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Abstract 
The ability to write programs that execute efficiently on 
modern parallel computers has not been fully studied. In 
this DARPA-sponsored project, we are looking at 
measuring the development time for programs written for 
high performance computers (HPC). Our goal is to 
measure such development time in both student 
programming (initially), and then later with professional 
expert programmers. This paper describes the overall 
goals of the program and our progress to date. 

1. Introduction 

The development of High-Performance Computing 
(HPC) programs (codes) is crucial to progress in many 
fields of scientific endeavor. However, HPC machines are 
difficult to program. Effective programmers are rare 
because HPC code development requires individuals who 
are both experts in the HPC architecture and in the 
application domain. These problems will only increase in 
the future as tougher problems are attacked and more 
powerful (yet likely more difficult to program) HPC 
machines are created. 

Current activity is mostly focused on better execution 
performance of HPC codes. However, to avoid potential 
problems in the future, insight is needed into the process 
by which codes are created in the first place. We need to 
understand how effective development of HPC codes 
currently happens, and where the problems or bottlenecks 
are. This would not only allow future research into 
improving development of the high-payoff problems and 
provide the most useful support, but may also improve our 
knowledge of good practices for HPC development that 
can be passed along to novices.  

In order to investigate these questions, DARPA has 
funded the High Productivity Computing Systems (HPCS) 
project. This project is a collaboration among researchers 
experienced in empirical studies of software engineering 
(i.e., the work practices required for production of quality 

software so far studied in non-HPC domains) and 
researchers in the area of HPC itself. 

In this paper we provide an overview of the HPCS 
project, its research goals and areas of concentration. We 
describe our early work so far and initial lessons learned, 
and discuss how we are scaling up our improved research 
protocols to attack the research questions in later work. 

2.  Research Goals 

The goal of this work is to better understand and 
quantify software development for high performance 
computers. Currently there is little empirical evidence to 
support many of the implicit assumptions made by the 
HPC community. This work will help to determine 
whether those assumptions are true and provide better 
guidance for planning and decision-making in HPC code 
development. Our work will begin with an observational 
approach, observing HPC code development by students 
and professionals to understand basic practices, to 
generate a series of well-grounded hypotheses and 
validate them where possible. As our understanding of 
basic phenomena increases the research is expected to 
move into a mode of testing key hypotheses.  

We have identified the following focus areas, 
representing important phenomena in HPC development: 
• Tradeoff between development and execution time. 
In developing HPC software, time to solution is an 
important metric. For many applications, the value of a 
result declines if it cannot be obtained by a deadline. Two 
main components make up the time to solution metric. 
The first component is the human effort/calendar time 
required to develop and tune the software. The second 
component is the amount of machine time required to 
execute the software to produce the desired result.  

Currently in the HPC community, human activity is 
often not empirically measured as rigorously as execution 
time. Both development time and execution time play 
crucial roles in the overall time to solution, so we believe 
that empirically measuring development time is important.  



The overall goal in HPC development is to reduce the 
time to solution, so researchers can strive to reduce either 
the development time, the execution time or both. One of 
the major differences between HPC software development 
and traditional software development is the amount of 
effort devoted to tuning HPC code for performance. Often 
a solution is programmed to execute on a single processor 
(e.g., a serial solution), and then the program is tuned to 
operate more efficiently on a multiprocessor HPC system. 
It is widely believed that more time spent tuning the code 
will result in shorter execution times. Therefore, 
understanding the tradeoff between time spent in 
development and execution time is crucial. For large-scale 
systems, the extra development time can lead to orders of 
magnitude reduction in execution time.   

By studying the development and execution times 
associated with implementing various codes using 
different development approaches like OpenMP [4] or 
MPI [3], the tradeoffs inherent in those approaches can be 
better understood. This information will assist in planning 
so as to achieve optimal values for development time and 
execution time, such that time to solution is minimized. 
Such decision-making will obviously vary based on the 
circumstances of use for the software. If the code will be 
executed many times, then the cost of increased 
development time can be amortized across multiple runs 
of the software and balanced against the cumulative 
reduced execution time. Conversely, if the code will only 
be used once, the benefit of increased effort tuning the 
code may not be as large. 
• Workflows. Studies performed by HPCS will also 
examine development workflows (i.e. the series of 
activities performed by a developer working on an HPC 
code), looking for common patterns that can be said to 
characterize how people go about developing HPC codes. 
We anticipate this information will be useful for a variety 
of reasons:  
o To understand if there are different working styles, 

i.e. different sets of strategic rather than tactical 
choices that can be made about how to go about 
development, and whether different styles have better 
correlations with cost-effective and successful 
development.  

o To understand where most of a developer’s time will 
be spent, so that research efforts aimed at improving 
the development process can be best focused for 
overall impact. 

o To give better guidance to novices learning how to 
develop codes for the first time. 

• Developer skill/experience. Another important issue 
that needs to be studied is the level of expertise a 
developer needs in order to effectively create high 
performance software. If there are only a few experts in 
the world who can effectively develop HPC solutions, 
then the number of problems that can be solved is greatly 

limited. Conversely, if novices can efficiently develop 
effective HPC software, many more problems can be 
addressed because of the larger base of developers. There 
is the assumption that the solutions produced by novices 
will not execute as fast as solutions produced by experts 
and may take slightly longer to build. One of the goals of 
this project is to begin characterizing the abilities of 
novice developers in relation to expert developers. 

3.  Work to date 

In order to begin answering the research questions 
posed in the previous section, a series of empirical studies 
has been planned. This type of empirical research is novel 
for the HPC community, however, so prior to conducting 
rigorous (but expensive) full fractional factorial 
experiments with professionals, it was necessary to 
conduct pilot studies to debug the experimental methods 
and techniques. Our first research activity was running a 
pre-pilot study aimed at understanding the issues involved 
and debugging our methods. 

The setting for the pre-pilot study was a graduate 
level High Performance Computing class taught by Jeffrey 
K. Hollingsworth at the University of Maryland. The 
students in this class were taught the concepts associated 
with HPC, so it was an ideal place to begin evaluating the 
performance of novice HPC developers. For most of the 
students in the class, it was their first time developing a 
HPC software application. 

Fifteen students took part in the study, which 
consisted of two assignments. In the first assignment, 
students were to create a sequential and then a parallel 
solution using MPI for the “Game of Life” problem [2]. 
Subjects were graded on, and hence had incentive to focus 
on, the correct performance of both sequential and parallel 
versions and the amount of speed-up achieved for the 
parallel version. In a second assignment, subjects 
switched to OpenMP and had to devise a parallel version 
of the SWIM benchmark. 

In both assignments, students were required to 
manually report on their total daily effort and the 
sequence of tasks on which they spent their time. The 
compiler and job scheduler were also instrumented to 
collect some of the same information automatically. 

The results of this pre-pilot study are a series of 
lessons learned that allow us to design more effective pilot 
studies. Another result of this study is a set of initial 
hypotheses that can be further refined in the pilot studies 
and tested during later full experiments. 

Lesson 1 – Separate the serial coding and parallel 
coding into two assignments 

In this study, the students were only asked to submit 
the final (parallel) version of their code. While we did 
capture intermediate versions via the compiler 



instrumentation, we could not definitively determine 
which version was the final serial version. There were two 
types of desirable data analyses that could not be 
accurately performed because of the lack of this 
separation of serial activities and parallel activities. 

First, the execution time (performance) of a subject’s 
serial code needed to be compared to the execution time 
of his or her parallel code run on various numbers of 
processors. This analysis is used to determine the amount 
of speedup achieved by the subject. Because we did not 
have a serial version of the code, we had to approximate 
this metric by using the performance number of the 
parallel code run on only 1 node. 

Second, in our analysis, we often wished to separate 
out the effort expended during serial coding from the 
effort expended during parallel coding. The manually 
reported effort data, which did separate the serial and 
parallel activities, was not very reliable (see Lesson 3 
below). So, in order to have an accurate separation, we 
needed to be able to separate the effort captured via the 
compiler instrumentation into serial effort and parallel 
effort. Because the serial code was not submitted, giving 
us a definitive end date for serial coding, we had to 
develop an algorithm to approximate the point at which 
serial coding stopped and parallel coding began. 

For future studies, we suggest splitting the coding 
assignments into parts. In the first part, the subjects are 
instructed to solve the problem by writing a serial 
program. Once the serial program is completed and 
submitted, then the subjects can begin working on 
parallelizing the serial code already created. 

Lesson 2 – Account for uncollected data when 
subjects work on uninstrumented machines 

As we began to analyze the automatically collected 
data, it became obvious that many of the subjects did 
some of their work on machines that were not 
instrumented to collect data automatically. In hindsight 
this occurrence is not surprising but it is something that 
was not accounted for during the planning and design of 
the study. The automatically collected data indicated that 
many of the subjects did not begin working on the 
instrumented machines until they needed either the MPI 
compiler or the use of multiple processors to test their 
parallel code.  To make matters more complex, an MPI 
version of the C compiler is standard on most Linux 
implementations, so a student with access to a Linux 
machine could effectively finish the project before 
submitting a final run on the instrumented HPC system. 
This observation means that the automatically collected 
data was not collected for much of the serial development 
step and potentially for the parallel tuning effort. 

There are two possible solutions to this problem for 
future studies. First we can ask the subjects to work only 
on the instrumented machines, thereby allowing us to 
automatically collect data for all of their development 

work. Secondly, we can develop a small script that 
subjects can install on any other machine on which they 
work that will collect the same data as the script on the 
main machine. Neither of these solutions is ideal, so we 
are continuing to pursue other solutions to this problem. 

Lesson 3 – Manually reported data is suspect. 
One of our primary objectives in the pre-pilot study 

was to understand the quality of the data we collected 
using our initial mechanisms. Therefore we spent some 
time analyzing the correlation between our sources of 
data. The details of this are discussed more fully in a 
companion paper [1]. We only summarize the results here. 

We treat the automatically collected data as more 
accurate, since this data was objective (not reliant upon 
subjective reporting by humans), unobtrusive (not 
interfering with normal work processes) and automatable 
(not dependent upon active reporting by human). Subjects 
were aware they were being monitored, but not aware of 
what was being observed or why. This included not only 
the log of compilation and execution activities, but also a 
database that was created containing captured source code 
and test data used throughout the development process. 

An approximation of effort was done based on the 
number of ‘job steps,’ which were defined as actions that 
directly reflected the frequency of computer system use 
(i.e. compilations and test executions). An assumption was 
made that each of these activities involves a certain 
expenditure of a programmer’s effort, so they indirectly 
quantify the effort not related to thinking or design 
activities.  

However, we were not able to find any significant 
correlation between the effort data extrapolated from the 
subjects’ automatically collected data and the manually 
reported effort. We were thus forced to treat the manual 
data more skeptically. Hence, 

Lesson 4 – Data collection and analysis should be as 
automated as possible 

Of course, a central weakness of automated collection 
is that while the data can tell us what was done on the 
computer, it doesn’t provide information about how those 
activities contribute to the decision making process in 
code development. A key research goal is to increase the 
usefulness of the data collected from automated 
mechanisms without making it more obtrusive to the 
developer. 

Based on these observations, a series of hypotheses 
has been formulated for more specific investigation in 
future studies. These hypotheses include items such as: 
o Workflows will be different for developers with less 

programming experience than for developers with 
more programming experience 

o The effort required to produce a parallel solution to a 
problem is greater than the effort required to produce 
a serial code to solve the same problem. 



o There is a large variation in the overall amount of 
effort among developers, but the distribution among 
the various activities is similar. 

o For a specific problem, the mean performance of MPI 
programs will be higher than the mean performance 
of OpenMP programs. 

4.  Ongoing Work 

Based on the lessons learned from the pre-pilot study, 
during the Spring 2004 semester we had a number of pilot 
studies ongoing. The pilots are exploring a number of 
different research questions, using different protocols. All 
will be able to feed suggestions for improvements back as 
we understand the results. All of these studies will be 
complete by the time of the workshop at ICSE, so we will 
be able to discuss initial results by that time. 
The pilots are being done in classroom environments, with 
the following instructors: 
o Mary Hall (University of Southern California): 10 

subjects are given a small serial program (LU 
decomposition) and asked to tune it to improve 
performance, then produce a parallel version of the 
same solution using MPI, and tune that.  

o Uzi Vishkin (University of Maryland): This is a class 
on parallel algorithms. 17 subjects are asked to 
produce solutions to two different assignments  (array 
compaction, randomized selection) directly in a 
parallel environment, without first producing a serial 
version. 

o Alan Edelman (MIT): Subjects are asked to produce 
versions of the same code (for Buffon-Laplace 
Needle Problem, grid of resistors, Laplace’s 
equation) using MPI, OpenMP, and MATLAB *P. 

o John Gilbert (University of California Santa Barbara): 
43 subjects are given the same assignment using 
multiple parallel approaches, as in the study with 
Alan Edelman above. 

o Alan Sussman (University of Maryland): Subjects are 
asked to solve the Game of Life using MPI 
(replicating the first part of our pre-pilot study). 
Although there are many differences among the 

studies, even in terms of the specific hypotheses being 
investigated, they all share the same general framework in 
terms of dependent and independent variables: 
o Independent (predictor) variables: 

o HPC approach (e.g. OpenMP, MPI, etc.) 
o Types of subjects (level of previous 

expertise, skill, workflows used, etc.) 
o Application/problem for which an HPC 

solution is being designed 
o Dependent variables: 

o HPC development effort 

o HPC development effectiveness (measured 
for example by the quality of the resulting 
HPC code) 

As a result, this set of studies will result in data well 
suited to exploring the effects of different HPC 
development approaches on different problem types. 
Some data will come from the same subjects performing 
different types of tasks; others will reflect the same task 
addressed by subjects in different environments and with 
different backgrounds and skill levels. These data sets will 
form the basis of future data needed to explore the 
relationships among our phenomena of interest. 

Other lessons learned so far are mainly procedural, 
for example, understanding how much time needs to be 
included in the schedule for receiving approval from the 
various educational institutions for performing studies on 
human subjects. 

5. Future Work 

The ultimate goal of this work is to run full fractional 
factorial experiments with HPC code development 
professionals, to investigate specific hypotheses resulting 
from our earlier pilot studies with the most rigor. In such 
an experiment, we envision that subjects will use two or 
more parallel programming approaches to implement 
different benchmark applications. The order of the 
approaches and benchmarks can be varied to combat the 
effects of subjects learning from one assignment to the 
next. Such an experiment will help us to better quantify 
the tradeoffs between the different approaches for 
different types of benchmarks. 

To do that, we will be able to reuse the refined 
instrumentation and our experience with empirical study 
designs and HPC environment data collection 
mechanisms, which we have been experimenting with in 
the meantime.  

The end result of such studies will be well-formulated 
and tested heuristics concerning the aspects of human 
developers, HPC architectures, and code development 
practices that work together to influence the time to 
solution of problems being tackled using HPC 
approaches. That knowledge, in turn, is necessary to be 
able to plan and meet the current and increasing 
challenges in a number of important scientific fields. 
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