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Abstract 
The High Dependability Computing Program (HDCP) 

project is a NASA initiative for increasing dependability 
of software-based systems. It researches achieving high 
dependability by introducing new technologies. We focus 
on the evaluation of the effectiveness of technologies with 
respect to dependability. We employ empirical evaluation 
methods along with evaluation testbeds. In this paper, 
our technology evaluation approach is described. A 
testbed representative of air traffic control applications is 
used. An experiment to evaluate a technology to for 
identification of architectural violations is presented. 

 
1. Introduction 

Developing high dependability software requires a) 
specifying the dependability requirements of a system, b) 
using development techniques and methods (what we 
will call “technologies”) to build-in high-dependability as 
the product is developed, and c) using technologies to 
verify that the required level of dependability has been 
achieved. 

The work presented in this paper addresses these 
three aspects. The work is part of the High Dependability 
Computing Program (HDCP) project, a NASA initiative 
for increasing dependability of software based systems. 
(See also [16]). The HDCP project proposes and 
investigates achieving high dependability by introducing 
new technologies that are developed by researchers at 
several participating universities and research centers. 

Our (University of Maryland and Fraunhofer Center 
Maryland) particular research focuses on the evaluation 
of the effectiveness of the proposed technologies in 
different contexts with respect to dependability. Our 
evaluation takes into account these techniques’ direct and 
indirect effects on dependability, as well as the cost of 
applying them. For this purpose, we are employing 
empirical evaluation methods along with the concept of 
multilevel evaluation testbeds (described in section 3). In 
this paper we illustrate our technology evaluation 
approach by describing a testbed that is representative of 
air traffic control applications. The dependability model 
developed with the help of our dependability framework 

and corresponding tool is used for fault seeding. The 
technology that is evaluated offers a method for 
identification of architectural violations. 

 

2. Modelling Dependability  
Software dependability has been a research topic for 

the computing community for several decades; however, 
a common definition of dependability is still missing. 

The IFIP WG-10.4 [9] defines dependability as “the 
trustworthiness of a computing system that allows 
reliance to be justifiably placed on the services it 
delivers.” Since “reliance” is contextually subjective and 
depends on a particular stakeholder’s needs in different 
circumstances, our focus is on different properties of 
services such as availability, performance, real-time 
response, ability to avoid catastrophic failures, capability 
of resisting adverse conditions and prevention of 
deliberate intrusions. 

Dependability can be considered an umbrella for 
other system attributes such as reliability, availability, 
safety, survivability, maintainability, and security. 
Achieving systems dependability is a major challenge 
and has spawned many efforts, both at national and 
international level. Some examples are the European 
Dependability Initiative [6], the US Government strategy 
“Trust in cyberspace” [18] and the Critical 
Infrastructures improvement and protection initiatives 
adopted by various countries [13,19].  

Various definitions of dependability are suggested in 
the literature [3,8,10,14]. Rather than stating another 
definition of dependability, we identify a common 
framework for modeling the dependability of a system. 
The framework will allow a dependability modeler to 
capture each individual stakeholder’s specific 
dependability needs in a uniform way.  
 
2.1. A framework for modeling dependability 

There are many different attributes of dependability, 
and each attribute is defined in several different ways in 
the literature. To start our analysis, let us take into 
consideration the following examples of dependability 
attributes: 



o Reliability is an index of how often the system or 
part of it fails 

o Accuracy is the ability of the system to provide data 
within the desired range and with the required 
precision 

o Availability is the degree to which a system or 
component is operational and accessible when 
required for use 

o Security is the capability of the system to resist abuse 
and disaster 

o Safety is the absence of catastrophic consequences on 
the user(s) and the environment caused by the system 
or a component 

o Maintainability is the ability to undergo repairs and 
modifications. 

Based on the above definitions, we observe that 
dependability can be viewed as an index of the issues that 
the system can cause to the users. In other terms, given 
two similar systems, the one that causes fewer and less 
severe issues is the one considered more dependable by 
its users. In particular, based on the above definitions, we 
recognize two kinds of issues: 
• Failure is any departure of the system behavior from 

the one expected by users (see, for example, 
definitions of reliability and accuracy). 

• Hazard is a state of the system that can lead to 
catastrophic consequences for the user(s) and the 
environment (see definition of security).  

From the above definitions (see, for example, 
definitions of reliability and availability), we can also 
observe that the issues caused to the users by a system 
could result from the misbehavior of the whole system or 
of part of it, for example, a service or component. Thus, 
we can characterize an issue in terms of the part of the 
system that it affects (scope), for example, by defining 
the scope as: 
• The (whole) system, or 
• A service (a functionality delivered by the system). 

Then, we recognize that some failures are the results 
of some external events (see, for example, the definition 
of security). Thus, the concept of external event emerges 
as another common and independent item across the 
different definition of dependability attributes. Each 
dependability attribute can in fact be defined in terms of 
some kind of issues (failure or hazard) affecting the 
whole system or part of it (the scope), due or not due to 
some external events. 

So far, we have introduced three main building blocks 
of dependability: the ISSUE (failure and or hazard) that 
is a threat to dependability, the possible EVENT that may 
cause the issue and the part of the system (SCOPE) 
affected by the issue. These three parameters provide us 
with a generic framework for building qualitative 

definitions of dependability, or, in other terms, to specify 
the failures and the hazards that we do not want to occur. 

Although useful this is only partly valuable, given 
that failures and hazards will always be likely to happen. 
For this reason, it is important to introduce the possibility 
of expressing a measure of dependability, or, in other 
terms, to specify the tolerable manifestations for the 
identified failures and the hazards. This allows the 
stakeholders not only to identify the undesired failures 
and hazards for the system or a specific service, but also 
to quantify what they assume to be tolerable 
corresponding manifestations. The framework can easily 
address such a need. It is in fact possible to introduce the 
concept of measure as another basic element of the 
framework, an item whose value defines the 
manifestation of the issue. The measure can be expressed, 
for example, as the probability of occurrence of the 
failure over the next time unit (hours, minutes, or 
seconds) or over the next transaction. 

Up to now, we have used the framework to specify 
“negative” non-functional requirements, i.e. to specify 
undesired system behavior, as a whole, or while 
delivering specific services. The framework can be 
extended to enable the stakeholder to provide ideas about 
how or by what means dependability can be improved. In 
other words, while expressing his/her view of 
dependability in terms of acceptable manifestations of 
failures and hazards, the stakeholder may want to specify 
also how the system should react to the issue in order for 
it to be more dependable from his/her point of view. The 
concept of reaction is thus introduced as another basic 
item, through which the stakeholder can describe the 
desired system behavior in case of occurrence of the 
issue. 

Our final dependability framework consists of the five 
main parameters EVENT, ISSUE, SCOPE, MEASURE 
and REACTION. Figure 1 shows the relation between 
these parameters. 

 measure 
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Figure 1 – The dependability modeling framework 
 



2.2. An implementation tool for the framework 
A Web-based tool that implements the framework has 

been developed. Details about the tool are provided in 
[1]. In the following we provide a brief overview of the 
tool’s two main table frames, which collect data from the 
user. 

The Table “Scope” allows the stakeholder to identify 
all the services of the system for which dependability 
could be of concern. For the system and each identified 
service, the stakeholder has to provide an identifier (left 
column), and a brief description (right column). 

 

 
 
The Table Frame “Issue” allows the users to specify 

their dependability needs by identifying potential issues 
(failures and/or hazards), their tolerable manifestations, 
the possible causing events, and the desired system 
reactions. 

 

 
 

3. Technology evaluation testbeds  
We view each new technology that contributes to 

increasing dependability as maturing and passing 
through a series of evaluation milestones, each 
demonstrating its context of effectiveness [15]. These 
milestones are: 

1. Internal set: Typically, internally developed 
set of examples on which the technology 
researcher has applied the technology. 

2. Milestone 2. Basic common set: A basic set 
of common examples (testbeds) on which to 

stress and analyze technologies, both 
individually and in groups. 

3. HDCP domain-specific off-line set: 
Domain-specific set of examples, chosen 
from past NASA or NASA-contractor 
projects or from HDCP company projects. 

4. Live examples: This milestone definition is 
specific to a part or all of a system currently 
under development at NASA, a NASA 
contractor, or an HDCP company by mutual 
agreement of all concerned. 

The evaluation milestones apply to all experiments in 
HDCP. The experiment described in this paper brings 
technologies from milestone 1 to milestone 2 using the 
Tactical Separation Assisted Flight Environment 
(TSAFE) testbed. TSAFE is a new system designed to aid 
air traffic controllers in detecting and resolving short-
term conflicts between aircrafts. Conceived at NASA 
Ames Research Center, TSAFE was proposed as a 
component of a larger Automated Airspace Computing 
System, whose goal is to shift the burden of maintaining 
aircraft separation from controllers to computers. The 
TSAFE prototype that we are using as a testbed was 
developed at MIT [5]. It consists of 20,000 lines of Java 
code and performs two primary functions: conformance 
monitoring and trajectory synthesis. 

 
4. Architecture evaluation technique 

Many of the technologies in the HDCP project deal 
with the system’s architecture, which is one of the major 
reasons we decided to start experimenting with this class 
of technologies. Software architecture deals with the 
structure and interactions of a software system.  The most 
basic building blocks of the structure of software 
architecture are components and the interrelationships 
among them.  In addition to structure, behavior is part of 
software architecture.  Constraints and rules describe 
how the architectural components communicate with one 
another.   

A system’s software architecture may be viewed at 
different levels for different purposes. When viewed at 
the highest levels, a system’s architecture is referred to as 
the macro-architecture of the software system.  At lower 
levels of abstraction, it is referred to as micro-
architecture.  Architectural styles and design patterns are 
similar to what Bhansali [2] describes as generic forms of 
software architecture. Often architectural styles guide the 
structure and interactions of the system when describing 
the system’s software architecture at the macro-
architectural level.   When describing the structure 
and/or interactions of a system at a micro-architectural 
level, design patterns can be used. 



Software architectural evaluations are investigations 
of a system’s structure and behavior, with the purpose of 
suggesting areas for improvement or understanding 
various aspects of a system (e.g., maintainability, 
reliability, or security).  In many cases, a software 
architectural evaluation is performed before a system has 
been implemented.  Often, this type of evaluation is 
performed to compare design alternatives or to determine 
whether or not the architecture is complete or appropriate 
for the application.  In other cases, a software 
architectural evaluation is performed after the system has 
been implemented.  This type of architectural evaluation 
typically is performed to assure that the actual 
implementation of a system matches the planned 
architectural design [17]. Some of the technologies in 
HDCP evaluate architectures before implementation, 
some after. The technology discussed in this paper is of 
the latter kind and is called Implementation-oriented 
software architectural evaluation. Since this type of 
software architectural evaluation is performed after a 
version of the system exists, it can utilize data measured 
from the actual source code and associated 
documentation.  For example, the source code and 
associated documentation can be used to reconstruct the 
actual software architecture in order to compare it to the 
planned or conceptual software architecture. Recovering 
the actual architecture of an implemented system is used 
for risk assessment and maintenance cost prediction as 
well.  The analysis of the actual software architecture can 
be used to evaluate whether the implemented software 
architecture fulfills the planned software architecture and 
associated goals, rules and guidelines.  

Violations of architectural guidelines affect the 
maintainability of the system, which analysis of Mozilla 
showed. The conclusion was “that either its architecture 
has decayed significantly in its relatively short lifetime, 
or it was not carefully architected in the first place” [7]. 

This is not a new problem. In 1969, Lehman found 
that “the main problem of large systems is unintentional 
interaction between components, that require changes to 
the components for their elimination” [11]. The 
observations were formed into a collection of “laws” 
stating, for example, that: “As a program is evolved, its 
complexity increases unless work is done to maintain or 
reduce it” [12]. Brooks added: “all repairs tend to destroy 
the structure, to increase the entropy and disorder of the 
system. Less and less effort is spent on fixing original 
design flaws; more and more is spent on fixing flaws 
introduced by earlier fixes. As time passes, the system 
becomes less and less well-ordered” [4].  Brooks drew the 
conclusion that all systems will eventually require a 
complete redesign as a consequence of this degeneration 
[4].  Maintainability is an important dependability 
attribute because it affects the mean time to repair 

(MTTR) related to the time needed to fix a defect once it 
has been discovered. If the maintainability of a system is 
low then MTTR will be high and the dependability of the 
system will decrease. 
A technology able to detect architectural violations 
increases maintainability of the system and thus increases 
the dependability of the system. 
 
5. Experiment  

We are instrumenting the MIT version of TSAFE and 
using it as a platform for designing and executing the 
following dependability-related experimental activities: 

• Define what dependability means for MIT 
TSAFE, by applying the UMD model described 
in section 2  

• According to this definition of dependability, 
identify potential failures and corresponding 
faults in the code that could cause these failures 

• Identify inputs for executing the software such 
that these faults are exercised and cause failures  

• Seed the code with the identified faults  
• The technology developers formulate their 

hypotheses in terms of faults that can be 
detected by their technology (and possibly the 
impact on dependability) and estimate the costs 
associated with applying the technology 

• Apply the technology and record the detected 
faults as well as the cost of its application. 

• Execute the system (containing these seeded 
faults) and record the occurring failures (as well 
as their frequency of occurrence) 

• Analyze these failures in the context of 
dependability defined in the first step and 
validate or refute the technology hypotheses 

• Estimate the effect on dependability and the cost 
of this technology for the MIT TSAFE testbed 

The outcome of these activities will be: 
• A method for defining dependability 
• A method for designing and performing 

experiments for estimating the effect of a 
technology with respect to dependability and 
cost, for a given system. 

• An example for the application of this method 
• An instrumented testbed for future experiments 

The first experiment will consist of applying and 
evaluating the architecture evaluation technique. The 
goal of the experiment is to determine how the technique 
contributes to increased dependability by detecting faults. 
The first step of the experiment is the characterization of 
the technique, which involves defining classes of faults 
that the technique will detect and formulating the 
techniques’ hypotheses regarding other benefits gained 
when applied. We will seed the testbed with faults for 



this purpose. The need for fault seeding is due to the 
relatively good shape of the test bed and the need to know 
how many faults reside in the system. The current 
version of the testbed is a baseline to which we compare 
faulty versions of the system. We identified faults to be 
seeded based on two strategies: 1) based on failures, 2) 
based on architecture-oriented faults. We conducted a 
hazard analysis in which we identified a set of likely 
system failures derived from the dependability model 
described earlier. For each of the failures, we identified a 
set of plausible faults, making the link between failures 
and faults explicit. We defined a set of fault candidates 
that are related to the architecture of the system. For each 
fault, we identified the impact on the system’s behavior 
and how failure would be detected. These faults will be 
seeded into the system. We are also in the process of 
instrumenting the testbed so that it becomes a testbed in 
such a way that it will be possible to determine the 
internal operational behavior based on traces. 
 
7. Future work 
The future work is to complete the testbed, run the 
experiment, and analyze and interpret the results. If 
necessary, we will then improve the experiment, the 
testbed, and possibly even the technique. The process will 
then be repeated using the same technique for SCRover, 
a testbed developed at University of Southern California. 
We will also apply other techniques such as code 
inspection and determine their ability to detect defects in 
different situations on different testbeds. Based on these 
results and the documented links from these faults to 
failures, we will be able to reason about the impact of 
these technologies on dependability. 
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