
Understanding the Impact of Assumptions on Experimental Validity

Jeff Carver1 John VanVoorhis1 Victor Basili1, 2

1Department of Computer Science
University of Maryland

{carver, jvv, basili}@cs.umd.edu

2Fraunhofer Center for Experimental
Software Engineering

Maryland

Abstract

Empirical studies are used frequently in software
engineering as a method for studying and understanding
software engineering techniques and methods. When
conducting studies, researchers make assumptions about
three objects, people, processes and products.
Researchers usually focus their study on only one of those
objects. But, regardless of which type of object is chosen
as the focus of the study, researchers make assumptions
about all three objects. The impact of those assumptions
on experimental validity varies depending on the focus of
the study. In this paper, we discuss the various types of
assumptions that researchers make. We relate those
assumptions back to some concepts from social science
research. We then use the results of a people-focused
study to illustrate the impact of the assumptions on the
results of that study.

1. Introduction

Empirical studies are useful for understanding software
engineering techniques, but to draw accurate conclusions
from a study, researchers must account for factors that
could cause those results to be misinterpreted. Competing
explanations for the results must be eliminated, where
possible, so that researchers can have greater confidence
in their conclusions. Threats to validity are issues that can
call into doubt the results of a study or the conclusions
drawn from those results. By understanding and properly
addressing threats to validity, a researcher can make the
results of a study more widely useful and applicable.

When accounting for threats to validity in their study
design, researchers must make assumptions about their
environment. If any of these assumptions prove to be
false, then it is more difficult to properly interpret the
results of the experiment. In this paper, we identify a set
of common assumptions and then investigate their impact
on the validity of a study.

Software Engineering Experimentation
Experimentation has been found to be an effective

research tool in software engineering. A growing number
of researchers are including experimental results in their
research work [19]. Experimentation allows researchers
to test hypotheses they have formulated about a
phenomenon. The results of empirical studies provide
researchers with hard evidence to back up their
conclusions.

While there are many benefits to experimentation,
there are also some drawbacks, especially when human
subjects are involved. The planning of software
engineering experiments requires a large amount of effort
from the researcher. Furthermore, software developers’
time is expensive, so the cost of running a software
engineering experiment is high. Statistically significant
results are difficult to obtain from small sample sizes.
Another difficulty is the individual variations in human
subjects. In any one study, the variation among the
subjects can outweigh the influence of the real variable of
interest [11, 12, 14].

Yet, to advance the state of knowledge in the field, it is
necessary to conduct and replicate experiments. As Basili,
et al. have pointed out, the hallmark of good
experimentation is the accumulation of data and insights
over time [3]. This accumulation of knowledge and
insight also allows researchers to investigate complex
questions. As more data about a software engineering
process is collected, researchers can identify and study
other variables that may affect its use [6]. The level of
analysis described in this paper is only possible after
conducting and replicating multiple experiments on a
software engineering process.

Threats to Validity
Software engineering researchers must identify and

address various issues that may call into question the
validity of their results. Threats to internal validity are
those issues that cause the conclusions drawn from the
data to be questioned. Conversely, threats to external

validity are issues that call into question the applicability
of the conclusions to other environments [4]. Judd, et al,
identify construct validity as the extent to which the
concrete measures in the study successfully duplicate the
theoretical constructs in the hypotheses [9]. Cook and
Campbell pose another type of validity to consider:
conclusion validity [8]. Basili, et al, discuss these threats
to validity and point out some difficulties that arise when
trying to obtain all types of validity in the same study [3].

Lying underneath these types of validity are some
basic, often unstated, assumptions about the people,
processes, and products in the study. The impact of these
assumptions will vary depending on the focus of the
study. During the study design process, researchers must
balance the various threats to validity and the assumptions
to create the best design possible.

2. Common Assumptions

Software engineering experiments are similar both to
traditional computer science experiments and to
experiments in the social sciences (e.g. psychology). In
traditional computer science experiments, researchers
tend to study the effects of some process (e.g. an
algorithm) on some product (e.g. a set of data). In the
social sciences, experiments tend to study a person using
a process to accomplish some task. Therefore, traditional
computer science experiments and social science
experiments typically have to account for only one class
of object in addition to the process being studied.

In contrast, software engineering experiments often
study a person using a process on a product so they have
to account for all three objects. In order to design valid
experiments, software engineering researchers should be
informed by both physical science and social science
experimentation methods.

When all three objects (people, products and
processes) are involved in a study, researchers will make
a series of assumptions about each one. These
assumptions will vary with the focus of the study, but
many remain constant across all types of studies.

People
Software engineering experiments often focus on

human subjects [1,18]. Mental states, attitudes, skills, and
individual knowledge are not directly observable, so
measuring these characteristics or even knowing what
should be measured can be a difficult task. Several
psychology and sociology journals, such as the Journal of
Applied Measurement, Rasch Measurement Transactions,
Psychometrika, the Journal of Outcome Measurement,
and the Journal of Educational Measurement, are devoted
to these types of measurement concerns.

To study the differences among groups of people,
researchers must characterize those subjects and form
homogeneous groups. Often, subject characterization is
done using questionnaires. These data are self-reported,
so their reliability and validity may be suspect.

Two major assumptions made about people are:
1) The measures used to characterize the people are

valid.
2) The characterization data (questionnaires)

provided by the subjects is reliable and valid.

Processes
When a new process or technique is being studied,

normally a training session is conducted to give all the
subjects the same level of exposure to the process. This
training is assumed to provide the subjects knowledge and
skill. Knowledge of a technique means that the subjects
understand the goals and operations of a technique and
can answer questions about it. Skill means the subjects are
able to effectively use a technique with some level of
expertise. When conclusions are drawn about the use of a
technique, researchers assume that the subjects have
followed the technique.

Two major assumptions that researchers make in their
studies about processes are:

1) Training given to the subjects is adequate.
2) Subjects follow the process they are given.

Products
Many real-world software artifacts are too large to be

used in a study, so researchers must either scale them
down or create “toy” problems. Researchers have to face
the question of whether the conclusions drawn based on
one set of artifacts can be generalized to other artifacts.
For a given artifact the application domain, scope of the
information, and seeding of the feature being measured,
such as defects must be considered.

Three major assumptions that researchers make about
the products are:

1) Format of the artifact is appropriate.
2) Scope of the problem is sufficiently complex.
3) Feature being measured in the product was

accurately represented.

Any one of these three objects – people, processes, or
products – can be the focus of a software engineering
study. The impact of the assumptions about each object
varies based on which object is the focus of study.
However, regardless of which object is chosen, the
various threats to validity must be balanced.

The results of a study with external validity hold for
other populations, e.g. industrial software engineers. A
study having internal validity means that the observed
changes in performance, e.g. effectiveness at some task,
can accurately be attributed to the treatments in the study.

A study having construct validity means that the observed
effect is the result of a theorized cause, e.g. the
operationalization of a theorized process has a positive
effect on the outcome.

3. Study Foci

A process-focus study primarily addresses questions
about a software process. For example: “Is Technique A
more effective than Technique B for accomplishing a
given task?” A people-focused study primarily addresses
questions about people involved in software development.
For example: “What effect does some characteristic of a
subject have on his or her effectiveness using a
technique?” Finally, a product-focused study primarily
addresses questions about a software product. For
example: “For a given product, does Format A or Format
B allow the subject to accomplish a given task more
effectively?”

Many of our past studies have been process-focused
studies. In a process-focused study, the people and
product assumptions generally affect the external validity
of a study. For example, improperly characterizing a
subject will typically not affect the conclusion about the
relative effectiveness of two techniques. Conversely, a
suspect subject characterization may affect the external
validity of the study, by making the results of the study
not generalizable. Likewise for the product assumptions,
an unrealistic artifact will likely not affect the conclusions
drawn about the process, but it could affect the
applicability of the results to industrial artifacts.

In a product-focused study, e.g. a study of a
requirements document, the product assumptions affect
the internal validity of the study because conclusions
drawn about the artifacts depend on those assumptions.
These product assumptions also affect the construct
validity because the artifact should challenge specific
skills or abilities of the subject in ways that accord with
the given theory of the problem domain. The people
assumptions and process assumptions will tend to impact
the external validity. The people assumptions impact the
generalizability of the results to other groups of people.
The process assumptions also affect the applicability of
the results to other processes.

In this paper, we address the impact of process,
product, and people assumptions on a people-focused
study; thus, the domain of social science becomes
relevant, and insights from social science researchers
helpful. In psychology and sociology, a construct is an
object of study that is not directly observable or
measurable. The object of study is a theoretical concept
that is not observable itself. In the social sciences,
researchers focus on understanding the relationship
between a mental construct and a concrete representation
of that construct, such as a document or process.

Figure 1 describes the relationships between
theoretical constructs and physical representations, or
operationalizations, of those constructs. Theories
represent the predicted relationship between a cause and
effect. In an experiment, a theoretical cause construct is
operationalized into some treatment (program) and then
applied by the subjects. The theoretical effect constructs
are then operationalized into the metrics (observations)
that are collected in the experiment itself.

We can use Figure 1 to indicate the source of different
threats to experimental validity. The arrows represent
inferences (assumptions) made by the researcher that may
or may not be valid in a given study. Arrows from theory
to observation (experiment) represent the source of
potential construct validity problems. That is, were the
program (experimental treatment) and the observations
(experimental metrics) an accurate operationalization of
the theoretical cause and effect constructs? Likewise, the
arrow from program to observation represents the source
of potential internal validity problems. That is, were the
observations really produced by the program
(experimental treatment)?

The assumptions in Section 2 arise from the potential
mismatches between theoretical concepts and concrete
representations. The assumption that experience measures
are valid (people) is really an assumption that the
theoretical construct, experience, was accurately
operationalized into a concrete set of experience metrics.
For example, is amount of experience (number of
projects) an accurate representation of expertise (task
proficiency)? The assumption that the training was
adequate (process) is really an assumption that the
training lecture was an accurate representation of the base
knowledge needed to effectively use the process. For
example, did the training lecture focus spend the
appropriate amount of time on each topic? The
assumption that the artifact format was appropriate
(product) is really an assumption that the concrete
representation of the author’s mental model of the domain
(the format of the artifact) allowed the reader of the

Figure 1 –Theoretical Constructs Used in

Experimentation [17]

artifact to process information more easily than another
representation would. For example, does breaking up
user-level functions into smaller units help in
understanding the artifact?

For each of the three objects, an important
consideration is balancing the various threats to validity.
Increasing the internal validity often reduces the external
validity. Controlling internal validity too much, at the
expense of external validity, can affect the construct
validity of the experiment. For example, if a researcher
constrains the domain of the artifacts too much, the
subjects’ prior knowledge of the world may conflict with
the arbitrary bounds and constraints of domain of the
artifact. In this situation, construct validity is challenged
because the mental models formed by the subjects may be
different from those assumed by the researcher.

Therefore, there is a tradeoff between internal validity,
external validity, and construct validity. A researcher
must typically choose to emphasize one of the three types,
but has to also consider the other two types during the
planning of a study. As the study focus changes, and with
it the impact of the assumptions, these tradeoffs must be
reassessed to optimize overall validity.

Section 4 describes a people-focused study. In our
previous studies, there was some variation in the
individual performance of the subjects, so by running a
people-focused study we hoped to better understand that
variation. We did not fully understand the impacts of
changing the study focus from process to people until the
conclusion of the study. Section 5 describes the impact of
the assumptions on the validity of the study.

4. The Study

The main goal of this study was to understand the
effects of reviewers’ experience on process use. In
changing from a process-focused study to a people-
focused study we faced new questions about the impact of
the assumptions. This section provides an overview of the
study necessary for the discussion of assumptions in
Section 5. We provide a complete discussion including all
of the results elsewhere [7].

4.1 Background

The selection of inspectors based on individual
characteristics, such as software development experience
and domain experience, has an impact on the defects
found in an inspection. It has been suggested that a
detailed requirements inspection technique might
neutralize the defect detection benefit of development
experience [5]. Jose Maldonado hypothesized, based on a
study conducted in Brazil, that if a technique is too
detailed, and an experienced developer follows the

technique, he or she may find fewer defects than with a
less detailed technique that allowed him or her to use their
expertise [J. Maldonado, personal communication, July
2002].

To address these issues, this study was run to
understand the interaction between an inspector’s
software development experience and the amount of
detail in their inspection technique. The overall
hypothesis of the study was:

To be effective, the level of detail in a technique must
be tailored based on the inspector’s experience.
More experienced inspectors need less detail while
less experienced inspectors need more detail.

To evaluate this hypothesis, we had to accurately
measure the people (subjects’ experience), the process
(the quality of their training in the technique), and the
product (the appropriateness of the inspected artifact, its
defects, and their distribution).

4.2 Study Design

4.2.1 Subjects. The subjects of the study were 22 students
in a graduate level, software engineering class at the
University of Maryland.

4.2.2 Materials. The subjects inspected a requirements
document for a Parking Garage Control System (PGCS)
for managing a parking garage. The system was
responsible for keeping track of monthly and daily (pay
for each use) parking tickets and only allowing cars to
enter the garage if there was space available. The PGCS
requirements document had 17 pages, which included 21
functional and 9 non-functional requirements. There were
thirty-two defects, some were seeded by the
experimenters and some occurred naturally.

Each subject used one of two versions of Perspective
Based Reading (PBR), a requirements inspection
technique. In PBR, each inspector assumes the
perspective of one of the requirements stakeholders, e.g.
end user, designer, or tester. The inspector then creates a
model of the requirements, which is an abstraction that is
relevant to the stakeholder represented by that
perspective, e.g. a tester would create a set of test cases.
The inspector also is given a series of questions to answer
to help uncover defects [2].

The first version of PBR was a high-level version that
provided the inspectors with general guidelines about
creating the abstraction model. It did not instruct the
inspector on how to construct the model but relied on the
inspector’s software development expertise to create the
model. The second version was a step-by-step version
that provided detailed instructions for creating the
abstraction model. It relied less on the inspector’s
software development expertise.

4.2.3 Procedure. The subjects were initially given a
questionnaire to gather their background and experience
in different software development tasks relevant to the
PBR perspectives and in different application domains.
Because there were not enough subjects to use more than
one perspective, the results of the questionnaire allowed
us to choose the tester perspective as the one with the best
ratio of experienced to inexperienced subjects.

We developed a criterion, a priori, for splitting the
subjects into two experience groups. We chose the
criterion that high experience subjects (Group H) would
be those with experience testing on at least one industrial
project and low experienced subjects (Group L) would be
those with industrial testing experience on either 0 or 1
project. The responses to the background questionnaire
placed approximately 1/3 of the subjects were in Group H
and the other 2/3 in Group L.

Table 1 shows how the techniques were assigned to
the inspectors. The high-experience subjects (Group H)
were all given the high-level version of PBR, because
they were able to rely on their expertise to create the test
cases. There were twice as many low-experienced
subjects (Group L), so they were divided into two groups
(Groups L1 and L2). Subjects in Group L1 received the
step-by-step version of PBR, because they were not able
to rely on their expertise to create the test cases. Subjects
in Group L2 received the high-level version of PBR so
they could act as a control group.

The training covered two class periods. On day one,
the subjects received an hour of training on inspections,
defects, and reading techniques in general. On day two,
all of the subjects received 30 minutes of training on the
goals and theories of PBR. Finally, the subjects received
another 20-30 minutes of training on their assigned
version of PBR.

4.2.4 Data Collection. While performing the inspection,
the subjects recorded defects on a standard defect report
form. At the completion of the inspection, the subjects
were given two questionnaires where they could discuss

their experiences and problems using PBR and anything
they had learned by conducting the inspection.

4.3 Results

The hypothesis posed in Section 4.1 was decomposed
into three testable hypotheses.

H1 The subjects from Group H would be more
effective and efficient than the subjects from
group L2 (the control group).

This hypothesis was testing whether the expertise of
the subjects in Group H would result in improved
performance over the subjects in Group L2.

H2 Subjects from Group L1 would be more
effective and efficient than subjects from
Group L2.

This hypothesis was testing whether, for low
experienced subjects, the increased detail in the technique
used by the subjects in Group L1 would improve their
performance over the subjects in Group L2.

H3 Subjects from Group H would be more
effective and efficient that high experience
subjects from a previous study who used the
step-by-step version of PBR.

This hypothesis was testing whether, for high
experienced subjects, less detail in the technique used by
the subjects in Group H would results in improved
performance over the subjects from a previous study.

Table 2 shows that the data do not support H1 and H2.

The subjects from group L2 were more effective than
both the subjects from H and the subjects from L1. The
subjects from H were more efficient than the subjects
from L2, but the difference was not significant.

To evaluate H3, we used the data from a previous
study in which high experienced subjects inspected the
PGCS requirements document using a more complex
step-by-step version PBR than was used in this study. In
that study, the average defect rate was 26.7% with an
efficiency of 1.9 defects/hour. In terms of effectiveness,
the data does not support H3. Conversely, the subjects
from group H were significantly more efficient than the
historical subjects (4.9 defects/hour).

Based on our previous experience we expected the data
to support, rather than contradict our hypotheses. To
understand why our expectations were not met we
performed a root cause analysis. We chose to focus our
analysis on the assumptions because our expectations
were based on the veracity of those assumptions.

Table 1 – Experimental Groups
Group H L1 L2

Experience High Low Low

PBR
Technique

High-level
Version

Step-by-
Step

Version

High-level
Version

Abstraction
Model

Not
Provided Provided Not

Provided
Number
Subjects 6 10 6

Table 2 – Raw Data
Group H L1 L2

Defect Rate 21.6% 20.6% 26.5%
Efficiency

(defects/hour) 4.9 2.6 4.2

5. Discussion of Assumptions

Many of the human experience characteristics were not
directly measurable, so it was necessary to measure them
indirectly. This indirect measurement caused several
assumptions to depend on the reliability and validity of
the measures. Reliability is the consistency or
repeatability of a measurement (i.e. the likelihood that the
same results will be obtained if the measure is repeated).
Validity is the accuracy of a measurement (i.e. the
proximity to the true value) [17].

Figure 2 illustrates the difference between reliability
and validity. The center of the bull’s-eye is the true value
the measurement tries to obtain. The dots represent actual
measurements. A cluster of measurements indicates a
reliable measure, because successive measurements
obtained similar values. A set of measurements with an
average that is close to the true value indicates a valid
measure that is likely to provide an accurate value [17].

Defect detection rate is likely a valid measure of defect
detection ability, but it is not very reliable. It can fluctuate
based on several factors other than a subject’s ability.
Alternatively, a self-reported number of years of
experience in testing is likely a reliable measure –
subjects should give the same answer if asked the
question again. Yet, it is not clear that it is a valid
measure of true testing skill. The quantity of experience
(number of years) may not necessarily translate into the
quality of experience (expertise).

As the focus of our experiments shifted from processes
(e.g. [2, 5, 16]) to people, the assumptions discussed in
Section 2 begun to impact different types of threats to
validity. In this section, we will discuss the assumptions
made about people, products and processes and their
impact on the validity of the study.

5.1 People

There were two assumptions made about people. These
assumptions arise frequently when dealing with human
subjects.

People_1) Our experience measure and grouping

criterion were valid.

People_2) The amount of experience reported by
the subjects was reliable and valid.

5.1.1 Assumption People_1. People_1 impacts the
construct validity of the study. Our theoretical concept
stated that experience as a tester would improve the
effectiveness of an inspector. That concept of experience
was not directly observable, so it was operationalized it
into observable metrics. The operationalization had two
factors: location (industry vs. school) and amount
(number of projects). Specifically, we assumed that
someone with experience in industry was more
experienced than someone with experience in the
classroom and that a greater number of projects indicated
more experience than a smaller number of projects.

The study results showed little difference in the
effectiveness of subjects with low testing experience and
the subjects with high testing experience. In fact, the
subjects from Group L2 were the most effective of all the
subjects. This result cast doubt on the veracity of our
assumption about experience.

The qualitative data from the study also indicated that
our measure of testing experience and our criterion for
grouping did not seem to correspond to our theoretical
concept of experience:

1) Of the six subjects in Group H, two stated that
the training needed more examples of creating
test cases. Four stated that there were not enough
details in the technique.

2) All of the high experience subjects reported that
they needed additional background, which was
not included in the lecture, in order to understand
and use the technique.

These two results would not be expected from
experienced testers so we concluded that the subjects who
we classified as having high experience might not have
had high experience. Possible reasons for the
misclassification of subjects are the metric “number of
projects” was not a valid operationalization of expertise,
our criterion for grouping subjects was not a valid break
point along the theoretical continuum of experience, the
type of testing experience possessed by the subjects did
not match up with that needed for the exercise, or we
simply did not capture the right kind of experience.

We believe that experience is important, but it is not
always clear how to operationalize experience into a
metric. For example, which experiences are truly
important? Is number of projects really the correct
measure? We are interested in a subject’s ability to
effectively perform a particular task, not necessarily how
long they have been doing that task. Thus, one subject
might become proficient in a day, while another subject
might not become proficient even after years of
experience. In this study, the amount of experience was
not a good proxy for proficiency.

Figure 2 – Measure Validity and Reliability [17]

5.1.2 Assumption People_2. The potential for lack of
accuracy in self-reported data arises from two sources.
First, when asked to rate themselves, people often
overestimate their experience. In a recent study, the
correlation between self-reported ability and tested ability
was less then 20% [13]. Second, some questions can be
interpreted in multiple ways. Thus, two subjects with the
same actual experience level might rate themselves
differently.

The subjects were asked to report their experience in
various aspects of software development at the classroom
and industrial level. The definition of “experience” was
ambiguous and open to interpretation. For example, does
testing experience on one project in industry mean that
the subject was the main tester for that project or that the
subject performed some minor testing activities on one
project? These two interpretations are very different.

Application domain knowledge was also obtained
through self-reported data. On a post-experiment
questionnaire, the subjects were asked to give examples
of places where the information in the requirements was
new or different from what they expected. Two items
seemed to make a difference on defect detection
effectiveness, the inspector’s mental model of a parking
garage, and the model presented in the requirements. The
average defect rate for the six subjects who stated that
their mental model of a parking garage was in conflict
with the model in the requirements document was 18.8%;
while the average defect detection rate of the seven
subjects who said the requirements document helped them
clarify their mental model was 25.5%. This difference
was not statistically significant, but suggests a potential
influencing factor for defect detection rate.

When the inspected artifact operationalizes the domain
information in different way than the inspector’s
theoretical model, there seems to be difficulty during the
analysis. When the subject’s theoretical model of the
domain is clarified by the operationalization, then the
inspector seems to do well. This result may reflect either
better synthesis of the new information by the subjects
due to innate ability, or an inherent problem with new or
different domains that inhibits detection ability.

5.1.3 Tools to address assumptions. To reduce the
uncertainty in these assumptions we recommend using
more objective measures of subject experience. One
potential method is using a pre-test and/or post-test.
Instead of using self-reported experience, a pretest or
posttest could allow subjects to be grouped based on a
more objective evaluation of their experience.
Furthermore, this objective test could also help account
for the secondary variables. Another recommendation for
addressing this assumption is better validation of the
background survey [10]. By accurately characterizing the

subject population, researchers can determine the
likelihood that confounding factors are present.

Overall, the people assumptions impacted the internal
and construct validity of our people-focused study. False
assumptions about subject experience have forced us to
question the accuracy of our study results. We need to
develop better methods for collecting the true experience
of subjects.

5.2 Processes

There were two assumptions made about the process:

Process_1) The training was adequate for the

subjects to become competent in using
PBR.

Process_2) The subjects followed the PBR process.

5.2.1 Assumptions. These assumptions impact two
threats to validity, internal and construct. The threat to
internal validity is present based on the assumption that
the training was effective. One technique might be ten
times more effective than another, but if the training is
ineffective, and the technique is not used properly, that
difference may not be seen. The threat to construct
validity of the process is present because a training lecture
can provide knowledge of the technique, but it is more
difficult to guarantee that it provides skill development in
the technique. The training is the operationalization of the
technique as a theoretical construct. Furthermore, it is also
difficult to ensure that subjects who were adequately
trained actually follow the process.

Overall, the subjects indicated that the training was
adequate, with only one subject from each of the three
treatment groups indicating that the training was
insufficient. However, the subjects did indicate some
desired improvements in the training. Half of the subjects
who were trained in the step-by-step version of the
technique needed more examples to better understand the
details of the technique. One-third of the subjects trained
on the high level version of the technique needed more
details about creating test cases. Furthermore, many of the
subjects said that they needed additional knowledge they
did not possess, e.g. about testing in general, about the
specific abstraction model used in PBR, and about the
application domain. While self-reported experience levels
may be unreliable (see Section 5.1.3), self-reported
observations are a valid representation of a person’s
opinion.

The researcher must decide whether the overall goal of
the training is to provide the subjects with an
understanding of the theory behind the technique and its
applicability; or to equip the subjects to effectively use
the technique. The two contrasting goals require different
training approaches. If the goal is for the subjects to

acquire knowledge about a technique, then classroom
lectures including theory and proofs of correctness are
more appropriate. If the goal is for the subjects to be able
to effectively use the technique, then more laboratory
sessions where the subjects can practice the technique and
receive expert feedback should be provided.

5.2.2 Tools to address assumptions. Once the goal of the
training has been identified, then Proc_1 can be
addressed. One method for addressing this type of
assumption is use of a pre-test/post-test design. The
knowledge and skill of the subjects can be measured prior
to training and then again after training to determine what
they have learned. Conversely, an evaluation test could be
created that would rate the knowledge and skill level of
each subject based on an objective measure. Finally,
subjects could be kept in the training process until they
reach a certain level of knowledge and skill. Whichever
method is chosen, the goal is to know, rather than assume,
the impact of the training.

5.3.3 Evaluation of tools. In this study, we piloted the
use of a more objective measure to look at the
effectiveness of our training. We developed two
requirements excerpts that could be used as a pretest and a
posttest for the subjects to complete before and after the
training session. The goal was to measure the
improvement of the subjects from the pretest to the
posttest.

We attempted to make the pretest and the posttest
comparable. We identified three types of requirements,
one that had an obvious defect, one that had a subtle
defect, and one that had no defect. We placed one
requirement of each type in the pretest and in the posttest.
Furthermore, we gave the pretest and the posttest to an
independent reviewer to help us determine if they were of
approximately equal difficulty.

Despite these efforts, as Table 3 shows, the percentage
of subjects that correctly identified each type of
requirement for each of the two requirements excerpt
were not equal. We underestimated the effort necessary to
create a valid pretest and posttest. Our experiences point
out the difficulties involved in creating valid pretests and
posttests for measuring the effectiveness of the training.

5.3 Products

There were three assumptions made about the
products:

Product_1) The format of the artifact was useful.
Product_2) The defects were reasonably

independent and a good representation
of actual defects.

Product_3) The scope of the problem was realistic.

Prod_1 and Prod_2 are related to construct validity.
The format of the artifact is assumed to be a rational
operationalization of the author’s theoretical model of the
domain. If the format of the artifact is too different than
what is normally seen in industry, additional validity
problems could arise. A defect is a construct of a
theoretical belief of an error in a software artifact. The
scope of the problem is related to the external validity of
the study.

5.3.1 Assumption Product_1. This assumption arises
from the fact that the requirements were formatted such
that the steps necessary to achieve a user level function
were broken up into smaller functional units. Therefore,
several numbered requirements must be read together to
understand a single function. Furthermore, the artifact did
not provide a description of the system structure. The
results of the study indicated that those subjects who felt
that the format was helpful were less effective in finding
defects than those who saw the format as problematic.
These results echo the divergence between subjective
assessment and objective reality found in the Cleanroom
experiments [15].

5.3.2 Assumption Product_2. This assumption arose
because the results of this study rely on the percentage of
defects found. One method for understanding the defect
quality is to obtain feedback from the subjects. At the
conclusion of the study, the subjects were provided with
the master defect list and asked to indicate whether they
agreed or disagreed that each item on the list was a true
defect, and to explain why. There were some
disagreements as to what constituted a true defect. One of
the interesting results was that we also asked the subjects
to indicate which of the defects on the master list they
believed they reported during their inspection. There were
many cases where the subjects indicated they had found a
defect that the experimenters had not given them credit
for and vice versa. The results of this exercise further
indicate the mismatch between the constructs of the
experimenters and those of the subjects. Both the parking
garage concepts and the requirements defects concepts
were different among the subjects.

Table 3 – Pretest/Posttest Results
Req. Type Excerpt 1 Excerpt 2
No Defect 24% 20%

Obvious Defect 30% 90%
Subtle Defect 44% 37%

5.3.3 Assumption Product_3. The third assumption
arose because the scope of the “toy” problems that must
be used in this type of study is artificially smaller than it
would be in the real world. Qualitative data was collected
to understand the subjects’ opinion of the scope of the
inspected artifact. Over half of the subjects found
something new or unfamiliar in the document showing
that the domain was not as familiar as we had assumed.
Like people and their mental models, textual documents
also have unobserved attributes. A defect is an
unobservable attribute of a software artifact because the
reviewer must make an inference using their existing
knowledge and the text to find a defect.

The subjects were evenly divided in their opinions
whether the scope of the requirements was well defined
and whether there was enough information in the
document to continue to design and build a system. The
defect detection rate for each group reveals a more
interesting result. Those subjects who felt the
requirements did not adequately describe the scope of the
project found fewer defects than those who felt the scope
was well defined. This result suggests that subjects who
were less certain of system boundaries might have
assumed that information left out was outside of the scope
and therefore not a defect. More interestingly, those who
felt that there was not enough information present to start
the design found more defects than did those who felt
there was enough information. It is not clear whether the
subjects understanding of the problems with the
requirements caused this result or if it was caused by
some other factor.

5.3.4 Tools to address assumptions. In addition, there
are several other avenues to pursue in characterizing and
evaluating artifacts. First, any experiment involving an
artifact as complex as a requirements document, even for
a “toy” problem, must be pilot tested. Second, if multiple
artifacts are used in a study, then pilot studies should be
run to ensure that the defects seeded in each artifact are
comparable. Third, requirements defects are more
subjective than code defects, so researchers should
remember that a defect is an operationalization of a
theoretical concept. Finally, other issues that can affect
construct validity include overall document size, defect
density, defect realism, and defect type distribution. Thus,
a proper operational definition (or a correct defect
seeding) is critical for producing valid conclusions about
defect detection.

6. Conclusions

Table 4 summarizes the lessons learned about
assumptions. These lessons are extracted from the
discussion in Section 5. Each lesson is characterized

based on whether it applies to People, Products, or
Process or to more than one object.

Table 4 – Lessons Learned

Object Lesson Learned
People The amount of experience is not a good

proxy for expertise
People Experience should be objectively measured,

rather than subjectively self-reported
Process Subjects should be objectively evaluated

after training to ensure competence
Product If the measurement objective (such as

defect) is not well defined, it can be
interpreted differently by experimenters and
subjects.

Multiple A large amount of efforts is required to
create valid pretests and posttests

When1 designing software engineering studies, it is

critical for researchers to add a step to their process in
which they identify any assumptions they are making. As
assumptions are identified, every effort should be made to
address or eliminate them. Not all assumptions will be
able to be addressed, so the assumptions that are not
addressed, should be explicitly included in any discussion
of the experiment. It is important to realize the effect the
assumptions have on the internal validity, external
validity, and construct validity of a study. While the
discussion in this paper focused on a classroom study,
there is no reason that the general conclusions cannot
apply to studies in an industrial setting. Some of the
specific assumptions and constructs might change, but
there will still be a relationship between assumptions and
threats to validity.

Many of the assumptions we made in this example
turned out to affect construct validity. For experimental
software engineering as a whole, it is important to pay
attention to this class of validity criteria. Researchers
must understand the theoretical constructs that they are
operationalizing in their studies and seek to create
comparable representations. Researchers in the social
sciences have dealt with the problem of experimenting
with unobservable constructs such as experience in other
domains. We, as software engineering researchers, should
take advantage of their work to improve our experiments.

As we move to a deeper level with our studies and
begin to focus on the people and the products as well as
the processes, we have to consider more issues. We need
to develop and use pretests and posttests to evaluate both
the experience of the subjects and the effectiveness of the
training. We also need to mature the method for gathering
feedback about the set of defects used in our studies.

We realize that it is not feasible to think that all
possible assumptions can be eliminated from every
software engineering experiment. But, we currently have

a very cursory understanding of these assumptions and
their consequences. Even if an assumption cannot be
eliminated, it is still important to identify and discuss the
assumption. This discussion will allow other researchers
to more accurately interpret our results. Furthermore,
researchers may be encouraged to replicate studies in
which they believe they can address an assumption that
identified but not addressed in the original study

We intend to focus our next experiments on the
products. In doing so, we will continue to mature in our
use of pretests and posttests and we will continue to
develop our method of gathering feedback from the
subjects on the reality of our seeded defects.

7. Acknowledgements

This work has been partially supported by the NSF-
CNPq Readers’ Project (CCR-9900307). We would like
to thank the reviewers for their insightful comments that
have helped to improve this paper. We would like to
thank the members of the CMSC 735 class in Fall 2002
semester at the University of Maryland for participating in
the study.

8. References

[1] Basili, V. and Reiter, R. “An Investigation of Human
Factors in Software Development,” IEEE Computer,
1979.

[2] Basili, V., Green, S., Laitenberger, O., Shull, F., Sivert,

S., and Zelkowitz, M. “The Empirical Investigation of
Perspective-based Reading.” Empirical Software
Engineering: An International Journal, 1(2): 133-164.

[3] Basili, V., Shull, F. and Lanubile, F. “Building

Knowledge Through a Family of Experiments.” IEEE
Transactions on Software Engineering, 25(4): 456-473.
1999.

[4] Campbell, D. and Stanley, J. Experimental and Quasi-

Experimental Designs for Research. Houghton Mifflin
Company, Boston. 1963.

[5] Carver, J., Shull, F., and Basili, V. “Observational

Studies to Accelerate Process Experience in Classroom
Studies: An Evaluation.” In Proceedings of 2003 ACM-
IEEE International Symposium on Empirical Software
Engineering (ISESE 03).

[6] Carver, J. “The Impact of Background and Experience

on Software Inspections.” PhD Thesis, University of
Maryland, April 2003. (Also, University of Maryland,
Department of Computer Science Technical Report CS-
TR-4446).

[7] Carver, J., Van Voorhis, J., and Basili, V. “Investigating
the Interaction Between Inspection Process Specificity
and Software Development Experience.” University of
Maryland, Department of Computer Science, Technical
Report CS-TR-4532.

[8] Cook, T. and Campbell, D. Quasi-Experimentation:

Design and Analysis Issues for Field Settings. Boston:
Houghton Mifflin Co., 1979.

[9] Judd, C., Smith, E., and Kidder, L. Research Methods in

Social Relations, sixth ed. Harcourt Brace Jovanovich.
1991.

[10] Messick, S. (1995). Validity of psychological

assessment: Validation of inferences from persons'
responses and performances as scientific inquiry into
score meaning. American Psychologist, 50, 741-749.

[11] Parnas, D. and Weiss, D. “Active Design Reviews:

Principles and Practice.” Proceedings of 8th International
Conference on Software Engineering, 1985. p. 132-136.

[12] Porter, A., and Johnson, P. “Assessing Software Review

Meetings: Results of a Comparative Analysis of Two
Experimental Studies.” IEEE Transactions on Software
Engineering, 23(3): 129-145, 1997.

[13] Powers, D. E. “Self-assessment of Reasoning Skills.”

Educational Testing Service. Research Report RR-02-22.
2002.

[14] Sauer, C, Jeffery, R., Land, L., and Yetton, P. “The

Effectiveness of Software Development Technical
Reviews: A Behaviorally Motivated Program of
Research.” IEEE Transactions on Software Engineering,
26(1): 1-14. 2000.

[15] Selby, R., Basili, V., and Baker, T. “Cleanroom Software

Development: An Empirical Evaluation.” IEEE
Transactions on Software Engineering, 13(9): 1027-
1037

[16] Shull, F. Developing Techniques for Using Software

Documents: A Series of Empirical Studies. PhD Thesis,
Computer Science Dept., University of Maryland. 1998.

[17] Trochim, W. The Research Methods Knowledge Base,

2nd Edition. Internet WWW page, at URL:
trochim.human.cornell.edu/kb/index.html (version
current as of August 02, 2000).

[18] Weinberg, G. M. (1998). The Psychology of Computer

Programming Silver Anniversary Edition. New York,
Dorset House Publishing.

[19] Zelkowitz, M. and Wallace, D. “Experimental Models

for Validating Computer Technology.” IEEE Computer,
31 (5): 23-31. 1998.

