
Challenges in Measuring HPCS Learner Productivity
in an Age of Ubiquitous Computing

Sima Asgari1, Victor Basili1,2, Jeff Carver1, Lorin Hochstein1, Jeffrey K. Hollingsworth1, Forrest

Shull2, Marv Zelkowitz1,2
 1University of Maryland, College Park 2Fraunhofer Center Maryland
 {sima,carver,lorin,hollings}@cs.umd.edu {basili,fshull,mvz}@fc-md.umd.edu

Abstract

Collecting development data automatically is difficult in
this era of ubiquitous home computing. This paper
describes our efforts in the High Productivity Computing
Systems project to better calculate effort data among a set
of student programming exercises.

1. Introduction
As in other types of software development, the usual goal
of developing codes in High Performance Computing
(HPC) is to arrive at the solution of a problem with
minimal effort and time. Thus, an important metric for
evaluating various approaches to code development in
HPC is “time to solution,” encompassing both the effort
required to understand and develop a solution as well as
the amount of computer time it takes to execute that
solution and arrive at an answer.

Metrics and even predictive models have already been
developed for measuring the code performance part of
that equation, under various constraints (e.g. [4, 8]).
However, little empirical work has been done to date to
study the human effort required to implement those
solutions. As a result, many of the practical decisions
about development language and approach are currently
made based on anecdote, “rules of thumb,” or personal
preference. Researchers in the HPC community associated
with DARPA’s High Productivity Computing System
(HPCS) project1 have decided that it is important to begin
to understand empirically whether or not the general
assumptions that are guiding decision-making are true.

As a first step in this direction the members of HPCS
are executing a series of empirical studies. The overall
goal is to study the human effort required to develop
solutions to various problems using different HPC
approaches and languages. As data is collected about the
implementation of various solutions, the amount of effort
necessary for various applications and various approaches
can be characterized. This data will allow heuristics to be
developed to decide which approach(es) should be used in
a given environment. These heuristics will provide a more
rigorous basis for making the decisions that are currently
being made without empirical evidence.

1 http://www.darpa.mil/ipto/programs/hpcs/index.htm

This type of empirical research is novel for the HPC
community, so we have begun by conducting some pilot
studies to debug the experimental methods and
techniques. In this position paper, we briefly describe our
efforts to date to adapt mechanisms for measuring
developer productivity to the HPC domain, along with
aspects of the HPC domain that pose unique – and not yet
completely solved - problems.

2. Survey of past approaches
Collecting effort data in this age of ubiquitous personal
computers is hard, and working in an HPC-specific
environment complicates things even further by imposing
some unique constraints. We are finding that methods that
have been used in past successful studies of development
effort are no longer applicable, at least not “out of the
box.”
- Method 1: In the 1970s, computers were big and

expensive. Many users were forced to use the same
machine as it was the only choice available.
Collecting data was therefore easy – compilers could
be instrumented and would catch and report all
computing activity for later analysis (e.g. [1, 9]). Life
was easy then.

- Method 2: A later style of data collection is that used
in the 1980s and 1990s in NASA’s Software
Engineering Laboratory. Compilers were not
instrumented but subjects reported effort manually
through time sheets. Since this was part of the job
description and part of training, the resulting data was
judged to be reasonably accurate. This was sufficient
to allow correlations to be found between effort and
other aspects of interest, and several good studies
resulted [2].

Our original thought in planning the HPC pilot studies
was that the development environment for HPC code
development would be similar to that described in Method
1 above (i.e. a single compiler and environment that must
be used by all users). However, as described below, this
turned out not to be the case. Almost every subject had
access to their own computing resources, which were
easier to access and use than the parallel cluster used for
the course, and some extra effort on their part seemed well
worth it in order to use their own resources as much as

possible and port their code to the cluster as late in the
process as possible. As it turned out, only final tailoring to
the parallel cluster and performance tuning on multiple
processors really had to occur on the parallel machine.
Even the operating system/development environment,
which we expected was rare and expensive enough that
subjects would be forced to use the single machine under
our control, turns out to be shipped for free with the Linux
workstation environment.

3. Work to date
In a pre-pilot study at the University of Maryland, we
decided to use both manual and automatic data collection
mechanisms, to begin experimenting with mechanisms
tailored to HPC code development. In this study, subjects
were asked to undertake two programming assignments on
a parallel cluster, using two different development
approaches: MPI [6] and OpenMP [7]. 15 students in a
graduate-level High Performance Computing course
participated.

Manual. We developed a series of forms that subjects can
use to report their effort and background information.
Some key variables we asked for include:
- Educational background (related to HPC

development);
- Native language;
- Prior evelopment experience (overall software

experience as well as parallel-specific experience);
- Problem domain experience.
Perhaps most importantly, we created a log form that
subjects are asked to use to keep track of the effort spent
on the project over time and the various tasks they
performed with that effort:
- Thinking/planning
- Coding a serial implementation/Reading and

understanding the serial code
- Parallelizing the serial implementation
- Tuning the parallel code
- Testing the code
- Other
Since the pre-pilot, we have developed tools so that the
data collection is now entirely web-based, and the effort
for the user is minimized.

Automatic. To have a more objective way to collect data
about effort and activities, we created a wrapper
(consisting of a C program and two Python scripts) for
both the MPI C compiler and the job submission program.
When either the compiler or the job submission program
is invoked, the wrapper logs a timestamp, the user’s name,
and any flags sent, before passing execution to the
intended program. Additionally, when the compiler is
invoked the wrapper logs the entire source file, and the

user must choose the reason for compilation from a short
menu consisting of:
1. Adding functionality (serial code)
2. Parallelizing code
3. Improving performance (tuning)
4. Debugging: Compile-time error on previous compile
5. Debugging: Crashed on previous run (segmentation

fault)
6. Debugging: Hung on previous run (deadlock, infinite

loop, etc.)
7. Debugging: Incorrect behavior on previous run (logic

error)
8. Restructuring/cleanup (no change in behavior or

performance)
9. Other

The reason chosen is stored along with the other
information captured for that compile. Post-hoc
questionnaires and interviews with subjects confirmed
most subjects did not perceive the instrumentation as
notably onerous.

Aside from being asked to choose the reason for
compilation, the behavior of the wrapped programs is
indistinguishable to the user from their normal operation.

We are currently experimenting with ways to
incorporate the automatic collection tools into a package
that will be available for other researchers to use with
minimal tailoring required.

4. Observations
The automatically- and manually-collected data provided
different kinds of insight since the data describe different
levels of granularity. However, although we spent a
significant amount of time on making sure the data
mechanisms were easy to use and as unobtrusive as
possible, there are some seeming anomalies in the data
that require further investigation.

Summary of automatically-collected data. We
summarize the data collected via the compiler and job
submit instrumentation for each subject in Figure 1.
Although we had at first expected to see a rough parity
between the number of compiles and the number of times
the code was run, the data show that there is not
necessarily any such clear relationship. In the current
study we were not able to explore the reasons for this, but
some initial hypotheses do exist.
A larger number of runs than compiles may indicate:
o Subjects exhaustively tested their code at various

points during development, on multiple data sets,
perhaps as part of performance tuning.

o A significant amount of development was done off
the cluster, and the cluster was used mainly for
accurately measuring code performance.

The data does show some high-level patterns. For
Figure 1
o Subjects had difficulty with the syntax of the job
scheduler and repeatedly sent jobs that immediately
came back as errors.

A larger number of compiles than runs may indicate:
o Subjects were “thrashing,” i.e. were trying to develop

the code quickly to turn in the assignment rather than
optimizing performance or correctness of output.

o Subjects spent an inordinate amount of time on
debugging, responding to compiler errors.

Generating workflow descriptions from automatically-
generated data. The timestamp data allowed us to
understand the chronological series of events and look for
various workflow patterns in how subjects attacked the
problem. Specifically, we wanted to see the relation
between the effort spent on serial versus parallel coding,
and on functional development versus performance
tuning. To do this, we mapped the data recorded in the log
(especially focusing on the “reason for compilation,”
whose possible values were described in Section 3) to a
smaller set of activity types: If the user explicitly gave
"serial", "parallel", "tuning", restructuring", or "other" as
the reason for compiling, then that was simply used as the
activity category. Runs were classified as "testing". If the
user was debugging, then the event was classified based
on the previous event (e.g. if the previous event had been
serial, then the debugging was classified as serial work, if
the previous event had been parallel, then the debugging
was classified as parallel work, etc.).

example, Figures 2 and 3 show two different styles of
iteration through the key tasks of adding serial
functionality, adding parallel code, testing, and
performance tuning.

Summary of manually-collected data. We used the
manually-completed time and activity logs to
investigate a more full picture of development effort,
including time spent off of the computer. Results are
shown in Figure 4. Most interestingly, although the
total effort reported by subjects through the manual
logs varied widely in its absolute value, the relative
distribution among the activities was similar across all
of the subjects.

Correlating automatic and manual data. To validate
the accuracy of the data, we tried to correlate the results
from the two methods. Unfortunately, in doing so we
find wide discrepancies. The correlation was done
initially by making estimates about the total effort spent
by subjects based upon the timestamps recorded in the
automatically-generated logs. For each subject, the time

between any two events (either compiles or runs) in the
log was calculated. If the time interval was less than a
specific threshold (in this analysis we used 45 minutes),
that interval was added to the subject’s effort total. As
shown in Figure 5, no correlation between this estimate
and the manually-reported data is detectable.

Furthermore, no such correlation was detected even
after we accounted for the fact that significant amounts of
work might have been done off of the instrumented
cluster. To make the estimate more accurate, emails were
sent to students after the experiment asking them to
estimate what percentage of their development effort had
been spent on the instrumented machine. Based on these
percentages, the instrumented effort was adjusted, but
there was still no correlation detected with the manually-
reported effort.

Puzzled by this discrepancy, we investigated whether
the days on which effort was spent, reported in the manual
data, matched the days recorded in the timestamp logs.
We found several discrepancies, which were not
consistently associated with particular subjects and which
did not have a consistent duration. Also, there were no
obvious “holes” in the timestamp logs when no data was
recorded for any subject. The only remaining explanation
seems to be that subjects were simply inconsistent in their
effort reporting.

Figures 2 and 3
New Hypotheses. We viewed this study as a chance to
generate well-grounded hypotheses in a new area, since
we had no formal hypotheses prior suitable for testing.
The data described in this paper is just a sampling, but has
allowed us to generate hypotheses such as the following
for future testing:
o There are four workflows for parallel programming:

o d1: develop and test in small increments,
o d2: develop in small increments with a long

sequence of tests after that,
o d3: develop in large chunks and test after each

large development,
o d4: develop in large chunks with a long

sequence of tests after each large
development

o There is a large variation in the overall amount
of effort among developers, but the distribution
among the various activities is similar

5. Future Work
Our analysis has indicated several difficulties in
measuring learner effort in HPC tasks:
o The need to capture effort and activities from

across several machines, some of which may be
out of the experimenters’ control.

o The inherent unreliability of manually-reported
data.

o The need to make inferences (based on guesses,
heuristics, and rules of thumb) to map
automatically-collected data to our real
measures of interest, in the absence of an
accurate source of data for verification.

Our future work will focus on overcoming these
challenges. One possibility will be to investigate
whether we can develop mechanisms for better

process conformance to the data collection procedures
(for example, by not letting subjects submit their program
until all previous data has been submitted).

One solution we are exploring is to analyze the activity
data in greater detail, incorporating assumptions about
chronological order in order to make better estimates
about the task being undertaken. For example, a lot of
compiles in rapid succession would suggest debugging,
while alternating between compile and execution or
multiple executions in quick succession might suggest
testing of the code. More ambitiously, if we can pinpoint

Figure 4

the differences between successive versions of the code,
we can develop heuristics about the activity that was
ongoing in that time period. For example, if the delta
contains no editing on statements involving parallel
operations, then we can infer that the subject was doing
serial coding.

It may also be the case that we simply need to collect
more or different data. Philip Johnson’s tool HackyStat
[5] is one possible answer we are exploring. It can be
tailored to work with a number of different editors, and
reports the amount of time an editor is “live,” providing a
better baseline of overall effort. However, we haven’t
found a way to cross-index this with specific tasks yet
(e.g. to know when a subject is parallelizing vs. tuning
code). We are also considering the use of an extensible
IDE, like Eclipse [3], that would allow us to collect more
accurate data.

In further research, we will broaden our focus to
industrial and government HPC environments to
understand how to tailor these methods to for use by
professional subjects.

6. Acknowledgements
This work is sponsored by the DARPA High Productivity
Computing Systems program.

7. References
[1] V. R. Basili and A. J. Turner, Experiences with A Simple

Structured Programming Language, in Proceedings of the
Fourth Symposium on Computer Science Education, ACM
1974; SIGCSE Bulletin, February 1974.
[2] V. R. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora
and R. Pajerski, Special Report: SEL's Software Process-
Improvement Program, IEEE Software, Volume 12, Number 6,
pp 83-87, November 1995.
[3] Eclipse.org. http://www.eclipse.org/
[4] A. Hoisie, O. Lubeck et al., "A General Predictive
Performance Model for Wavefront Algorithms on Clusters of
SMPs," Proc. ICPP 2000, 219-229.
[5] P. M. Johnson. Hackystat system.
http://csdl.ics.hawaii.edu/Research/Hackystat/.
[6] Message Passing Interface Forum, http://www-
unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0-sf/mpi2-
report.htm
[7] OpenMP Architecture Review Board, OpenMP C and C++
Application Program Interface, Version 2.0, March 2002.
[8] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia A.
Purkayastha, “A Framework for Application Performance
Modeling and Prediction,” Proceedings of SC2002, IEEE, Nov.
2002.
[9] M. Zelkowitz, Automatic program analysis and evaluation,
Second International Conf. on Software Engineering, San
Francisco, CA (October, 1976) 158-163.

Figure 5

