
Studying Code Development for High Performance Computing:
The HPCS Program

Jeff Carver1, Sima Asgari1, Victor Basili1,2, Lorin Hochstein1, Jeffrey K. Hollingsworth1, Forrest
Shull2, Marv Zelkowitz1,2

 1University of Maryland, College Park 2Fraunhofer Center Maryland
 {carver, sima, lorin,hollings}@cs.umd.edu {basili,fshull,mvz}@fc-md.umd.edu

Abstract
The ability to write programs that execute efficiently on
modern parallel computers has not been fully studied. In
this DARPA-sponsored project, we are looking at
measuring the development time for programs written for
high performance computers (HPC). Our goal is to
measure such development time in both student
programming (initially), and then later with professional
expert programmers. This paper describes the overall
goals of the program and our progress to date.

1. Introduction

The development of High-Performance Computing
(HPC) programs (codes) is crucial to progress in many
fields of scientific endeavor. However, HPC machines are
difficult to program. Effective programmers are rare
because HPC code development requires individuals who
are both experts in the HPC architecture and in the
application domain. These problems will only increase in
the future as tougher problems are attacked and more
powerful (yet likely more difficult to program) HPC
machines are created.

Current activity is mostly focused on better execution
performance of HPC codes. However, to avoid potential
problems in the future, insight is needed into the process
by which codes are created in the first place. We need to
understand how effective development of HPC codes
currently happens, and where the problems or bottlenecks
are. This would not only allow future research into
improving development of the high-payoff problems and
provide the most useful support, but may also improve our
knowledge of good practices for HPC development that
can be passed along to novices.

In order to investigate these questions, DARPA has
funded the High Productivity Computing Systems (HPCS)
project. This project is a collaboration among researchers
experienced in empirical studies of software engineering
(i.e., the work practices required for production of quality

software so far studied in non-HPC domains) and
researchers in the area of HPC itself.

In this paper we provide an overview of the HPCS
project, its research goals and areas of concentration. We
describe our early work so far and initial lessons learned,
and discuss how we are scaling up our improved research
protocols to attack the research questions in later work.

2. Research Goals

The goal of this work is to better understand and
quantify software development for high performance
computers. Currently there is little empirical evidence to
support many of the implicit assumptions made by the
HPC community. This work will help to determine
whether those assumptions are true and provide better
guidance for planning and decision-making in HPC code
development. Our work will begin with an observational
approach, observing HPC code development by students
and professionals to understand basic practices, to
generate a series of well-grounded hypotheses and
validate them where possible. As our understanding of
basic phenomena increases the research is expected to
move into a mode of testing key hypotheses.

We have identified the following focus areas,
representing important phenomena in HPC development:
• Tradeoff between development and execution time.
In developing HPC software, time to solution is an
important metric. For many applications, the value of a
result declines if it cannot be obtained by a deadline. Two
main components make up the time to solution metric.
The first component is the human effort/calendar time
required to develop and tune the software. The second
component is the amount of machine time required to
execute the software to produce the desired result.

Currently in the HPC community, human activity is
often not empirically measured as rigorously as execution
time. Both development time and execution time play
crucial roles in the overall time to solution, so we believe
that empirically measuring development time is important.

The overall goal in HPC development is to reduce the
time to solution, so researchers can strive to reduce either
the development time, the execution time or both. One of
the major differences between HPC software development
and traditional software development is the amount of
effort devoted to tuning HPC code for performance. Often
a solution is programmed to execute on a single processor
(e.g., a serial solution), and then the program is tuned to
operate more efficiently on a multiprocessor HPC system.
It is widely believed that more time spent tuning the code
will result in shorter execution times. Therefore,
understanding the tradeoff between time spent in
development and execution time is crucial. For large-scale
systems, the extra development time can lead to orders of
magnitude reduction in execution time.

By studying the development and execution times
associated with implementing various codes using
different development approaches like OpenMP [4] or
MPI [3], the tradeoffs inherent in those approaches can be
better understood. This information will assist in planning
so as to achieve optimal values for development time and
execution time, such that time to solution is minimized.
Such decision-making will obviously vary based on the
circumstances of use for the software. If the code will be
executed many times, then the cost of increased
development time can be amortized across multiple runs
of the software and balanced against the cumulative
reduced execution time. Conversely, if the code will only
be used once, the benefit of increased effort tuning the
code may not be as large.
• Workflows. Studies performed by HPCS will also
examine development workflows (i.e. the series of
activities performed by a developer working on an HPC
code), looking for common patterns that can be said to
characterize how people go about developing HPC codes.
We anticipate this information will be useful for a variety
of reasons:
o To understand if there are different working styles,

i.e. different sets of strategic rather than tactical
choices that can be made about how to go about
development, and whether different styles have better
correlations with cost-effective and successful
development.

o To understand where most of a developer’s time will
be spent, so that research efforts aimed at improving
the development process can be best focused for
overall impact.

o To give better guidance to novices learning how to
develop codes for the first time.

• Developer skill/experience. Another important issue
that needs to be studied is the level of expertise a
developer needs in order to effectively create high
performance software. If there are only a few experts in
the world who can effectively develop HPC solutions,
then the number of problems that can be solved is greatly

limited. Conversely, if novices can efficiently develop
effective HPC software, many more problems can be
addressed because of the larger base of developers. There
is the assumption that the solutions produced by novices
will not execute as fast as solutions produced by experts
and may take slightly longer to build. One of the goals of
this project is to begin characterizing the abilities of
novice developers in relation to expert developers.

3. Work to date

In order to begin answering the research questions
posed in the previous section, a series of empirical studies
has been planned. This type of empirical research is novel
for the HPC community, however, so prior to conducting
rigorous (but expensive) full fractional factorial
experiments with professionals, it was necessary to
conduct pilot studies to debug the experimental methods
and techniques. Our first research activity was running a
pre-pilot study aimed at understanding the issues involved
and debugging our methods.

The setting for the pre-pilot study was a graduate
level High Performance Computing class taught by Jeffrey
K. Hollingsworth at the University of Maryland. The
students in this class were taught the concepts associated
with HPC, so it was an ideal place to begin evaluating the
performance of novice HPC developers. For most of the
students in the class, it was their first time developing a
HPC software application.

Fifteen students took part in the study, which
consisted of two assignments. In the first assignment,
students were to create a sequential and then a parallel
solution using MPI for the “Game of Life” problem [2].
Subjects were graded on, and hence had incentive to focus
on, the correct performance of both sequential and parallel
versions and the amount of speed-up achieved for the
parallel version. In a second assignment, subjects
switched to OpenMP and had to devise a parallel version
of the SWIM benchmark.

In both assignments, students were required to
manually report on their total daily effort and the
sequence of tasks on which they spent their time. The
compiler and job scheduler were also instrumented to
collect some of the same information automatically.

The results of this pre-pilot study are a series of
lessons learned that allow us to design more effective pilot
studies. Another result of this study is a set of initial
hypotheses that can be further refined in the pilot studies
and tested during later full experiments.

Lesson 1 – Separate the serial coding and parallel
coding into two assignments

In this study, the students were only asked to submit
the final (parallel) version of their code. While we did
capture intermediate versions via the compiler

instrumentation, we could not definitively determine
which version was the final serial version. There were two
types of desirable data analyses that could not be
accurately performed because of the lack of this
separation of serial activities and parallel activities.

First, the execution time (performance) of a subject’s
serial code needed to be compared to the execution time
of his or her parallel code run on various numbers of
processors. This analysis is used to determine the amount
of speedup achieved by the subject. Because we did not
have a serial version of the code, we had to approximate
this metric by using the performance number of the
parallel code run on only 1 node.

Second, in our analysis, we often wished to separate
out the effort expended during serial coding from the
effort expended during parallel coding. The manually
reported effort data, which did separate the serial and
parallel activities, was not very reliable (see Lesson 3
below). So, in order to have an accurate separation, we
needed to be able to separate the effort captured via the
compiler instrumentation into serial effort and parallel
effort. Because the serial code was not submitted, giving
us a definitive end date for serial coding, we had to
develop an algorithm to approximate the point at which
serial coding stopped and parallel coding began.

For future studies, we suggest splitting the coding
assignments into parts. In the first part, the subjects are
instructed to solve the problem by writing a serial
program. Once the serial program is completed and
submitted, then the subjects can begin working on
parallelizing the serial code already created.

Lesson 2 – Account for uncollected data when
subjects work on uninstrumented machines

As we began to analyze the automatically collected
data, it became obvious that many of the subjects did
some of their work on machines that were not
instrumented to collect data automatically. In hindsight
this occurrence is not surprising but it is something that
was not accounted for during the planning and design of
the study. The automatically collected data indicated that
many of the subjects did not begin working on the
instrumented machines until they needed either the MPI
compiler or the use of multiple processors to test their
parallel code. To make matters more complex, an MPI
version of the C compiler is standard on most Linux
implementations, so a student with access to a Linux
machine could effectively finish the project before
submitting a final run on the instrumented HPC system.
This observation means that the automatically collected
data was not collected for much of the serial development
step and potentially for the parallel tuning effort.

There are two possible solutions to this problem for
future studies. First we can ask the subjects to work only
on the instrumented machines, thereby allowing us to
automatically collect data for all of their development

work. Secondly, we can develop a small script that
subjects can install on any other machine on which they
work that will collect the same data as the script on the
main machine. Neither of these solutions is ideal, so we
are continuing to pursue other solutions to this problem.

Lesson 3 – Manually reported data is suspect.
One of our primary objectives in the pre-pilot study

was to understand the quality of the data we collected
using our initial mechanisms. Therefore we spent some
time analyzing the correlation between our sources of
data. The details of this are discussed more fully in a
companion paper [1]. We only summarize the results here.

We treat the automatically collected data as more
accurate, since this data was objective (not reliant upon
subjective reporting by humans), unobtrusive (not
interfering with normal work processes) and automatable
(not dependent upon active reporting by human). Subjects
were aware they were being monitored, but not aware of
what was being observed or why. This included not only
the log of compilation and execution activities, but also a
database that was created containing captured source code
and test data used throughout the development process.

An approximation of effort was done based on the
number of ‘job steps,’ which were defined as actions that
directly reflected the frequency of computer system use
(i.e. compilations and test executions). An assumption was
made that each of these activities involves a certain
expenditure of a programmer’s effort, so they indirectly
quantify the effort not related to thinking or design
activities.

However, we were not able to find any significant
correlation between the effort data extrapolated from the
subjects’ automatically collected data and the manually
reported effort. We were thus forced to treat the manual
data more skeptically. Hence,

Lesson 4 – Data collection and analysis should be as
automated as possible

Of course, a central weakness of automated collection
is that while the data can tell us what was done on the
computer, it doesn’t provide information about how those
activities contribute to the decision making process in
code development. A key research goal is to increase the
usefulness of the data collected from automated
mechanisms without making it more obtrusive to the
developer.

Based on these observations, a series of hypotheses
has been formulated for more specific investigation in
future studies. These hypotheses include items such as:
o Workflows will be different for developers with less

programming experience than for developers with
more programming experience

o The effort required to produce a parallel solution to a
problem is greater than the effort required to produce
a serial code to solve the same problem.

o There is a large variation in the overall amount of
effort among developers, but the distribution among
the various activities is similar.

o For a specific problem, the mean performance of MPI
programs will be higher than the mean performance
of OpenMP programs.

4. Ongoing Work

Based on the lessons learned from the pre-pilot study,
during the Spring 2004 semester we had a number of pilot
studies ongoing. The pilots are exploring a number of
different research questions, using different protocols. All
will be able to feed suggestions for improvements back as
we understand the results. All of these studies will be
complete by the time of the workshop at ICSE, so we will
be able to discuss initial results by that time.
The pilots are being done in classroom environments, with
the following instructors:
o Mary Hall (University of Southern California): 10

subjects are given a small serial program (LU
decomposition) and asked to tune it to improve
performance, then produce a parallel version of the
same solution using MPI, and tune that.

o Uzi Vishkin (University of Maryland): This is a class
on parallel algorithms. 17 subjects are asked to
produce solutions to two different assignments (array
compaction, randomized selection) directly in a
parallel environment, without first producing a serial
version.

o Alan Edelman (MIT): Subjects are asked to produce
versions of the same code (for Buffon-Laplace
Needle Problem, grid of resistors, Laplace’s
equation) using MPI, OpenMP, and MATLAB *P.

o John Gilbert (University of California Santa Barbara):
43 subjects are given the same assignment using
multiple parallel approaches, as in the study with
Alan Edelman above.

o Alan Sussman (University of Maryland): Subjects are
asked to solve the Game of Life using MPI
(replicating the first part of our pre-pilot study).
Although there are many differences among the

studies, even in terms of the specific hypotheses being
investigated, they all share the same general framework in
terms of dependent and independent variables:
o Independent (predictor) variables:

o HPC approach (e.g. OpenMP, MPI, etc.)
o Types of subjects (level of previous

expertise, skill, workflows used, etc.)
o Application/problem for which an HPC

solution is being designed
o Dependent variables:

o HPC development effort

o HPC development effectiveness (measured
for example by the quality of the resulting
HPC code)

As a result, this set of studies will result in data well
suited to exploring the effects of different HPC
development approaches on different problem types.
Some data will come from the same subjects performing
different types of tasks; others will reflect the same task
addressed by subjects in different environments and with
different backgrounds and skill levels. These data sets will
form the basis of future data needed to explore the
relationships among our phenomena of interest.

Other lessons learned so far are mainly procedural,
for example, understanding how much time needs to be
included in the schedule for receiving approval from the
various educational institutions for performing studies on
human subjects.

5. Future Work

The ultimate goal of this work is to run full fractional
factorial experiments with HPC code development
professionals, to investigate specific hypotheses resulting
from our earlier pilot studies with the most rigor. In such
an experiment, we envision that subjects will use two or
more parallel programming approaches to implement
different benchmark applications. The order of the
approaches and benchmarks can be varied to combat the
effects of subjects learning from one assignment to the
next. Such an experiment will help us to better quantify
the tradeoffs between the different approaches for
different types of benchmarks.

To do that, we will be able to reuse the refined
instrumentation and our experience with empirical study
designs and HPC environment data collection
mechanisms, which we have been experimenting with in
the meantime.

The end result of such studies will be well-formulated
and tested heuristics concerning the aspects of human
developers, HPC architectures, and code development
practices that work together to influence the time to
solution of problems being tackled using HPC
approaches. That knowledge, in turn, is necessary to be
able to plan and meet the current and increasing
challenges in a number of important scientific fields.

6. Acknowledgements
This work is sponsored by the DARPA High Productivity
Computing Systems program.

7. References

[1] S. Asgari, et al, Challenges in Measuring HPCS Learner
Productivity in an Age of Ubiquitous Computing (submitted to
this workshop)

[2] M. Gardener, MATHEMATICAL GAMES: The fantastic
combinations of John Conway's new solitaire game "life,"
Scientific American 223 (October 1970): 120-123.

[3] Message Passing Interface Forum, http://www-
unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0-sf/mpi2-
report.htm

[4] OpenMP Architecture Review Board, OpenMP C and C++
Application Program Interface, Version 2.0, March 2002.

