to reflect feedback from the user
organization. This type of evaluation can also be done on a
small scale, by evaluating pieces of the whole solution early
in the planning phase. Such careful evaluations and
feedback seem to be lacking in the knowledge management
literature, where evaluation tends to be sweeping and done
only after a full-blown system is operational and deployed.

This paper reports on an effort to empirically derive a
solution to the experience management problem and then
experimentally evolve it. The prototype system described
here, called the Q-Labs Experience Management System (or
the Q-Labs EMS), was designed to support experience
management in a multinational software improvement
consultancy called Q-Labs. Q-Labs specializes in helping
its clients improve their software engineering practices by
implementing state-of-the-art technologies in their software
development organizations. Q-Labs has helped many of its
clients implement some of the principles of the Experience
Factory concept, an approach to experience management in
a software development organization [6], [7], [8], described
in more detail in Section 2.

Our system development and evolution approach is
aimed at instantiating and evolving a system that is highly
dependent upon evolving through use. Throughout, we
employ experimentation, by:

1. carefully defining the problem and associated re-
search questions (through gathering data on organi-
zational goals, needs, preferences, and processes),

2. creating a set of evaluation criteria (that spells out
the empirical procedures to be followed to carry out
the evaluation),

3. building an initial (possibly partial) solution
grounded in empirically gathered information on
the organization’s specific needs and based on a
flexible component independent architecture,

4. carefully evaluating the effect of the initial solution,
and

5. preparing for continuous evolution of the entire
experience management system.

The remainder of the paper is organized around these
steps. This work laid the groundwork for what is now a
very active line of research, occupying several different
projects being carried out by the Fraunhofer Center-Mary-
land and its research and industrial partners.

Section 2 describes the underlying concepts and previous
research upon which our work is based. Section 3 describes
how Step 1 of our development and evolution approach
was carried out, resulting in the initial set of high-level
requirements and open research questions. Section 4 briefly
discusses the chief evaluation criteria (Step 2), usability and
flexibility, that drove the evaluation of the first prototype.
Section 5 presents the initial prototype, whose goal was to
instantiate the requirements into a flexible system that can

change and evolve as requirements become clearer or even
change. This represents Step 3 of our approach as applied at
Q-Labs. Section 6 offers the first evaluation and feedback for
evolving the requirements (Step 4). The intention is that the
evaluation process would become part of the regular use of
the system so it may continue to evolve to meet the needs of
the users and the organization. Finally, Section 7 offers
some insight into how this process set the stage for
subsequent evolution of the EMS prototype (Step 5).

2 BACKGROUND

This section discusses some of the underlying concepts
behind the Q-Labs EMS and places it in the state of the art.

2.1 Knowledge Management

Tiwana [44] defines knowledge management (KM) as “the
management of organizational knowledge for creating
business value and generating a competitive advantage.”
Other definitions [26] enumerate the various activities that
comprise KM, including building, renewing, formalizing,
making accessible, and applying knowledge for improving
the performance of the organization.

The KM literature generally divides knowledge into
explicit knowledge (knowledge that is or can be explicitly
represented) and tacit knowledge (knowledge that lies
inside the minds of individuals [34]). Our work deals
strictly with explicit knowledge. The process of knowledge
externalization (transforming tacit knowledge into explicit
knowledge), while very important, is outside our scope.
Instead, our work aims to support knowledge internaliza-
tion, i.e., helping people to absorb explicit knowledge [34].

Tiwana proposes a seven-layer model describing the
different types of technology components necessary to
support KM in an organization [44]. These layers are the
user interface layer, the access and authentication layer, the
collaborative intelligence and filtering layer, the application
layer, the transport layer, the middleware and legacy
integration layer, and the repositories. Lindvall et al. (and
Lawton [25]) also propose a seven-layer model [28]. These
layers are the business application layer, personalized
knowledge gateway layer, KM services layer, organiza-
tional taxonomy layer, document and content management
layer, low-level IT infrastructure layer, and information and
knowledge sources layer. Although different on some
aspects, the Lindvall-Lawton and Tiwana models are very
similar in many important aspects. They both state that KM
should be supported by an integrated collection of
technologies for authoring, indexing, classifying, storing,
and retrieving information, as well as for collaboration and
application of knowledge. A friendly front-end and a robust
back-end are basic requirements for knowledge manage-
ment tools. The Q-Labs EMS includes elements of all seven
of these layers. However, it does not intend to be a
comprehensive system. It focuses on the use of information
visualization to foster experience internalization. It does not
intend to support workflow, to allow collaborative work, or
to capture expert reasoning, all of which are other
important enabling technologies for knowledge manage-
ment [14], [28].

SEAMAN ET AL.: USER INTERFACE EVALUATION AND EMPIRICALLY-BASED EVOLUTION OF A PROTOTYPE EXPERIENCE MANAGEMENT... 839

Search strategies are also an important issue in designing
and integrating a KM infrastructure. Tiwana [44] describes
four general types of searching: metasearching (based on
broad categories), hierarchical searching (based on increas-
ingly more specific categories), attribute searching, and
content searching. These four categories can be combined in
the same system. The Q-Labs EMS uses a type of attribute
searching, but the search interface provided for manipulat-
ing attribute values is innovative, highly user-friendly, and
lends itself to information visualization and knowledge
internalization. The attributes chosen for use in searches
generally fall into the categories of activities, domain, form,
type, products and services, time, and location. Taxonomies
are defined by classification managers or librarians and can
be modified or expanded as needed. Also, in the Q-Labs
EMS, packages are categorized into broad “package types,”
each of which has its own set of attributes tailored to the
types of artifacts (e.g., documents, people, etc.) in the
package type. The use of attribute searching is highly
flexible and can be adapted to support many different
underlying paradigms, including case-based reasoning
(CBR), which is used to implement a facet-based approach
[35] to classify and search for experience packages [43]. The
attribute searching paradigm that we use is simply a more
general form of facet-based searching.

One final distinction is between “push” and “pull”
technologies, either (or both) of which can be utilized by a
KM infrastructure. The Q-Labs EMS is strictly a “pull”
system, meaning that the user must initiate all activity with
the system, and must specify the types of information they
want to search for. “Push” technology, on the other hand,
allows the system itself to notify or provide information that
may be of interest to a user, without an explicit request from
the user [23].

The KM literature provides many approaches to evalu-
ating a KM program, once deployed in an organization.
These approaches range from frameworks for developing
measures and evaluation criteria for KM programs [5], [24],
[36], [42] to extracting success criteria from successful
KM stories in the literature [15], [16]. In general, this
literature does not directly address the underlying technical
infrastructure supporting the KM program, but instead
mentions the use of already existing, off-the-shelf technol-
ogies and tools. Further, this work is concerned with the
evaluation of a KM program once it is fully implemented

and operational. It does not provide a way to evaluate
pieces of the infrastructure for their suitability to support
the KM goals of the organization. This is a gap in the
literature that this paper addresses by introducing a very
targeted approach to evaluating a crucial aspect of the
infrastructure for supporting KM, before a full KM program
is fully deployed in an organization.

2.2 Experience Management

Experience can be defined, for our purposes, as insight or
lessons that have been gained through the practical
application of knowledge. Thus, experience management
(EM) is closely related to knowledge management (KM).
One of the major differences between the two is that EM
must process a nearly continuous “stream of knowledge”
related to the activities of the organization [3].

The originating concept behind EM, The Experience
Factory, predates the popularity of the term knowledge
management. The Experience Factory is an organizational
infrastructure whose goal is to produce, store, and reuse
experiences gained in a software development organiza-
tion [6], [7], [8]. The Experience Factory organizes a
software development enterprise into two distinct organi-
zations, each specializing in its own primary goals. The
Project Organization focuses on delivering the software
product and the Experience Factory focuses on learning
from experience and improving software development
practice in the organization. Although the roles of the
Project Organization and the Experience Factory are
separate, they interact to support each other’s objectives.
The feedback between the two parts of the organization
flows along well-defined channels for specific purposes, as
illustrated in Fig. 1.

Experience Factories recognize that improving software
processes and products requires: 1) continual accumulation
of evaluated and synthesized experiences in experience
packages, 2) storage of the experience packages in an
integrated experience base accessible by different parts of
the organization, and 3) creation of perspectives by which
different parts of the organization can look at the same
experience base in different ways. Some examples of
experience packages might be the results of a study
investigating competing design techniques, a software
library that provides some general functionality, or a set
of data on the effort expended on several similar projects.

840 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

Fig. 1. Experience Factory structure.

The Experience Factory concept has been implemented
in a number of software development organizations that
have addressed the above questions in various ways (e.g.,
[9], [10], [22], [38]). The Software Engineering Laboratory
(SEL) [9] is one example of an Experience Factory. The
SEL Process Improvement Paradigm provides a practical
method for facilitating product-based process improve-
ment within a particular organization, based on effective
use of that organizations’ own experience. Because it
directly ties process improvement to the products pro-
duced, it allows an organization to optimize its process for
the type of work that it does. Using this approach, the
SEL has reduced development costs by 74 percent,
decreased error rates by 85 percent, and increased reuse
by over 300 percent over the past 15 years [9].

There is a significant amount of literature on EM, which
has come to refer to a focused subarea of knowledge
management that grew out of the Experience Factory
concept. Experience management generally refers to efforts
by a software development organization to capture and
reuse its experience [37]. The EM literature includes
methods for representing software engineering experience
[43], retrieval paradigms [46], and approaches to building
and initially populating an experience base for an
organization [43].

Much of this literature focuses on the COIN system at the
Fraunhofer IESE [3], its underlying and associated tools
[43], and their applications to different domains [12]. COIN
is based on the case-based reasoning paradigm [47] for
search and retrieval. It has been augmented with such
technologies as moderated discourse analysis [4]. The work
described in this paper predates much of the literature cited
here, and also gave rise to continuing work in this area,
including [11] and [27].

Some of this literature focuses specifically on the
technical infrastructure (i.e., all the software systems
needed to store, retrieve, evaluate, maintain, disseminate,
and utilize the information of the experience base [43])
supporting EM. This includes technical requirements for
this infrastructure [13], [43] and architectures to support it
[1]. An important piece of technical infrastructure is the
user interface, one of the major concerns of our work. The
EM literature, unfortunately, does not address this in any
great detail. In [2], the user interface is recognized as a
possible barrier to usage, and thus can degrade perceived
usefulness. In [43], an extensive evaluation of COIN
revealed, among other things, that the user interface (which
was simple a “general-purpose browser”) needed more
attention. However, there are no techniques proposed in
this literature for designing or evaluating the user interface
specifically.

The literature on evaluation of EM systems is of
particular interest to our work. In [2], Althoff and his
coauthors describe a method for evaluating and improving
an organizational memory, based on measures of perceived
usefulness. The model of perceived usefulness is quite
comprehensive, using a cause-effect model to incorporate
the many different factors that contribute to this complex
concept. Like the KM literature on evaluation surveyed
above, Althoff et al.’s evaluation approach assumes a fully

operational EM infrastructure before the evaluation can
take place.

Feldman et al. [18] also present work on using measure-
ment to evaluate an operational experience repository. In
Carsten Tautz’s dissertation [43], an extensive formal
experiment is described in which the use of an experience
base is compared to reliance on human sources of
information, in terms of usefulness of information and
efficiency of information gathering. While this experiment
was valuable in developing many insights into the use of a
well-designed experience base with sophisticated support-
ing infrastructure, it required the use of a fully operational
system, and does not provide any insight into how parts of
the infrastructure, or prototypes, could be evaluated earlier
in the development process.

2.3 Visual Exploration of Information

A crucial aspect of achieving success in implementing
systems for experience reuse is acceptance. In this scope, the
system’s user interface is critical, as even minor usability
problems will demotivate users, thus undermining the use
and success of the system, as discussed in the previous
section. The Q-Labs EMS uses a search and retrieval
interface that is based on information visualization and
visual data mining tools.

Humans have poor short-term memory, i.e., they have a
limited ability to search and interpret textual and/or tabular
data [33]. On the other hand, humans can interpret a visual
scene in a matter of milliseconds. Information visualization
tools play with this human ability to allow domain experts–
usually lay people–to view data in creative ways. Most such
tools allow active navigation on the visual screen, enabling
zooming, rotation, repositioning, and sweeps over the
visible areas. They also allow the interactive control of the
presentation formats and visible visual attributes. Inter-
active control of the information being shown is also usually
an element of visualization tools, enabling users to look at
data from a high-level perspective or quickly diving into
more detailed subsets of data.

This type of functionality can be very effectively used to
explore, interpret, and search information. It is our belief
that this approach is key for experience management tools.
It allows users not only to find information but also to
visualize the kind of information that is stored in the
repository. Combined with the right querying devices, this
type of functionality can be used to create fuzzy and
nonzero hit queries in which the number of results
satisfying a query can be visually previewed before any
information is retrieved from experience repositories [20]. It
also aids novices to learn by themselves about the
organization’s experience classification schema and its
available body of knowledge.

3 DEFINING THE PROBLEM, THE REQUIREMENTS,
AND OPEN QUESTIONS

The first step of our approach, as with any development
effort, is to gather the customer’s requirements. In initial
interviews with Q-Labs, they expressed their goals for this
project as providing a “virtual office” for the organization,
which is spread across two continents, and allowing each

SEAMAN ET AL.: USER INTERFACE EVALUATION AND EMPIRICALLY-BASED EVOLUTION OF A PROTOTYPE EXPERIENCE MANAGEMENT... 841

Q-Labs consultant to benefit from the experience of every
other Q-Labs consultant. Subsequent, iterative, ongoing
discussions revealed more detail both about Q-Labs’ vision
for EM and their current needs and practices. These
discussions included drawing object models and prototype
screens, working through scenarios, and telling war stories
about current problems. Based on these conversations and
the goals that were derived from them, we defined a set of
high-level requirements aimed at making the Q-Labs EMS
reliable, easy to use, and flexible enough to support the
Experience Factory concept and meet the needs of Q-Labs.

R1. The system shall support geographically distributed
organizations, allowing them to share and manage
experience packages remotely.

R2. The repository shall be portable to all standard
computer platforms (Windows, NT, Unix) and be
equally robust and reliable on each of them.

R3. The user interface level shall be platform independent.

R4. The data model shall be simple enough that Q-Labs
EMS users are able to correctly categorize their experi-
ence packages, but powerful enough to model unantici-
pated types of packages. The idea here is that the system
must adapt to the current practices, processes, and
products of different organizations and not vice-versa.

R5. There must be no usability obstacles to the under-
standing and use of the system. The criteria here is that
users, when given the option, will use Q-Labs EMS to
find potentially useful packages rather than creating
artifacts from scratch without benefit of prior experience.

The motivation behind these requirements is a combina-
tion of Q-Labs characteristics (geographically dispersed,
variety of computing platforms, and employees under time
pressures) and goals (better sharing of information and
learning, high-level reuse of artifacts), and what we know
about how Experience Factories are successfully deployed
(data organization must be flexible and simple enough to
accommodate future needs, users must be able to make use
of the system with little overhead). These requirements are
not as extensive as those elaborated in the literature [13],
[43], but reflect our own group’s experience and, more
specifically, Q-Labs’ primary concerns.

Based on these initial requirements and an ongoing
collaboration with Q-Labs, the Experimental Software
Engineering Group (ESEG) at the University of Maryland
began working to build the infrastructure to support a true
Experience Factory within Q-Labs [31], [39], [48]. There was
a big gap, however, between these high-level requirements
and a workable strategy for building a useful system. Many
questions remained open. What is the best architecture to
use for such a system? How should the “experience” be
electronically represented and organized? What was
needed of the user interface to make it acceptable to users?
Most importantly, how can we keep the approach flexible to
facilitate future evolution? Our initial answers to these
questions, embodied in the initial prototype, are described
in Section 5. Our method for evaluating some parts of our
solution is described in Section 6.

4 EVALUATION CRITERIA

The user interface for a system such as the Q-Labs EMS is a
crucial component. The fifth requirement states that there
must be no usability obstacles, clearly a weighty require-
ment. The long-term success of the Q-Labs EMS depends
heavily on the willingness of users to start using it early on,
thus providing both feedback on the contents of the
repository and new experience packages. Further, the job
of motivating early Q-Labs EMS users will depend largely
on the user interface. Q-Labs EMS users will not be
compelled to use the system because there are no critical
activities that cannot be accomplished without it. The users
must be motivated to use the Q-Labs EMS because the
repository contains useful experience and because the
interface is as easy to use as possible. The smallest usability
obstacles would discourage early users and thus jeopardize
the success of the system. Thus, we chose usability as the
overriding evaluation criterion for the intial Q-Labs EMS
prototype.

5 THE INITIAL PROTOTYPE

We have found it useful to discuss the problem of software
experience capture and reuse, and our approach to
addressing it, in terms of the three-layer conceptual view
shown in Fig. 2. This view shows three aspects of the
problem, all of which need to be addressed before a
complete solution can be implemented.

At the lowest level, there are issues of how experience
should be electronically stored in a repository and made
accessible across geographical boundaries. The middle-level
deals with user interface issues, including how experiences
are best presented to a user and how the user interacts with
the system to manipulate, search, and retrieve experience.
At the top level, the organizational issues of how experience
reuse will fit into the work of the organization, how the
experience base will be updated and maintained, and how
experiences will be analyzed and synthesized over time, are
addressed. The bottom two levels of Fig. 2 define the
computer-intensive support pictured in Fig. 1. The top level
of Fig. 2 defines the interface between the human-intensive
and the computer-intensive areas.

842 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

Fig. 2. The three levels of an Experience Management System.

5.1 System Architecture

In order to fulfill the first requirement presented in Section 3,
to support geographically distributed organizations, the
Q-Labs EMS is a client-server system. The architecture is
shown in Fig. 3. It follows a three-tier model. At the top level,
we have the EMS Manager and EMS Visual Query Interface
(VQI) applications. They work as client applications sending
requests to a “middle tier” of services. This EMS Server
receives messages from the client applications and translates
them into low-level SQL (Standard Query Language) calls to
an EMS Repository. In order to fulfill the second and third
requirements, the EMS Repository is managed by a
commercial DBMS (Data Base Management System), and
the client applications are implemented in Java.

5.2 Data Model

In order to fulfill our fourth requirement, we adopted the
following data model. An experience package isdescribed
by three parts: a characterization part used to classify
packages in the experience base, a relationship part used to
establish relations between packages, and a body part that
contains the content of the experience package itself. Each
package is associated with a package type that defines the
type of attributes that will be used in its characterization
part, the type of links that will be used in its relationship
part, and the type of elements that will compose its body. In
other words, each package type establishes a well-defined
set of attributes for classification, links for establishing
relationships, and elements for storing the contents of the
instantiated packages.

Package elements are typed as a file or as a list of files. In
order to facilitate the later usage of retrieved files, each file is
kept associated with its original name extension. This way,
the retrieved files can be opened directly by the client
machine if its file extension is consistent with its OS registry.

Package attributes have well-defined naming and typing.
These attributes build a classification taxonomy for each
package type. The attributes effectively define facets that
are filled in by the author of an experience package to
characterize the package being submitted to the repository.
These attribute values are then used to search the repository
for packages of interest. In this respect, our approach is

similar to Prieto-Diaz’s faceted classification schema for
software reuse [35]. Package attributes are typed as
numbers, strings, dates, or a list of one of those. Package
links also have well-defined naming and typing. As they are
used to establish relationships between packages, a package
link can be typed as a pointer to a package of a certain
package type, or a list of them. The system also supports
URL addresses as pointers to “external” packaged informa-
tion. For this reason, a link can also be typed as a URL
address or a list of them.

A package is created by giving values to the attributes,
links, and elements defined by its package type. This
arrangement provides a simple yet powerful data model,
as per requirement 4. An example of a package type and
some package instantiations are shown in Fig. 4. In this
example, a package type named “Document” is shown along
with its attributes, links, and elements in the top-left dashed
box of the diagram. A package named “Document 10” in
which all those parameters are instantiated is shown in the
bottom-left box of the diagram. Another package named
“Consultant 12” is shown to exemplify the instantiation of
the link “Produced by” of the package type “Document.”
The actual content of these packages is contained in the files
listed in the “Body” portion of each package. Each package
type defines how its content is organized among its files. For
example, the package type Document in Fig. 4 specifies that
each document must consist of one file containing the
abstract and another file or set of files containing the main
text. A “Project” package type, on the other hand, might
specify in its Body definition, that the “content” of a
“Project” consists of files containing a “project plan,” a set
of “deliverables,” and a “final report.”

An overriding design consideration for the data model,
and to some extent the architecture, was flexibility and
generality. From a research perspective, our main interest in
this initial prototype was the user interface, described
below, so we chose a simple design for the underlying
technology in order to isolate and concentrate on user
interface aspects. Also, we wanted to create a prototype that
could later serve as a testbed for other data organization
and architectural paradigms. For example, goal-based and
similarity-based retrieval [46] could easily be incorporated
into our basic, attribute-based search platform without
changing the basic design.

5.3 Visual Query Interface

As explained earlier in Section 4, the usability requirements
for a system such as the Q-Labs EMS are heavy. To fulfill
this crucial requirement, we adopted a visual query
interface (VQI) concept. As proposed by Shneiderman
[41], visual query interfaces let users “fly through” stored
information by adjusting query devices (checkboxes and
slider bars) and viewing animated results on the computer
screen. In the Q-Labs EMS, VQI’s allow easy interactive
querying of the repository based on multiple attributes of
the experience packages. Built in to the interface is the set of
attributes defined for the perspective currently being
viewed. Upon login, a user will have a set of perspectives
from which he/she can look at stored experience packages.
A user will fire a VQI by selecting one of those perspectives.
The VQI will display the packages that are associated with

SEAMAN ET AL.: USER INTERFACE EVALUATION AND EMPIRICALLY-BASED EVOLUTION OF A PROTOTYPE EXPERIENCE MANAGEMENT... 843

Fig. 3. Q-Labs EMS architecture.

this perspective together with all the attributes and query
devices used to search and browse those packages. Fig. 5
shows such a VQI. A query device is defined on the fly and
placed on the VQI for each attribute, based on the data type
and number of different values associated with that
attribute. Using the VQI, the user can interactively search
the experience packages associated with a certain perspec-
tive by manipulating any combination of the query devices
on the right and observing the number of selected packages
(dots) on the two-dimensional grid on the left. Although
only two dimensions are shown at a time on the grid, the
user can use as many attributes as desired to perform the
query that results in the grid display. Some of these query
devices are slider bars, which can be used to narrow down
the range of values of the attribute. Other query devices are
check boxes, where the user checks off the values in which
they are interested. The grid has two axes, each of which
corresponds to one of the attributes in the perspective. The
user can choose which two attributes to use on the X and Y
axes and can change them at any time, resulting in a real-
time update of the grid. This allows the user to view a set of
packages in a variety of different ways very quickly. Once a
small subset of packages is selected, the user can quickly
examine a specific package by clicking on the correspond-
ing dot in the grid. This will fire a Web page with a
complete description of the selected package, including its
links and elements. If the selected package corresponds to
the user’s expectations, he/she can click on the desired
elements to retrieve the files containing the content of the
package.

The VQI has two features that we believe are funda-

mental to the Q-Labs EMS. First, its search is interactive and

controlled by the user. This allows the user to easily control

the number of matches by widening or narrowing the

search scope with a few mouse clicks on the VQI’s query

devices. This is a clear advantage over keyword-based

search—such as those executed by World Wide Web search

engines. This approach is also infinitely flexible in that the

user has full control over which and how many attributes to

use and may experiment at will with different combinations

of attributes. The user does not a priori have to assign any

sort of weights to the attributes. We hypothesize that this

will significantly help users to find packages that are useful

to them even when an exact match is not available.
The second key feature of this type of interface is that it

allows people to visualize the amount of stored experience
and the classification schema used by the organization. We
believe that this will significantly help new users to get used
to the Q-Labs EMS and is also an important learning
medium for new team members.

The user interface also has functionality for submitting
new experience packages to the experience base. This
functionality uses the attributes, links, and elements
associated with the perspectives to produce the simple
forms that a user must complete to describe new packages.

6 INTERFACE PROTOYPE EVALUATION

The initial prototype, which focused on the user interface,

consisted of the VQI (pictured in Fig. 5), a simple data entry

interface used to submit experience packages and a small

repository populated with a collection of real Q-Labs

documents and project descriptions. Two perspectives were

also provided with this prototype. The documents perspec-

tive used attributes of documents (e.g., author, date, title,

etc.) as the search mechanisms, while the projects perspec-

tive used attributes of projects (e.g., project lead, customer,

start date, finish date, total effort, etc.). Some attributes were

common to both perspectives (e.g., technical area). The

evaluation was carried out at this point in the project

(before having a full working system) because it was

essential to get user feedback on the basic paradigms we

had chosen before we proceeded further. The goal, then, of

844 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

Fig. 4. Examples of Package Types and Package Instantiations.

this evaluation was to determine if the current prototype

was meeting the requirements (in particular R4 and R5) and

would be able to support Q-Labs’ goals.

6.1 Study Design

The interface evaluation study was based on qualitative

methods [19], [32]. The importance of such methods in

validating software engineering technology is discussed by

Seaman in [40]. The specific objectives of the interface

evaluation study were:

1. To evaluate the current set of attributes (in both the
“projects” and “documents” perspectives) in terms
of completeness, usefulness, and clarity.

2. To evaluate the visual query search and retrieval
interface in terms of usefulness, usability, and
appropriateness.

3. To evaluate the data entry interface in terms of
feasibility, usability, and impact on working
procedures.

These goals were refined into a set of questions that

guided the design of the study. To answer these questions,

two types of data were collected. The first data source

consisted of detailed notes concerning how the subjects

used the prototype and the comments they made while

using it. The second data source came from a set of

interviews that were conducted at the end of each

evaluation session.
Interface evaluation sessions were held with five

different Q-Labs consultants (none of whom had previously

been involved in the EMS project) from three different

offices over the course of two months. In each session, the

subject was given a short hands-on training by one of the

researchers, then given a set of exercises that represented

common Q-Labs work scenarios. The exercises were taken

from the set of use cases we had collected as part of the

initial requirements gathering activity for the Q-Labs EMS.

Some examples of the exercises used are shown below:

. You are planning a project, which you will be
managing, that is conducting a CMM self-assess-
ment for a customer. Everyone has told you that
these types of projects are difficult to manage, so you
would like to avoid as many problems as possible.
Search the experience repository for any type of
lessons learned that might help you prepare for this
project.

. A potential customer has called and asked for a
detailed list of CMM-related services that Q-Labs
can offer. Search the experience repository for
materials that might help you compile such a list.

The subjects were asked to choose some of the

exercises (each subject went through about three to four

of the 15 exercises provided) and then to use the Q-Labs

EMS prototype to gain information relevant to the

scenario described in each exercise, while being observed

by one of the researchers. They were also asked to

verbalize their thoughts and motivations while working

through the exercises. This technique, called a “think

aloud” protocol [21], is often used in usability studies

SEAMAN ET AL.: USER INTERFACE EVALUATION AND EMPIRICALLY-BASED EVOLUTION OF A PROTOTYPE EXPERIENCE MANAGEMENT... 845

Fig. 5. Q-Labs Visual Query Interface (VQI).

(and occasionally in other software engineering studies

[45]) to capture a subject’s immediate impressions,

thought processes, and motivations while performing a

task. The subjects could and did ask questions of the

researcher conducting the session.
After several exercises had been completed, a short

interview was conducted by the researcher. Examples of

some of the questions used in the interviews are:

. What did you like most about the search and
retrieval interface?

. Was there anything really annoying about using it?

. What attributes did you use most in searches?

. What did you like most about the data entry
interface?

All the sessions were audiotaped and observed by at

least one researcher. Each session lasted about 1.5 to 2 hours.

Although the tapes were not transcribed verbatim, they

were used to write very detailed notes after the fact.

The notes written from the tapes served as the major data

source for the analysis part of the study. This data was

textual and unstructured and, thus, did not lend itself to

transformation to any quantitative form. Therefore, the

analysis method used was the constant comparison method

[19], [32], a general approach widely used for analyzing all

types of qualitative data. This method begins with coding

the field notes by attaching codes, or labels, to pieces of text

that are relevant to a particular theme or idea that is of

interest in the study. Then, passages of text are grouped into

patterns according to the codes and subcodes they’ve been

assigned. These groupings are examined for underlying

themes and explanations of phenomena. The next step is the

writing of a field memo that articulates a proposition (a

preliminary hypothesis to be considered) or an observation

synthesized from the coded data. In this case, the field

memo written as part of this process became the results of

the study, which are reported in the next section.
Like any empirical study, this evaluation study involves

some validity issues. For example, the external validity of

the study is significantly compromised by the fact that all

subjects came from the same organization. However, this

was consistent with the goals of the study, which were to

evaluate the EMS prototype for use at Q-Labs. Within this

context, external validity could be seen to be quite high as

the subjects came from three different Q-Labs offices.

However, the sample size was small. Internal validity, in

the context of this study, is mainly concerned with the

accuracy of the data and conclusions. This issue is

addressed through triangulation, or the use of data from

different sources or gained through different means to

produce the same conclusions. The study design includes

data collected via observation, think-aloud protocols, and

interviews. Construct validity is quite strong, as the data

was collected during and immediately after actual use of

the prototype. Thus, the data collected is strongly believed

to accurately describe the phenomen being studied.

6.2 Results

The subjects generally liked the basic elements of the search
and retrieval interface. In particular, they seemed to have no
trouble mastering the search mechanism and liked how it
was easy to negotiate the interface and see the distribution
of packages among different attribute values. They also
liked the immediate feedback in the graph part of the
interface in response to changes made with the search
mechanisms. Subjects also said that they felt they were able
to find what they were looking for (if it existed in the
repository) with a minimal number of steps.

Aside from using the basic elements of the search and
retrieval interface, subjects were also able to glean useful
information from the interface even when they couldn’t
find exactly what they were looking for. For example, one
subject found a document that was not exactly what she
wanted, but she saw the primary author’s name and
decided that would be a good contact and, so, she felt she
had found useful information. In another case, a subject was
looking for a tender (an estimate submitted to a potential
customer), couldn’t find it, but found a final report that
would be useful.

Several major annoyances surfaced during the evalua-
tion. One was the use of slider bars. Several subjects had
trouble figuring out the mechanics of using and interpreting
them. It was hard to tell by looking at the slider bar which
values were currently selected and which were not. In
response to this annoyance, several subjects suggested
using some form of checkboxes instead of the slider bars.

Another general annoyance subjects expressed had to do
with the relationship between the two perspectives (docu-
ments and projects) and the lack of linkage between them.
After finding some relevant project in the projects perspec-
tive, subjects had to then start up the document perspective
and start a search from scratch in order to find documents
related to the project. Another problem was the confusion
caused by some attributes and attribute values existing in
one perspective but not the other.

As for the data entry interface, the data being collected

was seen to be appropriate, but otherwise the interface left a

lot to be desired. Subjects in general found the data entry

interface unusable because they needed more guidance as

to what attribute values to enter in the fields.Almost all of

the subjects suggested pull-down menus listing the existing

values for each attribute so that the user could just pick one,

possibly with an option to enter a “new” value. This was

seen as necessary to ensure consistency. Another suggestion

was to have automatic fill-ins, where the value entered for

one attribute would automatically determine the value for

another attribute, or at least restrict the possible values.The

“instructions” on the screen needed to be more helpful. In

general, the subjects saw this interface as just a skeleton of

what was needed.
Many comments were made about the attributes,

including suggestions of new attributes to add (planned
effort and schedule, project problems, and financial data),
current attributes that are not useful (version_id), and
attributes whose meanings were not clear (title, project
effort, product_type, office, and language). Some attributes
were suggested to be made multivalued (service_provided

846 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

and project problems). The attributes used most were
product_type, service_provided, technical_area, customer_
name, and customer_domain.

The learning curve on the search and retrieval interface
was fairly short. By the second or third exercise tried, all of
the subjects were conducting their searches very rapidly and
confidently. For some subjects, it was even quicker. Subjects
generally narrowed their searches down to about two to
four hits before looking at individual packages. This was
seen as a reasonable number of packages to look through.

Some features of the search and retrieval interface were
not immediately apparent to the subjects. One subject got
stuck in one perspective and did not think to switch to the
other perspective until prompted by the tester. When they
did switch, they were able to find the information they were
looking for. The same thing happened several times with
the X and Y axes. Subjects did not think to change the
attributes shown on the axes until it was suggested by the
tester, but once they did, they found it very useful. The
subjects then seemed to remember to use the perspectives
and the axes later, after they had done it once.

Some subjects also tended to make inferences from the
data that was displayed. For example, one subject inferred
from the value for project effort that the project she was
looking at was much larger than she was interested in, so
she decided to look for another package. In another case, a
group of dots clustered around a particular date in the
documents perspective suggested to one subject that they
were all from the same project.

Several subjects said that the data entry interface would
save them time only if it replaced other processes in which
they entered the same data. The key was to reduce
redundancy, which included using pull-down menus so
that a value does not actually have to be typed more than
once. One subject thought that probably the Q-Labs EMS
would not be used on a daily basis, but for exploratory
work and for starting new projects.

The subjects offered a variety of ideas for enhancements
to the prototype. One suggestion was a facility for saving
searches, so that the same search could be re-executed later
without having to manipulate the query devices again.
Another suggestion was to show a simple count of the
number of dots currently being displayed on the grid, so
that the user would know how many “hits” the current
search criteria had found. Another idea was to provide a
“zoom” feature on the axes of the grid so that only a subset
of the values of the attribute for that axis would be shown.

6.3 Discussion

In general, the search and retrieval interface (VQI) proved to
be very easy to use and useful for finding information in the
repository. There were some significant problems that
hindered its usefulness, but the basic VQI paradigm was
well received. The data entry interface, on the other hand,
was generally found to be unsatisfactory. It was found to be
clumsy and the information requests too ambiguous.
However, the subjects seemed to agree on the features that
needed to be added to make it useful. These were pull-down
menus and providing better instructions on the screen.

These observations raise several deeper questions about
the design, not only of the user interface, but the underlying

data model as well. The idea of perspectives, as we had
originally envisioned it, assumed that perspectives would
be largely distinct. Although we allowed for the possibility
of a package being accessible through more than one
perspective, we had assumed that users would generally
only use one perspective at a time, and would not need to
switch between perspectives frequently. That turned out
not to be the case. This implies that a useful enhancement to
the current prototype would be a tighter and easier to
navigate coupling between different perspectives. One way
to accomplish this, which is being investigated, is to use the
relationships part of each package (which contains links to
other packages) to allow users to jump more easily between
perspectives.

Another design issue that arose from the evaluation
study was the scheme we had designed for package
attributes. In order to enforce consistency between names
of attributes in different perspectives, we created a general
pool of attributes, each with a name and type, and then
decided a priori which attributes were appropriate for each
perspective. This seemed to cause some confusion for users,
when they expected to see the same attributes in different
perspectives. This raises the question of who should decide
which attributes should be applicable to which perspec-
tives, and when this should be decided. On one hand, the
user could be allowed (i.e., required) to specify which
attributes belong in which perspectives, and to modify the
scheme at any time, adding and deleting attributes on the
fly. At the other end of the spectrum, all attributes and their
assignment to perspectives could be determined a priori
without the possibility of later modification. The former
scheme allows maximum flexibility, while the latter
provides greater simplicity and consistency across the
organization.

This evaluation provided valuable feedback that has
been used in our plans for further development of EMS for
Q-Labs and other organizations. Although we knew that the
interface we were evaluating was not ideal, we had not
anticipated some of the specific problems that our subjects
reported. For example, we had not considered the slider bar
mechanism to be a problem, but our subjects definitely did.
Also, although we knew the data entry interface needed
some improvements (many of the suggestions from the
subjects were already in our development plans), we had
not considered it as completely unusable as our subjects
did. In addition, the subjects had some creative ideas for
enhancements that we had not considered. On the other
hand, the study validated some of our basic choices in the
interface design, e.g., the VQI and the use of attributes and
perspectives. Thus, we can, with confidence, continue
improvement of the interface without changing the under-
lying structure.

There were also some lessons learned about how the
interface evaluation was conducted. Some problems came
up related to the limited scope of the repository. Subjects
were sometimes frustrated when there was nothing to be
found for their search criteria. Subjects were also bothered
by inconsistencies in the sample data. In particular, one
subject found that there was a document in the documents
perspective that had a project name associated with it, but

SEAMAN ET AL.: USER INTERFACE EVALUATION AND EMPIRICALLY-BASED EVOLUTION OF A PROTOTYPE EXPERIENCE MANAGEMENT... 847

that project was not to be found in the projects perspective.
He felt that the data in the different perspectives should be
consistent, like a “transparent cube.” If you turn the cube,
you want to see the same thing from a different perspective.
The same subject also found a document for which he was
the primary author, but the primary author attribute was
“n/a,” which he thought was strange. There were also some
problems with the exercises that were used, but these were
avoided for the most part after the first session.

The interface evaluation, in general, proved to be a
valuable and timely tool for getting feedback from the
eventual users of the Q-Labs EMS. The effort involved was
relatively small, although finding and scheduling subjects
was difficult and caused some delays. Although much
remained to be done before an operational system could be
delivered, the evaluation assured us that the Q-Labs EMS
would eventually be acceptable to its intended users. In
addition, the evaluation provided an opportunity to
disseminate the aims of our project, and our work thus
far, throughout Q-Labs.

As it turned out, due to other circumstances, the Q-Labs
EMS was not adopted at Q-Labs. However, our experience
with the Q-Labs EMS proved to be valuable input into what
is now a diverse and active area of research involving
several research and industrial partners at the Fraunhofer
Center-Maryland [11], [27]. In particular, the methods used
in this evaluation have now become part of the standard,
continuous evaluation of other EMS prototypes.

7 EVOLUTION OF EMS

The interface evaluation described in Section 6 validated
some of our assumptions about what features the interface
for such a system should have, but also raised some issues
that we had not considered previously. Some of the
subjects’ suggestions are easily incorporated as enhance-
ments to the user interface, but others touch on underlying
design issues that need to be investigated further. For
example, what is the proper balance between user custo-
mizability and simplicity? Should users be able to create
and modify attributes on the fly, for example, or should
they be specified a priori by those setting up the experience
system? Architecturally, this has implications for the
underlying data model. It also raises questions about the
role of users of an EMS in the process of capturing,
analyzing, and reusing experience. Should the average user
be expected to understand the entire taxonomy of attributes
and perspectives that describe the contents of the reposi-
tory, or should their view be limited to what has been
deemed of interest to them? These questions and others are
being considered as new instances of the EMS are being
developed [27].

Parallel and subsequent to the work with Q-Labs,
researchers at the University of Maryland and at the
Fraunhofer Center for Experimental Software Engineering
have significantly evolved the idea of an Experience
Management System [11]. EMS is now seen as a logical
architecture, a set of tools, and a well-defined methodology
to tailor the system to a particular organization. The latter
includes a process for designing, implementing, and
evaluating new organizational procedures and deployment

strategies to ensure the acceptance of the system. The tool
currently employed includes:

1. the VQI and other interfaces for navigation of links
and keyword search,

2. explicit support for different Experience Factory
roles,

3. tools for user cooperation and socialization,
4. tools for transforming tacit knowledge into explicit

knowledge, and
5. middleware software for accessing information

already stored in corporate databases [11], [27].

The VQI paradigm is still in use for the user interface to the
experience package repository, but it has been enhanced as
well. It still allows the user to employ any number of
attributes for searching, but now incorporates more of them
at one time into the grid part of the display by allowing the
user to code the color, size, and shape of the dots with the
values of selected attributes.

In this scenario, the Q-Labs EMS is now seen as an
instantiation of this EMS architecture, that uses the VQI as its
central tool. Itsmainmerit was to serve as the original testbed
for evaluating hypotheses, ideas, and tools for experience
management systems in industrial settings. The Q-Labs EMS
was our first crucial step in this direction. The ideas it
generated laid the groundwork for the EMS architecture and
spun off several other EMS instantiations [11], [27]. But, most
importantly, it instantiated the idea of continuously evolving
a system, with a flexible architecture and built-in repeatable
evaluation processes, to better reflect user needs.

8 SUMMARY

We have described a method that was aimed at instantiat-
ing and evolving a system that is highly dependent upon
evolving through use. It consists of unifying a set of
concepts that relate to the problem, selecting a flexible
component independent architecture, and evolving the
requirements based upon experimentation in the form of
feedback loops. This effort represents a collaboration
between the Experimental Software Engineering Group
(ESEG) at the University of Maryland and Q-Labs, Inc. that
aimed to provide a system to support software engineering
experience capture and reuse. We have described the
overall process we used to design and evaluate our initial
prototype, with an emphasis on empirical and experimental
study. The architecture, data structure, and user interface of
the prototype Q-Labs EMS are described. The evaluation of
this interface prototype is presented in detail. The user
interface was chosen as the focus of the initial prototype
and evaluation because it is such a crucial part of systems
that support EM. During early use, not only must users be
strongly motivated to use these systems, but all conceivable
barriers to their use must be removed, especially barriers
related to usability. Any inadequacies of the user interface
will directly impact the early use of any type of experience
reuse repository and, thus, greatly hinder its eventual
success.

The results of the evaluation assured us not only that the
Q-Labs EMS could eventually be successfully deployed
throughout Q-Labs or other organizations, but also that it

848 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

could serve as a testbed for further investigation of EM.

However, it also showed us that much needs to be done

before a robust version of such a system is in place. The

prototype that has been evaluated encompassed only some

of the automated features that are required from a system

aimed at supporting an Experience Factory.

ACKNOWLEDGMENTS

The authors would like to thank the consultants at Q-Labs

for so kindly spending their valuable time to make this

study possible. The authors also recognize the invaluable

contributions from Jon Valett (at Q-Labs), Marvin Zelkowitz

and Mikael Lindvall (at Fraunhofer Center MD), and Baris

Aydinlioglu (at the University of Maryland) to this work.

Thanks also go to the anonymous reviewers of various

versions of this paper. This research was supported in

part by Maryland Industrial Partnerships (MIPS) grant

no. 2015.22. Dr. Mendonça would also like to thanks

CNPq—Brazil’s National Council for Scientific and Tech-

nological Development—for supporting his work with the

Research Productivity Scholarship no. 300355/00-9. Ms.

Kim was employed by Q-Labs at the time this work was

conducted.

REFERENCES

[1] K.-D. Althoff, A. Birk, S. Hartkopf, W. Muller, M. Nick, D.
Surmann, and C. Tautz, “Systematic Population, Utilization, and
Maintenance of a Repository for Comprehensive Reuse,” Proc.
Workshop Learning Software Organizations: Methodology and Applica-
tions (SEKE ’99), pp. 25-50, June 1999.

[2] K.-D. Althoff, M. Nick, and C. Tautz, “Systematically Diagnosing
and Improving the Perceived Usefulness of Organizational
Memories,” Proc. Workshop Learning Software Organizations: Meth-
odology and Applications (SEKE ’99), pp. 72-86, June 1999.

[3] K.-D. Althoff, B. Decker, S. Hartkopf, A. Jeditschka, M. Nick, and
J. Rech, “Experience Management: The Fraunhofer IESE Experi-
ence Factory,” Proc. Industrial Conf. Data Mining, July 2001.

[4] K.-D. Althoff, U. Becker-Kornstaedt, B. Decker, A. Klotz, E.
Leopold, J. Rech, and A. Voss, “Enhancing Experience Manage-
ment and Process Learning with Moderated Discourses: The
indiGo Approach,” Proc. European Conf. Artificial Intelligence
(ECAI ’02) Workshop Knowledge Management and Organizational
Memory, 2002.

[5] C. Bailey and M. Clarke, “Managing Knowledge for Personal and
Organisational Benefit,” J. Knowledge Management, vol. 5, no. 1,
pp. 58-67, 2001.

[6] V.R. Basili, “Software Development: A Paradigm for the Future,”
Proc. COMPSAC ’89, pp. 471-485, Sept. 1989.

[7] V.R. Basili, “The Experience Factory and its Relationship to Other
Improvement Paradigms,” Proc. Fourth European Software Eng.
Conf. (ESEC), Sept. 1993.

[8] V.R. Basili and G. Caldiera, “Improve Software Quality by
Reusing Knowledge and Experience,” Sloan Management Rev.,
vol. 37, no. 1, Fall 1995.

[9] V.R. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, and S.
Waligora, “The Software Engineering Laboratory—An Opera-
tional Software Experience Factory,” Proc. Int’l Conf. Software Eng.,
pp. 370-381, May 1992.

[10] V.R. Basili, M. Daskalantonakis, and R. Yacobellis, “Technology
Transfer at Motorola,” IEEE Software, pp. 70-76, Mar. 1994.

[11] V.R. Basili, M. Lindvall, and P. Costa, “Implementing the
Experience Factory Concepts as a Set of Experience Bases,” Proc.
13th Int’l Conf. Software Eng. and Knowledge Eng., pp. 102-109, June
2001.

[12] M. Brandt and M. Nick, “Computer-Supported Reuse of Project
Management Experience with an Experience Base,” Proc. Advances
in Learning Software Organizations, pp. 178-189, Sept. 2001.

[13] M. Broome and P. Runeson, “Technical Requirements for the
Implemenation of an Experience Base,” Proc. Workshop Learning
Software Organizations: Methodology and Applications (SEKE ’99),
pp. 87-102, June 1999.

[14] R. Baronide Carvalho and M.A.T. Ferreira, “Using Information
Technology to Support Knowledge Conversion Processes,”
Information Research, vol. 7, no. 1, 2001, also available at http://
InformationR.net/ir/7-1/paper118.html.

[15] R.L. Chase, “Knowledge Management Benchmarks,” J. Knowledge
Management, vol. 1, no. 1, pp. 83-92, Sept. 1997.

[16] T.H. Davenport, D.W. De Long, and M.C. Beers, “Successful
Knowledge Management Projects,” Sloan Management Rev., pp. 43-
57, Winter 1998.

[17] T. Dingsoyr, “An Evaluation of Research on Experience Factory,”
Proc. Workshop Learning Software Organizations (PROFES 2000),
pp. 55-66, June 2000.

[18] R.L. Feldmann, M. Nick, and M. Frey, “Towards Industrial-
Strength Measurement Programs for Reuse and Experience
Repository Systems,” Proc. Workshop Learning Software Organiza-
tions (PROFES 2000), pp. 7-18, June 2000.

[19] B.G. Glaser and A.L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine Publishing Company,
1967.

[20] S. Greene, E. Tanin, C. Plaisant, B. Shneiderman, L. Olsen, G.
Major, and S. Johns, “The End of Zero-Hit Queries: Query
Previews for NASA’s Global Change Master Directory,” Int’l
J. Digital Libraries, vol. 2, nos. 2 and 3, pp. 79-90, 1999.

[21] J.T. Hackos and J.D. Redish, User and Task Analysis for Interface
Design. John Wiley and Sons, chapter 9, pp. 258-259, 1998.

[22] F. Houdek, K. Schneider, and E. Wieser, “Establishing Experience
Factories at Daimler-Benz: An Experience Report,” Proc. 20th Int’l
Conf. Software Eng., pp. 443-447, Apr. 1998.

[23] T. Käpylä, I. Niemi, and A. Lehtola, “Towards an Accessible Web
by Applying PUSH Technology,” Proc. Fourth ERCIM Workshop,
User Interfaces for All, pp. 19-21, Oct. 1998, also available at
http://www.vtt.fi/tte/samba/projects/ida-push/Ercim_WS_
UI_paper.htm.

[24] T. Kotnour, C. Orr, J. Spaulding, and J. Guidi, “Determining the
Benefit of Knowledge Management Activities,” Proc. IEEE Int’l
Conf. Systems, Man, Cybernetics, pp. 94-99, Oct. 1997.

[25] G. Lawton, “Knowledge Management: Ready for Prime Time?”
Computer, vol. 34, no. 2, pp. 12-14, 2001.

[26] J. Liebowitz and T. Beckman, Knowledge Organizations: What Every
Manager Should Know. Washington: St. Lucie Press, 1998.

[27] M. Lindvall, M. Frey, P. Costa, and R. Tesoriero, “An Analysis of
Three Experiences Bases,” Learning Software Organizations, 2001.

[28] M. Lindvall, I. Rus, and S. Sinha, “Technology Support for
Knowledge Management,” Proc. Fourth Int’l Workshop Learning
Software Organizations (LSO ’02), Aug. 2002.

[29] R. Mack, Y. Ravin, and R.J. Byrd, “Knowledge Portals and the
Emerging Digital Knowledge Workplace,” IBM Systems J., vol. 40,
no. 4, pp. 925-955, 2001.

[30] A.D. Marwick, “Knowledge Management Technology,” IBM
Systems J., vol. 40, no. 4, pp. 814-830, 2001.

[31] M. Mendonça, C.B. Seaman, V. Basili, and Y.-M. Kim, “A
Prototype Experience Management System for a Software Con-
sulting Organization,” Proc. 13th Int’l Conf. Software Eng. and
Knowledge Eng., pp. 29-36, June 2001.

[32] M.B. Miles and A.M. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook, second ed. Thousand Oaks, Calif: Sage, 1994.

[33] G. Miller, “The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information,” Psychological
Rev., vol. 101, no. 2, pp. 343-352, Apr. 1994.

[34] I. Nonaka and H. Takeuchi, The Knowledge Creating Company.
Oxford Univ. Press, 1995.

[35] R. Prieto-Diaz, “Classifying of Reusable Modules,” Software
Reusability, T.J. Biggerstaff and A. Perlis, eds., vol. I, 1990.

[36] R. Roy, F.M. del Rey, B. van Wegen, and A. Steele, “A Framework
to Create Performance Indicators in Knowledge Management,”
Proc. Third Int’l Conf. Practical Aspects of Knowledge Management
(PAKM2000), pp. 18-1:18-8, Oct. 2000.

[37] G. Ruhe and F. Bomarius, “Introduction and Motivation,” Proc.
Workshop Learning Software Organizations: Methodology and Applica-
tions (SEKE ’99), pp. 3-22, June 1999.

[38] K. Schneider, J. von Hunnius, and V.R. Basili, “Experience in
Implementing a Learning Software Organization,” IEEE Software,
pp. 46-49, June 2002.

SEAMAN ET AL.: USER INTERFACE EVALUATION AND EMPIRICALLY-BASED EVOLUTION OF A PROTOTYPE EXPERIENCE MANAGEMENT... 849

[39] C.B. Seaman, M. Mendonca, V. Basili, and Y.-M. Kim, “An
Experience Management System for a Software Consulting
Organization,” Proc. Software Eng. Workshop, NASA/Goddard
Software Eng. Laboratory, Dec. 1999.

[40] C.B. Seaman, “Qualitative Methods in Empirical Studies of
Software Engineering,” IEEE Trans. Software Eng., vol. 25, no. 4,
pp. 557-572, July/Aug. 1999.

[41] B. Shneiderman, “Dynamic Queries for Visual Information
Seeking,” IEEE Software, vol. 6, no. 11, pp. 70-77, Nov. 1994.

[42] D.J. Skyrme and D.M. Amidon, “New Measures of Success,”
J. Business Strategy, pp. 20-24, Jan./Feb. 1998.

[43] C. Tautz, “Customizing Software Engineering Experience Man-
agement Systems to Organizational Needs,” PhD dissertation,
Dept. of Computer Science, Univ. of Kaiserslautern, Germany,
2000.

[44] A. Tiwana, The Knowledge Management Toolkit: Practical Techniques
for Building Knowledge Management Systems. Prentice Hall PTR,
2000.

[45] A. von Mayrhauser and A.M. Vans, “Identification of Dynamic
Comprehension Processes During Large Scale Maintenance,”
IEEE Trans. Software Eng., vol. 22, no. 6, pp. 424-437, June 1996.

[46] C.G. von Wangenheim, K.-D. Althoff, and R.M. Barcia, “Goal-
Oriented and Similarity-Based Retrieval of Software Engineering
Experienceware,” Proc. Workshop Learning Software Organizations:
Methodology and Applications (SEKE ’99), pp. 118-141, June 1999.

[47] C.G. von Wangenheim and M.R. Rodrigues, “Case-Based Man-
agement of Software Engineering Experienceware,” Proc. IBER-
AMIA-SBIA 2000, pp. 12-22, 2000.

[48] R. Webby, C. Seaman, M. Mendonça, V.R. Basili, and Y. Kim,
“Implementing an Internet-Enabled Software Experience Factory:
Work in Progress,” Proc. Second Workshop Software Eng. over the
Internet (ICSE ’99), May 1999.

Carolyn B. Seaman received the PhD degree in
computer science from the University of Mary-
land, College Park, a MS degree in information
and computer science from Georgia Tech, and
the BA degree in computer science and mathe-
matics from the College of Wooster (Ohio). She
is an assistant professor of information systems
at the University of Maryland, Baltimore County
(UMBC). Her research generally falls under the
umbrella of empirical studies of software en-

gineering, with particular emphases on maintenance, organizational
structure, communication, measurement, COTS-based development,
and qualitative research methods. Dr. Seaman is also a research
scientist at the Fraunhofer Center for Experimental Software Engineer-
ing, Maryland, where she participates in research on experience
management in software engineering organizations and software
metrics. She has worked in the software industry as a software engineer
and consultant, and has conducted most of her research in industrial
and governmental settings (e.g., IBM Canada Ltd., NASA).

Manoel G. Mendonça received the PhD degree
in computer science from the University of
Maryland in 1997. He also received the MSc
degree in computer engineering from the State
University of Campinas (1990), and the BSEE
degree in electrical engineering from the Federal
University of Bahia (1986), both in Brazil. He
was a visiting scientist and was awarded a
doctoral fellowship from the IBM Toronto Labor-
atory’s Centre for Advanced Studies. Between

1997 and 2000, he worked as a faculty research associate at the
University of Maryland and a scientist at the Fraunhofer Center for
Experimental Software Engineering also in Maryland. He is now a
professor at Salvador University (UNIFACS) in Brazil. He has been
involved in projects for IBM, Q-Labs, and Siemens, among other
organizations. Currently, he is the chief consultant for a countrywide
data gathering and analysis program for the Brazilian Oil Agency (ANP).
He is also one of the scientists of the Readers Project, a collaborative
research effort on software defect detection techniques sponsored by
NSF and CNPq-Brazilás National Council for Scientific and Technolo-
gical Development. His main research interests are data mining,
experimental software engineering, and knowledge management sup-
port systems.

Victor R. Basili is a professor of computer
science at the University of Maryland, College
Park, and the Executive Director of the Fraun-
hofer Center-Maryland. He works on measuring,
evaluating, and improving the software develop-
ment process and product. He is a recipient of
several awards including a 1989 NASA Group
Achievement Award, a 1990 NASA/GSFC Pro-
ductivity Improvement and Quality Enhance-
ment Award, the 1997 Award for Outstanding

Achievement in Mathematics and Computer Science by the Washington
Academy of Sciences, the 2000 Outstanding Research Award from
ACM SIGSOFT, and the 2003 IEEE Computer Society Harlan D. Mills
Award. Dr. Basili has authored more then 160 journal and refereed
conference papers, served as editor-in-chief of the IEEE Transactions
on Software Engineering, and as program chair and general chair of the
Sixth and 15th International Conferences on Software Engineering,
respectively. He is co-editor-in-chief of the International Journal of
Empirical Software Engineering, published by Kluwer. He is an IEEE
and ACM fellow.

Yong-Mi Kim received the MS degree in
computer science from the University of North
Carolina at Chapel Hill. Subsequently, she was
part of the Experimental Software Engineering
Group at the University of Maryland, College
Park, before joining Q-Labs. At Q-Labs she
worked on software process improvement pro-
jects for companies such as Ericsson. She is
currently a master’s candidate in the School of
Information at the University of Michigan. Her

research areas are information retrieval and information seeking
behavior.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

850 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

