

Empirical-based Estimation of the Effect on Software Dependability of a
Technique for Architecture Conformance Verification

Sima Asgari1, Victor Basili1,2, Patricia Costa2, Paolo Donzelli1, Lorin Hochstein1, Mikael Lindvall2,
Ioana Rus2, Forrest Shull2, Roseanne Tvedt2, Marvin Zelkowitz1,2

{basili|sima|donzelli|lorin}@cs.umd.edu;{pcosta|mlindvall|irus|fshull|rtesoriero|mvz}@fc-md.umd.edu

1. University of Maryland 2.Fraunhofer Center for Experimental Software Engineering, Maryland

Abstract
The High Dependability Computing Program (HDCP)

project is a NASA initiative for increasing dependability
of software-based systems. It researches achieving high
dependability by introducing new technologies. We focus
on the evaluation of the effectiveness of technologies with
respect to dependability. We employ empirical evaluation
methods along with evaluation testbeds. In this paper,
our technology evaluation approach is described. A
testbed representative of air traffic control applications is
used. An experiment to evaluate a technology to for
identification of architectural violations is presented.

1. Introduction

Developing high dependability software requires a)
specifying the dependability requirements of a system, b)
using development techniques and methods (what we
will call “technologies”) to build-in high-dependability as
the product is developed, and c) using technologies to
verify that the required level of dependability has been
achieved.

The work presented in this paper addresses these
three aspects. The work is part of the High Dependability
Computing Program (HDCP) project, a NASA initiative
for increasing dependability of software based systems.
(See also [16]). The HDCP project proposes and
investigates achieving high dependability by introducing
new technologies that are developed by researchers at
several participating universities and research centers.

Our (University of Maryland and Fraunhofer Center
Maryland) particular research focuses on the evaluation
of the effectiveness of the proposed technologies in
different contexts with respect to dependability. Our
evaluation takes into account these techniques’ direct and
indirect effects on dependability, as well as the cost of
applying them. For this purpose, we are employing
empirical evaluation methods along with the concept of
multilevel evaluation testbeds (described in section 3). In
this paper we illustrate our technology evaluation
approach by describing a testbed that is representative of
air traffic control applications. The dependability model
developed with the help of our dependability framework

and corresponding tool is used for fault seeding. The
technology that is evaluated offers a method for
identification of architectural violations.

2. Modelling Dependability
Software dependability has been a research topic for

the computing community for several decades; however,
a common definition of dependability is still missing.

The IFIP WG-10.4 [9] defines dependability as “the
trustworthiness of a computing system that allows
reliance to be justifiably placed on the services it
delivers.” Since “reliance” is contextually subjective and
depends on a particular stakeholder’s needs in different
circumstances, our focus is on different properties of
services such as availability, performance, real-time
response, ability to avoid catastrophic failures, capability
of resisting adverse conditions and prevention of
deliberate intrusions.

Dependability can be considered an umbrella for
other system attributes such as reliability, availability,
safety, survivability, maintainability, and security.
Achieving systems dependability is a major challenge
and has spawned many efforts, both at national and
international level. Some examples are the European
Dependability Initiative [6], the US Government strategy
“Trust in cyberspace” [18] and the Critical
Infrastructures improvement and protection initiatives
adopted by various countries [13,19].

Various definitions of dependability are suggested in
the literature [3,8,10,14]. Rather than stating another
definition of dependability, we identify a common
framework for modeling the dependability of a system.
The framework will allow a dependability modeler to
capture each individual stakeholder’s specific
dependability needs in a uniform way.

2.1. A framework for modeling dependability

There are many different attributes of dependability,
and each attribute is defined in several different ways in
the literature. To start our analysis, let us take into
consideration the following examples of dependability
attributes:

o Reliability is an index of how often the system or
part of it fails

o Accuracy is the ability of the system to provide data
within the desired range and with the required
precision

o Availability is the degree to which a system or
component is operational and accessible when
required for use

o Security is the capability of the system to resist abuse
and disaster

o Safety is the absence of catastrophic consequences on
the user(s) and the environment caused by the system
or a component

o Maintainability is the ability to undergo repairs and
modifications.

Based on the above definitions, we observe that
dependability can be viewed as an index of the issues that
the system can cause to the users. In other terms, given
two similar systems, the one that causes fewer and less
severe issues is the one considered more dependable by
its users. In particular, based on the above definitions, we
recognize two kinds of issues:
• Failure is any departure of the system behavior from

the one expected by users (see, for example,
definitions of reliability and accuracy).

• Hazard is a state of the system that can lead to
catastrophic consequences for the user(s) and the
environment (see definition of security).

From the above definitions (see, for example,
definitions of reliability and availability), we can also
observe that the issues caused to the users by a system
could result from the misbehavior of the whole system or
of part of it, for example, a service or component. Thus,
we can characterize an issue in terms of the part of the
system that it affects (scope), for example, by defining
the scope as:
• The (whole) system, or
• A service (a functionality delivered by the system).

Then, we recognize that some failures are the results
of some external events (see, for example, the definition
of security). Thus, the concept of external event emerges
as another common and independent item across the
different definition of dependability attributes. Each
dependability attribute can in fact be defined in terms of
some kind of issues (failure or hazard) affecting the
whole system or part of it (the scope), due or not due to
some external events.

So far, we have introduced three main building blocks
of dependability: the ISSUE (failure and or hazard) that
is a threat to dependability, the possible EVENT that may
cause the issue and the part of the system (SCOPE)
affected by the issue. These three parameters provide us
with a generic framework for building qualitative

definitions of dependability, or, in other terms, to specify
the failures and the hazards that we do not want to occur.

Although useful this is only partly valuable, given
that failures and hazards will always be likely to happen.
For this reason, it is important to introduce the possibility
of expressing a measure of dependability, or, in other
terms, to specify the tolerable manifestations for the
identified failures and the hazards. This allows the
stakeholders not only to identify the undesired failures
and hazards for the system or a specific service, but also
to quantify what they assume to be tolerable
corresponding manifestations. The framework can easily
address such a need. It is in fact possible to introduce the
concept of measure as another basic element of the
framework, an item whose value defines the
manifestation of the issue. The measure can be expressed,
for example, as the probability of occurrence of the
failure over the next time unit (hours, minutes, or
seconds) or over the next transaction.

Up to now, we have used the framework to specify
“negative” non-functional requirements, i.e. to specify
undesired system behavior, as a whole, or while
delivering specific services. The framework can be
extended to enable the stakeholder to provide ideas about
how or by what means dependability can be improved. In
other words, while expressing his/her view of
dependability in terms of acceptable manifestations of
failures and hazards, the stakeholder may want to specify
also how the system should react to the issue in order for
it to be more dependable from his/her point of view. The
concept of reaction is thus introduced as another basic
item, through which the stakeholder can describe the
desired system behavior in case of occurrence of the
issue.

Our final dependability framework consists of the five
main parameters EVENT, ISSUE, SCOPE, MEASURE
and REACTION. Figure 1 shows the relation between
these parameters.

 measure

manifest

event issue scope

cause concern

reaction

trigger

Figure 1 – The dependability modeling framework

2.2. An implementation tool for the framework
A Web-based tool that implements the framework has

been developed. Details about the tool are provided in
[1]. In the following we provide a brief overview of the
tool’s two main table frames, which collect data from the
user.

The Table “Scope” allows the stakeholder to identify
all the services of the system for which dependability
could be of concern. For the system and each identified
service, the stakeholder has to provide an identifier (left
column), and a brief description (right column).

The Table Frame “Issue” allows the users to specify

their dependability needs by identifying potential issues
(failures and/or hazards), their tolerable manifestations,
the possible causing events, and the desired system
reactions.

3. Technology evaluation testbeds
We view each new technology that contributes to

increasing dependability as maturing and passing
through a series of evaluation milestones, each
demonstrating its context of effectiveness [15]. These
milestones are:

1. Internal set: Typically, internally developed
set of examples on which the technology
researcher has applied the technology.

2. Milestone 2. Basic common set: A basic set
of common examples (testbeds) on which to

stress and analyze technologies, both
individually and in groups.

3. HDCP domain-specific off-line set:
Domain-specific set of examples, chosen
from past NASA or NASA-contractor
projects or from HDCP company projects.

4. Live examples: This milestone definition is
specific to a part or all of a system currently
under development at NASA, a NASA
contractor, or an HDCP company by mutual
agreement of all concerned.

The evaluation milestones apply to all experiments in
HDCP. The experiment described in this paper brings
technologies from milestone 1 to milestone 2 using the
Tactical Separation Assisted Flight Environment
(TSAFE) testbed. TSAFE is a new system designed to aid
air traffic controllers in detecting and resolving short-
term conflicts between aircrafts. Conceived at NASA
Ames Research Center, TSAFE was proposed as a
component of a larger Automated Airspace Computing
System, whose goal is to shift the burden of maintaining
aircraft separation from controllers to computers. The
TSAFE prototype that we are using as a testbed was
developed at MIT [5]. It consists of 20,000 lines of Java
code and performs two primary functions: conformance
monitoring and trajectory synthesis.

4. Architecture evaluation technique

Many of the technologies in the HDCP project deal
with the system’s architecture, which is one of the major
reasons we decided to start experimenting with this class
of technologies. Software architecture deals with the
structure and interactions of a software system. The most
basic building blocks of the structure of software
architecture are components and the interrelationships
among them. In addition to structure, behavior is part of
software architecture. Constraints and rules describe
how the architectural components communicate with one
another.

A system’s software architecture may be viewed at
different levels for different purposes. When viewed at
the highest levels, a system’s architecture is referred to as
the macro-architecture of the software system. At lower
levels of abstraction, it is referred to as micro-
architecture. Architectural styles and design patterns are
similar to what Bhansali [2] describes as generic forms of
software architecture. Often architectural styles guide the
structure and interactions of the system when describing
the system’s software architecture at the macro-
architectural level. When describing the structure
and/or interactions of a system at a micro-architectural
level, design patterns can be used.

Software architectural evaluations are investigations
of a system’s structure and behavior, with the purpose of
suggesting areas for improvement or understanding
various aspects of a system (e.g., maintainability,
reliability, or security). In many cases, a software
architectural evaluation is performed before a system has
been implemented. Often, this type of evaluation is
performed to compare design alternatives or to determine
whether or not the architecture is complete or appropriate
for the application. In other cases, a software
architectural evaluation is performed after the system has
been implemented. This type of architectural evaluation
typically is performed to assure that the actual
implementation of a system matches the planned
architectural design [17]. Some of the technologies in
HDCP evaluate architectures before implementation,
some after. The technology discussed in this paper is of
the latter kind and is called Implementation-oriented
software architectural evaluation. Since this type of
software architectural evaluation is performed after a
version of the system exists, it can utilize data measured
from the actual source code and associated
documentation. For example, the source code and
associated documentation can be used to reconstruct the
actual software architecture in order to compare it to the
planned or conceptual software architecture. Recovering
the actual architecture of an implemented system is used
for risk assessment and maintenance cost prediction as
well. The analysis of the actual software architecture can
be used to evaluate whether the implemented software
architecture fulfills the planned software architecture and
associated goals, rules and guidelines.

Violations of architectural guidelines affect the
maintainability of the system, which analysis of Mozilla
showed. The conclusion was “that either its architecture
has decayed significantly in its relatively short lifetime,
or it was not carefully architected in the first place” [7].

This is not a new problem. In 1969, Lehman found
that “the main problem of large systems is unintentional
interaction between components, that require changes to
the components for their elimination” [11]. The
observations were formed into a collection of “laws”
stating, for example, that: “As a program is evolved, its
complexity increases unless work is done to maintain or
reduce it” [12]. Brooks added: “all repairs tend to destroy
the structure, to increase the entropy and disorder of the
system. Less and less effort is spent on fixing original
design flaws; more and more is spent on fixing flaws
introduced by earlier fixes. As time passes, the system
becomes less and less well-ordered” [4]. Brooks drew the
conclusion that all systems will eventually require a
complete redesign as a consequence of this degeneration
[4]. Maintainability is an important dependability
attribute because it affects the mean time to repair

(MTTR) related to the time needed to fix a defect once it
has been discovered. If the maintainability of a system is
low then MTTR will be high and the dependability of the
system will decrease.
A technology able to detect architectural violations
increases maintainability of the system and thus increases
the dependability of the system.

5. Experiment

We are instrumenting the MIT version of TSAFE and
using it as a platform for designing and executing the
following dependability-related experimental activities:

• Define what dependability means for MIT
TSAFE, by applying the UMD model described
in section 2

• According to this definition of dependability,
identify potential failures and corresponding
faults in the code that could cause these failures

• Identify inputs for executing the software such
that these faults are exercised and cause failures

• Seed the code with the identified faults
• The technology developers formulate their

hypotheses in terms of faults that can be
detected by their technology (and possibly the
impact on dependability) and estimate the costs
associated with applying the technology

• Apply the technology and record the detected
faults as well as the cost of its application.

• Execute the system (containing these seeded
faults) and record the occurring failures (as well
as their frequency of occurrence)

• Analyze these failures in the context of
dependability defined in the first step and
validate or refute the technology hypotheses

• Estimate the effect on dependability and the cost
of this technology for the MIT TSAFE testbed

The outcome of these activities will be:
• A method for defining dependability
• A method for designing and performing

experiments for estimating the effect of a
technology with respect to dependability and
cost, for a given system.

• An example for the application of this method
• An instrumented testbed for future experiments

The first experiment will consist of applying and
evaluating the architecture evaluation technique. The
goal of the experiment is to determine how the technique
contributes to increased dependability by detecting faults.
The first step of the experiment is the characterization of
the technique, which involves defining classes of faults
that the technique will detect and formulating the
techniques’ hypotheses regarding other benefits gained
when applied. We will seed the testbed with faults for

this purpose. The need for fault seeding is due to the
relatively good shape of the test bed and the need to know
how many faults reside in the system. The current
version of the testbed is a baseline to which we compare
faulty versions of the system. We identified faults to be
seeded based on two strategies: 1) based on failures, 2)
based on architecture-oriented faults. We conducted a
hazard analysis in which we identified a set of likely
system failures derived from the dependability model
described earlier. For each of the failures, we identified a
set of plausible faults, making the link between failures
and faults explicit. We defined a set of fault candidates
that are related to the architecture of the system. For each
fault, we identified the impact on the system’s behavior
and how failure would be detected. These faults will be
seeded into the system. We are also in the process of
instrumenting the testbed so that it becomes a testbed in
such a way that it will be possible to determine the
internal operational behavior based on traces.

7. Future work
The future work is to complete the testbed, run the
experiment, and analyze and interpret the results. If
necessary, we will then improve the experiment, the
testbed, and possibly even the technique. The process will
then be repeated using the same technique for SCRover,
a testbed developed at University of Southern California.
We will also apply other techniques such as code
inspection and determine their ability to detect defects in
different situations on different testbeds. Based on these
results and the documented links from these faults to
failures, we will be able to reason about the impact of
these technologies on dependability.

Acknowledgements
The authors acknowledge support from the NASA High
Dependability Computing Program under cooperative
agreement NCC-2-1298. We also want to thank our
HDCP team members at University of Southern
California lead by Dr. Barry Boehm, Winsor Brown, and
Alex Lam. We thank Jen Dix for proof reading the paper.

References
[1] Basili, V., Donzelli, P., Asgari, S. Modelling
Dependability – The Unified Model of Dependability,
University of Maryland Technical Report, April 2004
(forthcoming).

[2] Bhansali S., Software Design by Reusing Architectures.
Knowledge-Based Software Engineering Conference, McLean,
Virginia September 1992.

[3] Boehm, B., Huang, L., Jain A., Madachy, R., The Nature
of Information System Dependability – A Stakeholder/Value
Approach - USC Technical Report November 2003.

[4] Brooks, F. P., The Mythical Man-Month, Addison Wesley,
1995.

[5] Gregory, D., TSAFE: Building a Trusted Computing Base
for Air Traffic Control Software, Masters Thesis, MIT, 2003.

[6] European Initiative on Dependability: towards dependable
Information Infrastructures http://www.cordis.lu/ist/ -
http://deppy.jrc.it.

[7] Godfrey, M. W. and Lee, E. H. S., Secrets from the
Monster: Extracting Mozilla's Software Architecture,
Symposium of Constructing Software Engineering Tools
(CoSET00), 2000.

[8] Huynh, D., Zelkowitz, M., Basili, V., and Rus, I.,
Modeling dependability for a diverse set of stakeholders,
Distributed Systems and Networks Workshop 2003, San
Francisco, CA, June 2003.

[9] International Federation for Information Processing (IFIP
WG-10.4), www.dependability.org.

[10] Laprie, J., Dependability: Basic Concepts and
Terminology, Dependable Computing and Fault Tolerance,
Vienna, Austria, Springer-Verlag, 1992.

[11] Lehman, M. M. and Belady, L. A., Program Evolution:
Processes of Software Change, London: Harcourt Brace
Jovanovich, 1985.

[12] Lehman, M. M., Laws of Software Evolution Revisited,
European Workshop Software Process Technology, 1996.

[13] Moteff, J., Copeland, C., Fisher, J., Critical
Infrastructures: What Makes an Infrastructure Critical?, Report
for Congress RL31556, The Library of Congress, 21 January
2003.

[14] Randel B., Dependability, a unifying concept, Computer
Security, Dependability and Assurance: from needs to solutions
Workshop, York, UK, July 1998.

[15] Rus, I., Basili, V., Zelkowitz, M., and Boehm, B.,
Empirical evaluation techniques and methods used for
achieving and assessing high dependability, Workshop on
dependability benchmarking, International Conference on
Dependable Systems, Washington, DC, June, 2002.

[16] Scherlis, W.L., Dependability and Architecture: An HDCP
Perspective, ICSE'02 Workshop on Architecting Dependable
Systems, Orlando, FL, May 2002.

[17] Tesoriero Tvedt, R., Costa, P., and Lindvall, M., Does the
Code Match the Design? A Process for Architecture Evaluation,
Proceedings of the International Conference on Software
Maintenance, 2002.

[18] U.S. The National Strategy to Secure Cyberspace,
February 2003; http://www.whitehouse.gov/pcipb.

[19] Wenger, A., Metzger, J., Dunn, M., (editors) International
CIIP Handbook, ETH, Swiss Federal Institute of Technology
Zurich, 2004.

