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Abstract 

Collecting development data automatically is difficult in 
this era of ubiquitous home computing. This paper 
describes our efforts in the High Productivity Computing 
Systems project to better calculate effort data among a set 
of student programming exercises. 
 
1. Introduction 
As in other types of software development, the usual goal 
of developing codes in High Performance Computing 
(HPC) is to arrive at the solution of a problem with 
minimal effort and time. Thus, an important metric for 
evaluating various approaches to code development in 
HPC is “time to solution,” encompassing both the effort 
required to understand and develop a solution as well as 
the amount of computer time it takes to execute that 
solution and arrive at an answer. 

Metrics and even predictive models have already been 
developed for measuring the code performance part of 
that equation, under various constraints (e.g. [4, 8]). 
However, little empirical work has been done to date to 
study the human effort required to implement those 
solutions. As a result, many of the practical decisions 
about development language and approach are currently 
made based on anecdote, “rules of thumb,” or personal 
preference. Researchers in the HPC community associated 
with DARPA’s High Productivity Computing System 
(HPCS) project1 have decided that it is important to begin 
to understand empirically whether or not the general 
assumptions that are guiding decision-making are true. 

As a first step in this direction the members of HPCS 
are executing a series of empirical studies. The overall 
goal is to study the human effort required to develop 
solutions to various problems using different HPC 
approaches and languages. As data is collected about the 
implementation of various solutions, the amount of effort 
necessary for various applications and various approaches 
can be characterized. This data will allow heuristics to be 
developed to decide which approach(es) should be used in 
a given environment. These heuristics will provide a more 
rigorous basis for making the decisions that are currently 
being made without empirical evidence. 

                                                 
1 http://www.darpa.mil/ipto/programs/hpcs/index.htm 

This type of empirical research is novel for the HPC 
community, so we have begun by conducting some pilot 
studies to debug the experimental methods and 
techniques. In this position paper, we briefly describe our 
efforts to date to adapt mechanisms for measuring 
developer productivity to the HPC domain, along with 
aspects of the HPC domain that pose unique – and not yet 
completely solved - problems.  

 
2. Survey of past approaches 
Collecting effort data in this age of ubiquitous personal 
computers is hard, and working in an HPC-specific 
environment complicates things even further by imposing 
some unique constraints. We are finding that methods that 
have been used in past successful studies of development 
effort are no longer applicable, at least not “out of the 
box.” 
- Method 1: In the 1970s, computers were big and 

expensive. Many users were forced to use the same 
machine as it was the only choice available. 
Collecting data was therefore easy – compilers could 
be instrumented and would catch and report all 
computing activity for later analysis (e.g. [1, 9]). Life 
was easy then. 

- Method 2: A later style of data collection is that used 
in the 1980s and 1990s in NASA’s Software 
Engineering Laboratory. Compilers were not 
instrumented but subjects reported effort manually 
through time sheets. Since this was part of the job 
description and part of training, the resulting data was 
judged to be reasonably accurate. This was sufficient 
to allow correlations to be found between effort and 
other aspects of interest, and several good studies 
resulted [2]. 

Our original thought in planning the HPC pilot studies 
was that the development environment for HPC code 
development would be similar to that described in Method 
1 above (i.e. a single compiler and environment that must 
be used by all users). However, as described below, this 
turned out not to be the case. Almost every subject had 
access to their own computing resources, which were 
easier to access and use than the parallel cluster used for 
the course, and some extra effort on their part seemed well 
worth it in order to use their own resources as much as 



possible and port their code to the cluster as late in the 
process as possible. As it turned out, only final tailoring to 
the parallel cluster and performance tuning on multiple 
processors really had to occur on the parallel machine. 
Even the operating system/development environment, 
which we expected was rare and expensive enough that 
subjects would be forced to use the single machine under 
our control, turns out to be shipped for free with the Linux 
workstation environment. 

 
3. Work to date 
In a pre-pilot study at the University of Maryland, we 
decided to use both manual and automatic data collection 
mechanisms, to begin experimenting with mechanisms 
tailored to HPC code development. In this study, subjects 
were asked to undertake two programming assignments on 
a parallel cluster, using two different development 
approaches: MPI [6] and OpenMP [7]. 15 students in a 
graduate-level High Performance Computing course 
participated. 
 
Manual. We developed a series of forms that subjects can 
use to report their effort and background information. 
Some key variables we asked for include: 
- Educational background (related to HPC 

development); 
- Native language; 
- Prior evelopment experience (overall software 

experience as well as parallel-specific experience); 
- Problem domain experience. 
Perhaps most importantly, we created a log form that 
subjects are asked to use to keep track of the effort spent 
on the project over time and the various tasks they 
performed with that effort: 
- Thinking/planning 
- Coding a serial implementation/Reading and 

understanding the serial code 
- Parallelizing the serial implementation 
- Tuning the parallel code 
- Testing the code 
- Other 
Since the pre-pilot, we have developed tools so that the 
data collection is now entirely web-based, and the effort 
for the user is minimized. 
 
Automatic. To have a more objective way to collect data 
about effort and activities, we created a wrapper 
(consisting of a C program and two Python scripts) for 
both the MPI C compiler and the job submission program. 
When either the compiler or the job submission program 
is invoked, the wrapper logs a timestamp, the user’s name, 
and any flags sent, before passing execution to the 
intended program. Additionally, when the compiler is 
invoked the wrapper logs the entire source file, and the 

user must choose the reason for compilation from a short 
menu consisting of: 
1. Adding functionality (serial code) 
2. Parallelizing code 
3. Improving performance (tuning) 
4. Debugging: Compile-time error on previous compile 
5. Debugging: Crashed on previous run (segmentation 

fault) 
6. Debugging: Hung on previous run (deadlock, infinite 

loop, etc.) 
7. Debugging: Incorrect behavior on previous run (logic 

error) 
8. Restructuring/cleanup (no change in behavior or 

performance) 
9. Other  

The reason chosen is stored along with the other 
information captured for that compile. Post-hoc 
questionnaires and interviews with subjects confirmed 
most subjects did not perceive the instrumentation as 
notably onerous.  

Aside from being asked to choose the reason for 
compilation, the behavior of the wrapped programs is 
indistinguishable to the user from their normal operation. 

We are currently experimenting with ways to 
incorporate the automatic collection tools into a package 
that will be available for other researchers to use with 
minimal tailoring required.  

 
4. Observations 
The automatically- and manually-collected data provided 
different kinds of insight since the data describe different 
levels of granularity. However, although we spent a 
significant amount of time on making sure the data 
mechanisms were easy to use and as unobtrusive as 
possible, there are some seeming anomalies in the data 
that require further investigation.  
 
Summary of automatically-collected data. We 
summarize the data collected via the compiler and job 
submit instrumentation for each subject in Figure 1. 
Although we had at first expected to see a rough parity 
between the number of compiles and the number of times 
the code was run, the data show that there is not 
necessarily any such clear relationship. In the current 
study we were not able to explore the reasons for this, but 
some initial hypotheses do exist.  
A larger number of runs than compiles may indicate: 
o Subjects exhaustively tested their code at various 

points during development, on multiple data sets, 
perhaps as part of performance tuning. 

o A significant amount of development was done off 
the cluster, and the cluster was used mainly for 
accurately measuring code performance.  



The data does show some high-level patterns. For 
Figure 1 
o Subjects had difficulty with the syntax of the job 
scheduler and repeatedly sent jobs that immediately 
came back as errors. 

A larger number of compiles than runs may indicate: 
o Subjects were “thrashing,” i.e. were trying to develop 

the code quickly to turn in the assignment rather than 
optimizing performance or correctness of output. 

o Subjects spent an inordinate amount of time on 
debugging, responding to compiler errors. 

 
Generating workflow descriptions from automatically-
generated data. The timestamp data allowed us to 
understand the chronological series of events and look for 
various workflow patterns in how subjects attacked the 
problem. Specifically, we wanted to see the relation 
between the effort spent on serial versus parallel coding, 
and on functional development versus performance 
tuning. To do this, we mapped the data recorded in the log 
(especially focusing on the “reason for compilation,” 
whose possible values were described in Section 3) to a 
smaller set of activity types: If the user explicitly gave 
"serial", "parallel", "tuning", restructuring", or "other" as 
the reason for compiling, then that was simply used as the 
activity category. Runs were classified as "testing". If the 
user was debugging, then the event was classified based 
on the previous event (e.g. if the previous event had been 
serial, then the debugging was classified as serial work, if 
the previous event had been parallel, then the debugging 
was classified as parallel work, etc.). 

example, Figures 2 and 3 show two different styles of 
iteration through the key tasks of adding serial 
functionality, adding parallel code, testing, and 
performance tuning. 
 
Summary of manually-collected data. We used the 
manually-completed time and activity logs to 
investigate a more full picture of development effort, 
including time spent off of the computer. Results are 
shown in Figure 4. Most interestingly, although the 
total effort reported by subjects through the manual 
logs varied widely in its absolute value, the relative 
distribution among the activities was similar across all 
of the subjects. 
 
Correlating automatic and manual data. To validate 
the accuracy of the data, we tried to correlate the results 
from the two methods. Unfortunately, in doing so we 
find wide discrepancies. The correlation was done 
initially by making estimates about the total effort spent 
by subjects based upon the timestamps recorded in the 
automatically-generated logs. For each subject, the time 

between any two events (either compiles or runs) in the 
log was calculated. If the time interval was less than a 
specific threshold (in this analysis we used 45 minutes), 
that interval was added to the subject’s effort total. As 
shown in Figure 5, no correlation between this estimate 
and the manually-reported data is detectable. 

Furthermore, no such correlation was detected even 
after we accounted for the fact that significant amounts of 
work might have been done off of the instrumented 
cluster. To make the estimate more accurate, emails were 
sent to students after the experiment asking them to 
estimate what percentage of their development effort had 
been spent on the instrumented machine. Based on these 
percentages, the instrumented effort was adjusted, but 
there was still no correlation detected with the manually-
reported effort. 

Puzzled by this discrepancy, we investigated whether 
the days on which effort was spent, reported in the manual 
data, matched the days recorded in the timestamp logs. 
We found several discrepancies, which were not 
consistently associated with particular subjects and which 
did not have a consistent duration. Also, there were no 
obvious “holes” in the timestamp logs when no data was 
recorded for any subject. The only remaining explanation 
seems to be that subjects were simply inconsistent in their 
effort reporting. 

 



 
Figures 2 and 3
New Hypotheses. We viewed this study as a chance to 
generate well-grounded hypotheses in a new area, since 
we had no formal hypotheses prior suitable for testing. 
The data described in this paper is just a sampling, but has 
allowed us to generate hypotheses such as the following 
for future testing: 
o There are four workflows for parallel programming: 

o d1: develop and test in small increments,  
o d2: develop in small increments with a long 

sequence of tests after that,  
o d3: develop in large chunks and test after each 

large development,  
o d4: develop in large chunks with a long 

sequence of tests after each large 
development 

o There is a large variation in the overall amount 
of effort among developers, but the distribution 
among the various activities is similar 

 
5. Future Work 
Our analysis has indicated several difficulties in 
measuring learner effort in HPC tasks: 
o The need to capture effort and activities from 

across several machines, some of which may be 
out of the experimenters’ control. 

o The inherent unreliability of manually-reported 
data. 

o The need to make inferences (based on guesses, 
heuristics, and rules of thumb) to map 
automatically-collected data to our real 
measures of interest, in the absence of an 
accurate source of data for verification. 

Our future work will focus on overcoming these 
challenges. One possibility will be to investigate 
whether we can develop mechanisms for better 

process conformance to the data collection procedures 
(for example, by not letting subjects submit their program 
until all previous data has been submitted).  

One solution we are exploring is to analyze the activity 
data in greater detail, incorporating assumptions about 
chronological order in order to make better estimates 
about the task being undertaken. For example, a lot of 
compiles in rapid succession would suggest debugging, 
while alternating between compile and execution or 
multiple executions in quick succession might suggest 
testing of the code. More ambitiously, if we can pinpoint 

Figure 4 



the differences between successive versions of the code, 
we can develop heuristics about the activity that was 
ongoing in that time period. For example, if the delta 
contains no editing on statements involving parallel 
operations, then we can infer that the subject was doing 
serial coding. 

It may also be the case that we simply need to collect 
more or different data. Philip Johnson’s tool HackyStat 
[5] is one possible answer we are exploring. It can be 
tailored to work with a number of different editors, and 
reports the amount of time an editor is “live,” providing a 
better baseline of overall effort. However, we haven’t 
found a way to cross-index this with specific tasks yet 
(e.g. to know when a subject is parallelizing vs. tuning 
code). We are also considering the use of an extensible 
IDE, like Eclipse [3], that would allow us to collect more 
accurate data. 

In further research, we will broaden our focus to 
industrial and government HPC environments to 
understand how to tailor these methods to for use by 
professional subjects. 
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